六年级奥数.杂题.抽屉原理.学生

合集下载

小学六年级数学思维能力(奥数)《抽屉原理》训练题(二)

小学六年级数学思维能力(奥数)《抽屉原理》训练题(二)

小学六年级数学思维能力(奥数)《抽屉原理》训练题(二)1、礼堂里有253人开会,这253人中至少有多少人的属相相同?2、一兴趣小组有10名学生,他们都订阅甲、乙两种杂志中的一种或两种。

问:至少有多少名学生订阅的杂志种类相同?3、把130件玩具分给幼儿园小朋友,如果不管怎样分,都至少有一位小朋友分得4件或4件以上的玩具,那么这个幼儿园最多有多少个小朋友?5、体育组有足球、篮球和排球,上体育课前,老师让一班的41名同学往操场拿球,每人最多拿两个。

问:至少有几名同学拿球的情况完全一样?5、口袋里放有足够多的红、白两种颜色的球,有若干人轮流从袋中取球,每人取三个球。

要保证有4人取出的球的颜色完全相同,至少应有多少人取球?6、10个足球队之间共赛了11场,赛得最多的球队至少赛了几场?7、抽屉里有4枝红铅笔和3枝蓝铅笔,如果闭着眼睛摸,一次必须拿多少枝才能才能保证至少有1枝蓝色铅笔?8、盒子里有5个红球,6个蓝球和7个白球,一次拿出多少个球才能保证至少有1个白球?9、有红、黄、蓝、白四色球各10个,一次摸出5个球,至少有多少个球的颜色是相同的?10、有红、黄、蓝3种颜色的小珠子各4颗混放在口袋里,为了保证一次能取出2颗颜色相同的珠子,一次至少取多少颗?11、一只袋子里有许多规格相同但颜色不同的玻璃球,颜色有红黄绿三种,至少取出多少个球才能保证有2个球的颜色相同?12、某班学生去买语文书、数学书和英语书。

买书的情况是:有买一本的,有买两本的,有买三本的,至少要去多少人才能保证一定有两位同学买到相同的书?(每种书最多买一本)13、某班学生去买数学书、语文书、美术书、自然书,买书的情况是:有买一本的、两本的、三本的和四本的。

至少去多少人才能保证一定有两人买的书是相同的。

(每种书最多买一本)14、学校图书室有历史、文艺、科普三种图书。

每个学生从中任意借两本,至少要多少个同学才能保证一定有两人所借的图书属于同一种?15、学校买来红、黄、蓝、绿四种颜色的球,每个学生最多只能借2个球,至少要有多少个学生借球,才能保证其中必然有两个学生所借的球一样?16、某班学生去买书,A、B、C、D四种,每人可买一本,二本,三本或四本.至少有( )位同学才能保证一定有两位同学买到相同的书?(每种书最多买一本)。

小学奥数:抽屉原理(含答案)

小学奥数:抽屉原理(含答案)

小学奥数:抽屉原理(含答案)教案抽屉原理1、概念解析把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要XXX的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。

如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。

比如,我们从街上随便找来13人,便可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证实这个结论是正确的呢?只要利用抽屉原理就很简单把道理讲清楚.事实上,因为人数(13)比属相数(12)多,因而至少有两个人属相相同(在这里,把13人算作13个“苹果”,把12种属相算作12个“抽屉”)。

应用抽屉原理要注意识别“抽屉”和“苹果”,XXX的数目一定要大于抽屉的个数。

2、例题讲解例1有5个小朋友,每人都从装有许多是非围棋子的布袋中随便摸出3枚棋子.请你证实,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

例2一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?例3从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

