数字信号实验报告 (全)
数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
xjtu数字信号处理“实验报告”

数字信号处理实验报告实验1 常见离散信号的MATLAB产生和图形显示【实验目的】加深对常用离散信号的理解;【实验内容】(1)单位抽样序列(取100个点)程序设计:N=100;x=[1 zeros(1,N-1)];stem(0:N-1,x)结果(2)单位阶跃序列(取100个点)程序设计:N=100;x=ones(1,N);stem(0:99,x);axis([0 100 0 2])结果102030405060708090100(3) 正弦序列(取100个点) 程序设计: N=100; n=0:99; f=100; Fs=1000; fai=0.2*pi; A=2;x=A*sin(2*pi*f*n/Fs+fai); stem(n,x); grid 结果0102030405060708090100(4)复正弦序列(取100个点)程序设计:N=100;n=0:99;w=0.2*pi;x=exp(j*w*n);stem(n,x);结果(5)复指数序列(取41个点)程序设计:>> n=0:40;>> c=-0.02+0.2*pi*i;>> x=exp(c*n);>> subplot(2,1,1);>> stem(n,real(x));>> subplot(2,1,2);>> stem(n,imag(x));结果05101520253035400510152025303540(上部为实部,下部为虚部)(6)指数序列(取100个点)程序设计:>> n=0:99;>> a=0.5;>> x=a.^n;>> stem(n,x);结果:【实验要求】讨论复指数序列的性质。
由(5)的图形结果可以看出,复指数序列实部和虚部均为按指数衰减(上升)的序列,两者的均是震荡的,实部震荡周期与指数的实部有关,虚部震荡周期与指数的实虚部有关。
数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。
在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。
本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。
实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。
通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。
实验设置如下:1. 设置采样频率为8kHz。
2. 生成一个正弦信号:频率为1kHz,振幅为1。
3. 生成一个方波信号:频率为1kHz,振幅为1。
4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。
这体现了正弦信号和方波信号在时域上的不同特征。
实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。
在实际应用中,信号的采样和重构对信号处理的准确性至关重要。
实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。
2. 设置采样频率为8kHz。
3. 对正弦信号进行采样,得到离散时间信号。
4. 对离散时间信号进行重构,得到连续时间信号。
5. 将重构的信号通过DAC输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。
这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。
最新数字信号处理实验报告

最新数字信号处理实验报告一、实验目的本次实验旨在加深对数字信号处理(DSP)理论的理解,并通过实践操作掌握数字信号处理的基本方法和技术。
通过实验,学习如何使用相关软件工具进行信号的采集、分析、处理和重构,提高解决实际问题的能力。
二、实验内容1. 信号采集与分析- 使用数字示波器采集模拟信号,并将其转换为数字信号。
- 利用傅里叶变换(FFT)分析信号的频谱特性。
- 观察并记录信号的时域和频域特性。
2. 滤波器设计与实现- 设计低通、高通、带通和带阻滤波器。
- 通过编程实现上述滤波器,并测试其性能。
- 分析滤波器对信号的影响,并调整参数以优化性能。
3. 信号重构实验- 应用所学滤波器对采集的信号进行去噪处理。
- 使用逆傅里叶变换(IFFT)重构经过滤波处理的信号。
- 比较重构信号与原始信号的差异,评估处理效果。
三、实验设备与材料- 计算机及DSP相关软件(如MATLAB、LabVIEW等)- 数字示波器- 模拟信号发生器- 数据采集卡四、实验步骤1. 信号采集- 连接并设置好数字示波器和模拟信号发生器。
- 生成一系列不同频率和幅度的模拟信号。
- 通过数据采集卡将模拟信号转换为数字信号。
2. 滤波器设计- 在DSP软件中设计所需的滤波器,并编写相应的程序代码。
- 调整滤波器参数,如截止频率、增益等,以达到预期的滤波效果。
3. 信号处理与重构- 应用设计的滤波器对采集的数字信号进行处理。
- 利用IFFT对处理后的信号进行重构。
- 通过对比原始信号和重构信号,评估滤波器的性能。
五、实验结果与分析- 展示信号在时域和频域的分析结果。
- 描述滤波器设计参数及其对信号处理的影响。
- 分析重构信号的质量,包括信噪比、失真度等指标。
六、实验结论- 总结实验中所学习到的数字信号处理的基本概念和方法。
- 讨论实验中遇到的问题及其解决方案。
- 提出对实验方法和过程的改进建议。
七、参考文献- 列出实验过程中参考的书籍、文章和其他资源。
数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。