例4从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

小学奥数抽屉原理问题例题

小学奥数抽屉原理问题例题

1.在200位学生中,在同一个月过生日的最少有多少人?[分析与解]因为有12个不同的月份,200÷12=16……8,所以在同一月过生日的最少有16+1=17人.2.学校买来历史、文艺、科普3种图书若干本,每名学生从中任意借2本,那么最少在多少名学生中才一定有两人所借图书的种类完全相同?[分析与解]注意到,6名学生可以将所有的可能借一遍:(历史,历史),(文艺,文艺),(科普,科普),(历史,文艺),(历史,科普),(文艺,科普).所以第7名同学不管他怎么借,都在这6种情况之列.所以最少在7名学生中才一定有两人所借图书的种类完全相同.3.一次智力竞赛,试卷上出了10道选择题,评分标准为:每人有10分基础分,每答对一题加4分,答错一题扣1分,不答的题不加分也不扣分.为了要保证至少有3人得分相同,则最少有多少人参加竞赛?[分析与解]如果全部做对可以得到10+10×4=50分,全部做错将得到10-10×1=0分,那么是不是50~0分之间所有的分数都能得到呢?注意到49,48,47,44,43,39这6种分数得不到,于是共有51-6=45种不同的得分.如果每种分数都有2个人得到,则需90人,那么第91个人的分数一定在45种分数之列,这样就一定有3人得到的分数相同.所以,为了保证至少有3人得分相同,则最少有91人参加竞赛.4.盒子中有10个红球、10个白球和10个绿球,它们的大小都相同.如果闭上眼睛,一次最少要取出多少个才能保证其中必有3个颜色相同的球?[分析与解]闭上眼睛,最不利的情况,前6个,将3种颜色的球各取了2个,那么第7个取出的球不管是何种颜色,一定和某两个球的颜色相同.所以一次最少要取出7个才能保证其中必有3个颜色相同的球.5.一个布袋里有大小相同颜色不同l的一些木球,其中红色的有10个,白色的有9个,黄色的有8个,蓝色的有3个,绿色的有1个.那么一次最少要取出多少个球,才能保证有4个颜色相同的球?[分析与解]我们知道取出3个红球,3个白球,3个黄球,3个蓝球,1个绿球,此时仍然没有4个相同颜色的球,取出了3+3+3+3+1=13个球.但是取出第14个球时,不管这个球是红色、白色还是黄色的,都有3个球的颜色与其相同.所以一次最少要取出14个球,才能保证有4个颜色相同的球.6.暗室里有红、绿、蓝、黄、白5种颜色的袜子各50只,为确保从室内取出l0双袜子(两只袜子颜色相同即为一双),那么应从室内取出袜子的最少只数是多少?[分析与解]我们知道取出红色5只,绿色5只,蓝色5只,黄色5只,白色3只,此时只有9双袜子,此时有5+5+5+5+3=23只袜子.但是第24只袜子不管取的是颜色,都能与上面的袜子在拼成一双.所以,最少应从暗室中取出24只袜子,保证其中必有10双袜子.7.黑色、白色、黄色、红色的筷子各有8根,混杂放在一起,黑暗中想从这些筷子中取出颜色不同的两双筷子.问最少要取多少根才能保证达到要求?[分析与解]我们知道如果有黑色8根,白色1根,黄色1根,红色1根,其中没有两双颜色不同的筷子.此时取出了8+1+1+1=11根筷子.但是第12根筷子不管是何种颜色,都能凑出另一种颜色不同的筷子.所以要保证取出的筷子中有颜色不同的两双,最少要取12根筷子.8.口袋内装有4个红球、6个黑球和8个白球,一次最少取出多少个球,才能保证至少有1个白球和1个黑球?[分析与解]如果开始取出8个白球,4个红色,此时有12个球,但是没有黑球,但是再取一个球一定是黑色的,满足题意.所以,一次最少取出13个球,才能保证至少有1个白球和1个黑球.9.口袋中有红、黄、蓝3种颜色的玻璃球各50个,闭着眼睛最少要摸出多少个球,才能保证红球数与黄球数的和比蓝球数多,黄球数与蓝球数的和比红球数多,红球数与蓝球数的和比黄球数多?[分析与解]将一种颜色与另两种颜色作为两个抽屉,为了使另两种颜色球数多于第一种颜色,至少放入50×2+1=101个苹果(球),才能使有一个抽屉有多于50个苹果,这个抽屉只能是两种颜色的抽屉.那么,至少要取出101个球才能保证任何一种颜色的小球都会小另两种颜色的数量和.10.圆桌周围恰好有90把椅子,现已有一些人在桌边就坐,当再有一人入座时,就必须和已就坐的某个人相邻,则已就坐的最少有多少人?[分析与解]我们知道每隔2个人坐1个人,这样就会造成上面的情况,这时已经坐入90÷3=30人,并且易知少于30人时,不能保证题中的情况出现.所以,已就坐的最少有30人.11.有1999个数,每个数为0或1,如果要求当把这些数以任意的方式排列在圆周上时,总能找到37个l连排在一起.那么其中最少有多少个数是1?[分析与解]1999÷(37+1)=52……23,至少有54个0,那么可将1分成53段,这样必定有1段有37个连续的1.此时,有1999-54=1945个1.所以,要保证题中叙述的成立,最少有1945个1.12.有64只乒乓球放在18个盒子中,每个盒子最多放6只乒乓球.那么最少有几个盒子里的乒乓球数目相同?(每个盒子必须放入球,不可以存在空盒情况)[分析与解]最多可以使得6个盒子的乒乓球的只数不等,依次为1,2,3,4,5,6只,这6个盒子共有21只乒乓球,64÷21=3……1,这样18个盒子放入了21×3=63只球,剩下的1只不管放到那个盒中,如果这只盒子放有k个球,那么现在就有4个盒子中的球是k+1个.所以最少有4个盒子里的乒乓球数目相同.13.在笔直的马路上,从某点起,每隔1米种有1棵树.如果把3块“爱护树林”的小牌分别挂在3棵树上,请说明:不管怎么挂,总有2棵挂牌的树,它们之间的距离以米为单位度量是偶数.[分析与解]设3棵挂排的树距离同一点O的距离分别为a,b,c.这3个数中至少有两个同是奇数或同是偶数.因为奇数-奇数=偶数,偶数-偶数=偶数.所以这3个数中至少有两个数之差是偶数.这就说明不管怎么挂,至少有两棵挂牌的树之间的距离是偶数.14.数学教师带领30名学生做游戏,师生每人都各自在一张纸上把自然数1至30写成一行,顺序由自己决定.然同学们将自己的纸条与老师所写的纸条相比,有几个数与师所写的位置相同,就可得几分.现在知道30名学生所得分数各不相同,请说明其中必有1名学生所写的纸条与老师自顺序完全相同.[分析与解]我们注意到,学生写出的数最少没有1个和老师的相同,最多30个数的顺序完全相同,那么这就要31种不同的分值,但是这31种分值都能取到吗?注意到,29分这个分值是取不到的,因为不可能正好有29个数与老师所写数的顺序相同,有29个数的顺序相同,那么第30个数的顺序一定也相同.所以只有30种分值,并且每个学生各不相同,那么这30个分值每种都有人得到,即一定有得到30分的学生,这名学生所写的纸条与老师自己的顺序完全相同.15.图20-1是一个l0×10的方格表,能否在方格表的每个格中填入l,2,3这3个数之一,使得每行、每列及两条对角线上的各数之和互不相同?[分析与解]不可能,因为每列每行每对角线上的和最小为10,最大为30.10到30之间只有21个互不相同的整数值.而10行、10列及两条对角线上的各个数的和共有22个,所以这22条线上的各个数的和至少有两个是相等的。