2.应用DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。
2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。
由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。
如果没有更多的数据,可以通过补零来增加数据长度。
3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。
对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。
实验一 数字信号处理 实验报告

1.已知系统的差分方程如下式:y1(n)=0.9y1(n-1)+x(n)程序编写如下:(1)输入信号x(n)=R10 (n),初始条件y1(-1)=1,试用递推法求解输出y1(n);a=0.9; ys=1; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=ones(1,10); %矩型序列R10(n)=u(n)-u(n-10),定义其宽度为0~9n=1:35; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=sign(sign(10-n)+1);B=1;A=[1,-a]; %差分方程系数xi=filtic(B,A,ys); %由初始条件计算等效初始条件输入序列xiyn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出y(n)n=0:length(yn)-1;subplot(2,1,1);stem(n,yn,'linewidth',2); axis([-5,15,0,8]); grid ontitle('图(a) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=1 ');xlabel('n');ylabel('y(n)')(2) 输入信号x(n)=R10 (n),初始条件y1(-1)=0,试用递推法求解输出y1(n)。
a=0.9; ys=0; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=ones(1,10); %矩型序列R10(n)=u(n)-u(n-10)B=1;A=[1,-a]; %差分方程系数xi=filtic(B,A,ys); %由初始条件计算等效初始条件输入序列xiyn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出y(n)n=0:length(yn)-1;subplot(2,1,2);stem(n,yn, 'linewidth',2); axis([-5,15,0,8]); grid ontitle('图(b) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=0 ');xlabel('n');ylabel('y(n)') 图形输出如下:-505101502468图(a) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=1ny (n )-55101502468图(b) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=0ny (n )2. 已知系统差分方程为: y 1(n )=0.9y 1(n -1)+x (n ) 用递推法求解系统的单位脉冲响应h (n ),要求写出h (n )的封闭公式,并打印h (n )~n 曲线。
数字信号处理实验报告

实验一 用DFT 作谱分析(一)实验目的(1)进一步加深DFT 算法原理和基本性质的理解;(2)熟悉FFT 的应用; (3)掌握使用DFT 作谱分析时可能遇到的问题及其原因,以便在实际中正确应用。
(二)实验内容和步骤(1)复习DFT 的定义及其性质。
(2)设置以下信号供谱分析()()()41--=n u n u n x()⎪⎩⎪⎨⎧≤≤-≤≤+=n n n n n n x 其他07483012, ()⎪⎩⎪⎨⎧≤≤-≤≤-=n n n n n n x 其他07433043 ()⎪⎭⎫ ⎝⎛=n n x 4cos 4π , ()⎪⎭⎫⎝⎛=n n x 8sin 5π ()()()()t πt πt πt x 20cos 16cos 8cos 6++=对于连续信号()t x a ,首先需要根据其最高频率成分确定抽样频率S f ,然后对其抽样,即计算()()S a nT x n x = (3)编写程序编写程序对信号进行谱分析,程序流程如下:1、设置信号长度N ,对连续信号设置抽样率;2、产生实验信号;3、绘制时间序列波形图;4、使用FFT 计算信号的DFT ;5、绘制信号的频谱。
(4)运行程序并观察结果a )对信号()n x 1、()n x 2、()n x 3进行谱分析,信号长度N 取8。
观察输出结果。
x1(n)nx 1(n )k|X (k )|2468kφ(k )X2(n):2468nx 2(n )N = 8k|X (k )|2468kφ(k )X3(n):2468nx 3(n )k|X (k )|2468kφ(k )b )对()n x 4进行谱分析,该信号周期为8,信号长度N 取8或8的整数倍(16、32等)计算频谱。
再将N 取不是8的整数倍,例如9或10,观察频谱发生了什么变化。
N=8:nx 4(n )N = 8k|X (k )|2468kφ(k )nx 4(n )N = 16k|X (k )|51015kφ(k )N=32nx 4(n )N = 32k|X (k )|10203040kφ(k )nx 4(n )N = 9k|X (k )|2468kφ(k )N=10nx 4(n )N = 10510k|X (k )|510kφ(k )c )令()()()n x n x n x 547+=(或()()()n jx n x n x 548+=)。