六年级奥数抽屉原理含答案

六年级奥数抽屉原理含答案

抽屉原理知识框架一、 知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、 抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、 抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11xn -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.重难点抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。

本讲的主要教学目标是: (1) 理解抽屉原理的基本概念、基本用法; (2) 掌握用抽屉原理解题的基本过程; (3) 能够构造抽屉进行解题;(4)利用最不利原则进行解题;(5)利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

例题精讲(一)、直接利用公式进行解题(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【考点】抽屉原理【难度】1星【题型】解答【解析】6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,6511÷=,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.【答案】对【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【总结】题目中并没有说明什么是“抽屉”,什么是“物品”,解题的关键是制造“抽屉”,确定假设的“物品”,根据“抽屉少,物品多”转化为抽屉原理来解.【答案】从题目可以看出,这道题显然与月份有关.我们知道,一年有12个月,把这12个月看成12个抽屉,这道题就相当于把13个苹果放入12个抽屉中.根据抽屉原理,至少有一个抽屉放了两个苹果.因此至少有两个同学在同一个月过生日.【例 2】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

六年级下册奥数试题-抽屉原理练习-全国通用 (无答案)

六年级下册奥数试题-抽屉原理练习-全国通用 (无答案)

六年级下册奥数试题-抽屉原理练习-全国通用(无答案)抽屉原理同学们都知道,如果把3个苹果放进2个抽屉里,无论怎么放,都有一个抽屉里面至少放进去了2个苹果。

推广一下,如果将多余N个的元素任意放进N个抽屉里,那么至少有一个抽屉至少放进2个或2个以上的元素,这就是抽屉原理。

【难题点拨1】将8个苹果分给7个小朋友,如果苹果不许切开,无论怎么分,有一个小朋友至少拿到了2个苹果,对吗?【点拨】上述结论是的。

将8个苹果看作,7个小朋友看作,根据抽屉原理,将8个元素放进7个抽屉里,因为8>7,所以无论怎么放,有一个抽屉里面至少放进去了。

【拓展】将9名工人分到4个工作小组里面去,无论怎么分,有一个小组至少分进去了3名工人,对吗?【点拨】上述结论是的。

将9名工人看作,4个工作小组看作,因为9=2×4+1,所以无论怎么放,有一个抽屉里面至少放进去了个元素。

【想一想做一做】1、判断下面的说法是否正确,并说明为什么?①将6个饼子分给5个同学,如果饼子不许掰开,无论你怎么分,有一个同学至少分到了2个饼子。

②将10本书分给9个小朋友,无论怎么分,有一个小朋友至少拿到了2本书。

③将13个盘子放到3张桌子上,无论怎么放,有一张桌子至少放了5个盘子。

2、将20个苹果分给19个小朋友,如果苹果不许切开,无论怎么分,其中有一个小朋友至少分到了几个苹果?3、老师将16本作业本分发给5个小学生,无论怎么分,其中有一个小学生至少分到几本作业本?【难题点拨2】盒子里面放了4个黑球,6个花球,如果不许看,一次至少摸出几个球,才能保证有2个颜色不同的球?【点拨】如果运气不好的话,一次摸出6个球,摸出的6个球可能全是,这时,只要再增加1个球,那么增加的那一个球肯定是,就可以保证摸出的球中有2个颜色不同的球。

答:一次至少摸出个球,才能保证有2个颜色不同的球。

【拓展】一个盒子里有3个黑球,4个红球,5个花球,如果不用眼睛看,从盒子中摸球,每次只许摸1个球,至少摸几次,才能保证有2个颜色相同的球?【点拨】每次摸1个球,如果摸了3次,而这3次摸出的球正好是1个黑球,1个红球,1个花球,那么只要再摸出1个球,不管这个球是什么颜色,都可以保证同一颜色的球有2个。

小学奥数抽屉原理习题及答案【三篇】

小学奥数抽屉原理习题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是⽆忧考为⼤家整理的《⼩学奥数抽屉原理习题及答案【三篇】》供您查阅。

【篇⼀】【例 1】向阳⼩学有730个学⽣,问:⾄少有⼏个学⽣的⽣⽇是同⼀天? 【解析】⼀年最多有366天,可看做366个抽屉,730个学⽣看做730个苹果.因为,所以,⾄少有1+1=2(个)学⽣的⽣⽇是同⼀天. 【巩固】试说明400⼈中⾄少有两个⼈的⽣⽇相同. 【解析】将⼀年中的366天或天视为366个或个抽屉,400个⼈看作400个苹果,从最极端的情况考虑,即每个抽屉都放⼀个苹果,还有个或个苹果必然要放到有⼀个苹果的抽屉⾥,所以⾄少有⼀个抽屉有⾄少两个苹果,即⾄少有两⼈的⽣⽇相同.【篇⼆】【例 2】三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩. 【解析】⽅法⼀: 情况⼀:这三个⼩朋友,可能全部是男,那么必有两个⼩朋友都是男孩的说法是正确的; 情况⼆:这三个⼩朋友,可能全部是⼥,那么必有两个⼩朋友都是⼥孩的说法是正确的; 情况三:这三个⼩朋友,可能其中男⼥那么必有两个⼩朋友都是⼥孩说法是正确的; 情况四:这三个⼩朋友,可能其中男⼥,那么必有两个⼩朋友都是男孩的说法是正确的.所以,三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩的说法是正确的; ⽅法⼆:三个⼩朋友只有两种性别,所以⾄少有两个⼈的性别是相同的,所以必有两个⼩朋友都是男孩或者都是⼥孩.【篇三】【例 3】“六⼀”⼉童节,很多⼩朋友到公园游玩,在公园⾥他们各⾃遇到了许多熟⼈.试说明:在游园的⼩朋友中,⾄少有两个⼩朋友遇到的熟⼈数⽬相等. 【解析】假设共有个⼩朋友到公园游玩,我们把他们看作个“苹果”,再把每个⼩朋友遇到的熟⼈数⽬看作“抽屉”,那么,个⼩朋友每⼈遇到的熟⼈数⽬共有以下种可能:0,1,2,……,.其中0的意思是指这位⼩朋友没有遇到熟⼈;⽽每位⼩朋友最多遇见个熟⼈,所以共有个“抽屉”.下⾯分两种情况来讨论: (1)如果在这个⼩朋友中,有⼀些⼩朋友没有遇到任何熟⼈,这时其他⼩朋友最多只能遇上个熟⼈,这样熟⼈数⽬只有种可能:0,1,2,……,.这样,“苹果”数(个⼩朋友)超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. (2)如果在这个⼩朋友中,每位⼩朋友都⾄少遇到⼀个熟⼈,这样熟⼈数⽬只有种可能:1,2,3,……,.这时,“苹果”数(个⼩朋友)仍然超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. 总之,不管这个⼩朋友各遇到多少熟⼈(包括没遇到熟⼈),必有两个⼩朋友遇到的熟⼈数⽬相等.。

小学奥数——抽屉原理(学生版)

小学奥数——抽屉原理(学生版)

抽屉原理
1.箱子中有质地、型号完全相同的红、黄、白三种颜色的袜子各8只。

至少拿出()只,可
以保证凑成两双颜色不相同的袜子。

A.5
B.8
C.10
D.11
2.盒子里有同样大小的黄乒乓球和白兵乓球各6个,要想摸出的乒乓球有2个同色的,至少
要摸出()个乒乓球。

3.把9只红色、5只黄色和4只白色抹子混在一起,如果闭上眼睛,每次最少摸出()只才能
保证有2双不同色的袜子。

(指一双袜子为其中一种颜色,另一双袜子为另一种颜色)
4.56位阿姨在广场上跳舞,她们至少有()个人是同一个月出生的。

5.把10个苹果放进4个盘子里,总有一个盘子里至少放()个苹果。

6.有一个布袋中有5种不同颜色的球,每种都有20个,问:一次至少要取出多少个小球,才
能保证其中至少有3个小球的颜色相同?
7.从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两
个数,它们的差是12。