数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握离散时间信号的基本运算和变换方法。
3. 熟悉数字滤波器的设计和实现。
4. 培养实验操作能力和数据分析能力。
二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。
本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。
2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。
3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。
4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。
三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。
(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。
2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。
(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。
3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。
(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。
4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。
(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。
四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理实验报告实验一:用 FFT 做谱分析 一、 实验目的1、进一步加深 DFT 算法原理和基本性质的理解。
2、熟悉 FFT 算法原理和 FFT 子程序的应用。
3、学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用 FFT 。
二、实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。
频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ≤D 。
可以根据此时选择FFT 的变换区间N 。
误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号的频谱时,首先要按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
三、实验内容和步骤对以下典型信号进行谱分析:⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(32414()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+6()cos8cos16cos20x t t t t πππ=++对于以上信号,x1(n)~x5(n) 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论;;x6(t)为模拟周期信号,选择 采样频率Hz F s 64 ,变换区间N=16,32,64 三种情况进行谱分析。
分别打印其幅频特性,并进行分析和讨论。
四、实验代码如下所示:clear; %清除变量close all; %关闭全部绘图窗口b=menu('请选择信号x1(n)--x6(n)','x1(n)=R4(n)','x2(n)=[1 2 3 4 4 3 2 1]',... 'x3(n)=[4 3 2 1 1 2 3 4]','x4(n)=cos(npi/4)','x5(n)=sin(npi/8)',... 'x6(n)=cos(8pit)+cos(16pit)+cos(20pit)','Exit'); i=0; A=[8,16,32,64];while(b~=7) %当选择EXIT 时,返回值7,则退出循环 if b==6m=menu('请选择FFT 变换区间长度N','N=16','N=32','N=64'); N=A(m+1); fs=64; n=0:(N-1);x=cos(8*pi*n/fs)+cos(16*pi*n/fs)+cos(20*pi*n/fs); elsem=menu('请选择FFT 变换区间长度N','N=8','N=16','N=32'); N=A(m); n=0:(N-1); if b==1x=[1,1,1,1,0,0,0,0,zeros(1,N-8)]; elseif b==2x=[1,2,3,4,4,3,2,1,zeros(1,N-8)]; elseif b==3x=[4,3,2,1,1,2,3,4,zeros(1,N-8)]; elseif b==4x=cos(n*pi/4); elseif b==5x=sin(n*pi/8); end end%先画出信号源图 i=i+1;figure(i); %创建绘图窗口 subplot(2,2,1); %指定1号子图 xlabel('n'); %标记X 坐标 stem(n,x,'.r'); ylabel('x(n)');title(['x',num2str(b),'(n)的波形']);%进行FFTf=fft(x,N);%再画出FFT波形subplot(2,2,3);stem(n,abs(f),'.b');xlabel('k');ylabel('|X(k)|');title(['x',num2str(b),'(n)的N=',num2str(N),'点FFT']);b=menu('请选择信号x1(n)--x6(n)','x1(n)=R4(n)','x2(n)=[1 2 3 4 4 3 2 1]',...'x3(n)=[4 3 2 1 1 2 3 4]','x4(n)=cos(npi/4)','x5(n)=sin(npi/8)',...'x6(n)=cos(8pit)+cos(16pit)+cos(20pit)','Exit');endclose all;五、实验结果图及分析1、实验结果图分析:(1)x1(n)的波形如图1-1、图1-2和图1-3所示,由3张图可知道,N值越大,频率分辨率越高。