8.某班有16名学生,每个月教师把学生分成两个小组。

问最少要经过几个月,才能使该班
的任意两个学生总有某个月份是分在不同的小组里?
9.在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可
以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样。

你能说明这是为什么吗?
10.将400本书随意分给若干同学,但是每个人不许超过11本,问:至少有多少个同学分到的
书的本数相同?。

小学六年级奥数抽屉原理含答案

小学六年级奥数抽屉原理含答案

小学六年级奥数抽屉原理含答案Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。

它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。

它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。

例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后背面朝上放。

一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。

如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。

点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。

点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。

解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。

解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。

(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识框架
抽屉原理
知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中
的问题,因此,也被称为狄利克雷原则•抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可 以解决很多有趣的问题, 并且常常能够起到令人惊奇的作用.
许多看起来相当复杂, 甚至无从下手的问题,
在利用抽屉原则后,能很快使问题得到解决. (1) 举例
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放 两个,有的可以
放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2) 定义
一般情况下,把 n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹 果。

我们称这种现
象为抽屉原理。

抽屉原理的解题方案
(一)、利用公式进行解题 苹果十抽屉=商……余数 余数:(1)余数=1,
将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我 意”方法、特殊值
方法.
重难点
抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学 证明很多看似复
杂的问题。

本讲的主要教学目标是:
(1) 理解抽屉原理的基本概念、基本用法;
(2) 掌握用抽屉原理解题的基本过程;
抽屉原理的定义
结论:至少有(商+ 1)个苹果在同一个抽屉里 (2)余数=x 1 p xp n 1
结论:至少有(商+ 1)个苹果在同一个抽屉里 (3)余数=0,
(二)、利用最值原理解题
结论:至少有“商”个苹果在同一个抽屉里
(3)能够构造抽屉进行解题;
(4)利用最不利原则进行解题;
(5)利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

例题精讲
(一)、直接利用公式进行解题
(1)求结论
【例1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子•对吗?
【巩固】年级一班学雷锋小组有13人•教数学的张老师说:“你们这个小组至少有2个人在同一月过生日•”你知道张老师为什么这样说吗?
【例2】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有__________________________ 人的头发的根数相同。

巩固】向阳小学有730 个学生,问:至少有几个学生的生日是同一天?
例3】五年级数学小组共有20 名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.
巩固】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.
例4 】在任意的四个自然数中,是否其中必有两个数,它们的差能被 3 整除?
巩固】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.
例5 】求证:可以找到一个各位数字都是 4 的自然数,它是1996 的倍数.
巩固】求证:对于任意的8 个自然数,一定能从中找到6 个数a,b,c,d,e,f ,使得(a b)(c d)(e f) 是105 的倍数.
2)求抽屉
例6 】某班有16 名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里?
巩固】100 个苹果最多分给多少个学生,能保证至少有一个学生所拥有的苹果数不少于12个.
3)求苹果
例7】一次数学竞赛出了10 道选择题,评分标准为:基础分10 分,每道题答对得3 分,答错扣1 分,不答不得分。