(2)x2(n)的波形如图1-4、图1-5和图1-6所示,由3张图可知道,N值越大,频率分辨率越高。
(3)x3(n)的波形如图1-7、图1-8和图1-9所示,由3张图可知道,N值越大,频率分辨率越高。
(4)x4(n)的波形如图1-10、图1-11和图1-12所示。
根据参数可得出X4(t)的频率 f=8Hz,当N=8、16、32时,频率分辨率为F=f s/N=8Hz、4Hz、2Hz,因此在FFT图里分别在N=1、2、4有高幅值,因为截取的为周期序列的整数倍,所以所得出的谱正确。
(5)x5(n)的波形如图1-13、图1-14和图1-15所示。
根据参数可得出X5(t)的频率 f=4Hz。
当N=8时,频率分辨率F0=f s/N=8Hz,因为截取的不是为周期序列的整数倍,而且频率分辨率不够,所得出的谱有较大的误差,所以FFT图包含一些频率分量,不能清楚看清原信号的频率f。
当N=16及32时,频率分辨率F0=f s/N=4Hz、2Hz,因此在FFT图里在N=1、2有高幅值,因为截取的为周期序列的整数倍,所以所得出的谱正确。
(6) x6(n)的波形如图1-16、图1-17和图1-18所示。
根据参数可得出X6(t)里包含3个频率,分别为f1=4,f2=8,f3=10。
当N=16,频率分辨率F0=f s/N=4Hz,因为截取的不是x6里各周期序列的整数倍,所得出的谱有频谱泄漏,FFT图里可以看出信号cos(8pit)和cos(16pit)的频率f1=4,f2=8(在点N=1,2处有较大的幅值),而且频率分辨率不够高,不能分辨开第三个信号cos(20pit)的频率f3。
当N=32,频率分辨率F=f s/N=2Hz,因此在FFT图里的点N=2有高幅值,在N=4有高幅值 N=5也有高幅值。
因为截取的为周期序列的整数倍,所以所得出的谱正确。
当N=64,频率分辨率F=f s/N=1Hz,因此在FFT图里的点N=4有高幅值,在N=8有高幅值 N=10也有高幅值。
因为截取的为周期序列的整数倍,所以所得出的谱正确。
变换区间N=64 时频谱幅度是变换区间N=32 时2倍,这种结果正好验证了用FFT 对中期序列谱分析的理论。
2、误差分析误差产生的原因:(1)对周期序列的截取不当,造成频谱泄漏(2)抽样点数N太少,频率分辨率不够用FFT做谱分析时参数的选择:(1)抽样频率要满足奈奎斯特准则,不小于信号最高频率的2倍(2)在抽样频率一定的情况下,抽样点数N要适当。
太小会造成频率分辨力不够,太大会造成数据冗余。
对周期序列,最好截取周期的整数倍进行谱分析图1-1:x1(n)的波形:N=8图1-2:x1(n)的波形N=16图1-3:x1(n)的波形N=32图1-4:x2(n)的波形N=8图1-5:x2(n)的波形:N=16图1-6:x2(n)的波形N=32图1-7:x 3(n)的波形N=8图1-8:x 3(n)的波形N=16图1-9:x 3(n)的波形N=32图1-10:x 4(n)的波形N=8图1-11:x 4(n)的波形N=16图1-12:x 4(n)的波形N=32图1-13:x 5(n)的波形N=8图1-14:x 5(n)的波形N=16图1-15:x 5(n)的波形N=32图1-16: x 6(n)的波形N=16图1-17: x 6(n)的波形N=32图1-18: x 6(n)的波形N=64实验二:用双线性变换法设计 IIR 数字滤波器一、实验目的1、熟悉用双线性变换法设计 IIR 数字滤波器的原理与方法。
2、掌握数字滤波器的计算机仿真方法。
二、实验内容及步骤1、用双线性变换法设计一个butterworth 低通IIR 数字滤波器。
设计指标参数为:在通带内频率低于0.2π时,最大衰减小于1dB ,在阻带内[0.3π,π]频率区间上,最小衰减大于15dB 。
2、打印出数字滤波器在频率区间[0,π]上的幅频响应特性曲线。
3、运用MATLAB 产生两个正弦信号,信号频率为50Hz 和400Hz ,采样频率为1000Hz 。
两个正弦信号相叠加为输入信号y(t)。
设计一滤波器,保留源信号中50Hz 的低频信号,对y(t)信号进行滤波。
观察滤波前后信号的频谱特性,评价滤波器效果。
三、实验步骤1、双线性变换法设计 butterworth 低通 IIR 数字滤波器复习有关butterworth 模拟滤波器设计和用双线性变换法设计IIR 数字滤波器的内容,用双线性变换法设计数字滤波器系统函数()z H 。
其中满足本实验要求的数字滤波器系统函数为:()()()()()212121612155.09044.013583.00106.117051.02686.1110007378.0-------+-+-+-+=zz z z z zz z H ()z H k k ∏==31(2.1)式中: ()()3211212121,,,k zC z B z z A z H k k k =--++=---- (2.2)2155.09044.03583.00106.17051.02686.109036.0332211-==-==-===C B C B C B A ,,,根据设计指标,调用MATLAB 信号处理工具箱buttord 和butter ,也可以得到()z H 。