问:要保证至少有4 人得分相同,至少需要多少人参加竞赛?
巩固】一次测验共有10 道问答题,每题的评分标准是:回答完全正确,得5分;回答不完全正确,得3分,回答完全错误或不回答,得0 分.至少__________ 人参加这次测验,才能保证至少有3 人得得分相
同.
二)、构造抽屉利用公式进行解题
例8 】在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出2 个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样.你能说明这是为什么吗?
巩固】幼儿园买来许多牛、马、羊、狗塑料玩具,每个小朋友任意选择两件,但不能是同样的,问:至
少有多少个小朋友去拿,才能保证有两人所拿玩具相同?
例9】从2、4、6、8、L 、50这25个偶数中至少任意取出多少个数,才能保证有2个数的和是52 ?【巩固】请证明:在1 , 4, 7, 10,…,100中任选20个数,其中至少有不同的两组数其和都等于104.
【例10】从1,2,3……,2010,2011这些自然数中,最多可以取出多少个数,使得其中每两个数的差不等于4?
巩固】从1 至2013这2013个自然数中最多能取出多少个数, 使得其中任意的两数都不连续且差不等于4?
【例11】从1、2、3、4、5、6、7、8、9、10、11和12中至多选出________________________ 个数,使得在选出的数中,每一个数都不是另一个数的2倍.
【巩固】从1到20这20个数中,任取11个不同的数,必有两个数其中一个是另一个数的倍数.
【例12】有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?
【巩固】在20米长的水泥阳台上放12盆花,随便怎样摆放,请你说明至少有两盆花它们之间的距离小于2米.
【例13】时钟的表盘上按标准的方式标着1, 2, 3,…,11, 12这12个数,在其上任意做n个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同•如果从这任做的n个扇形中总能
恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.
【巩固】如图,在时钟的表盘上任意作9个120°的扇形,使得每一个扇形都恰好覆盖4个数,且每两个扇形覆盖的数不全相同,求证:一定可以找到3个扇形,恰好覆盖整个表盘上的数•并举一个反例
说明,作8个扇形将不能保证上述结论成立.
【例14】从1, 2, 3,……,49, 50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除, 则最多能取出多少个数?
(三)、最不利原则
【例15】“走美”主试委员会为三〜八年级准备决赛试题•每个年级12道题,并且至少有8道题与其他各年级都不同.如果每道题出现在不同年级,最多只能出现3次•本届活动至少要准备__________________ 道决赛试题.
【巩固】一个口袋中装有500粒珠子,共有5种颜色,每种颜色各100粒。

如果你闭上眼睛,至少取出多少粒珠子才能保证其中有5粒颜色相同?
【例16】有红、黄、蓝、白4色的小球各10个,混合放在一个布袋里.一次摸出小球8个,其中至少有几个小球的颜色是相同的?
【巩固】在100张卡片上不重复地编写上1~100,请问至少要随意抽出几张卡片才能保证所抽出卡片上的数相乘后之乘积可被4整除?
例17 】一个口袋里分别有红、黄、黑球4,7,8 个,为保证取出的球中有6 个同色,则至少要取小球 ______ 个。

巩固】一幅扑克牌有54 张,最少要抽取几张牌,方能保证其中至少有 2 张牌有相同的点数?
【综合题】从1, 2, 3, 4, 5,……,99, 100这100个数中任意选出51个数,证明:
(1)在这51 个数中,一定有两个数互质;
(2)在这51 个数中,一定有两个数的差等于50;
(3)在这51 个数中,一定存在9个数,他们的最大公约数大于1.
课堂检测
随练1】把9 条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.
随练2】证明:任取8 个自然数,必有两个数的差是7的倍数.
【随练3】把十只小兔放进至多几个笼子里,才能保证至少有一个笼里有两只或两只以上的小兔?
家庭作业
【作业1】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.
【作业2】证明:任取6个自然数,必有两个数的差是5的倍数。

【作业3】袋中有外形安全一样的红、黄、蓝三种颜色的小球各10个,每个小朋友只能从中摸出1个小球, 至少有 _______ 个小朋友摸球,才能保证一定有两个人摸的球颜色一样.
【作业4】班上有50名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?
【作业5】11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本•试说明:必有两个学生所借的书的类型相同
【作业6】有红、黄、白三种颜色的小球各10个,混合放在一个布袋中,一次至少摸出 ___________________ 个,才能保证有5个小球是同色的?
【作业7】班上有28名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到
不少于两本书?
【作业8】篮子里有苹果、梨、桃和桔子,现有若干个小朋友,如果每个小朋友都从中任意拿两个水果, 那么至少有多少个小朋友才能保证有两个小朋友拿的水果是相同的?
【作业9】黑、白、黄三种颜色的筷子各有很多根,在黑暗处至少拿出几根筷子就能保证有一双是相同颜色的筷子?
教学反馈。

相关文档
最新文档