实验报告-光敏电阻基本特性的测量
光敏电阻基本特性测量

光敏电阻基本特性测量教学目的:光传感器是测量端与信息处理系统的中间环节,可以理解为把光信息变换为电信息的一个元件, 光敏电阻 就是基于内光电效应的一种光传感器,光敏电阻具有灵敏度高,光谱特性好,使用寿命长,稳定性高,体积小以及制造工艺简单等特点,因此作为开关式光电信号传感器广泛应用在自动化技术中。
自然界中有很多信息是通过光辐射形式传播的,用常规的仪器无法检测,而通过光电器件则可获得这些信息;光敏电阻体型小,灵敏度高,价格便宜,灵敏度峰值Gds(520mm),根据其特性可实际用于摄像机的露点计﹑光控制器﹑光联结器﹑光电继电器等方面。
制造光敏电阻的材料主要有金属的硫化物,硒化物和锑化物等半导体材料,在可见光范围内,常用的光敏电阻是硫化镉(CdS)本实验即采用该种光敏电阻,光敏电阻的主要参量有暗电阻,亮电阻,光谱范围,峰值波长和时间常量等,基本特性有伏安特性,光谱特性,光照特性等通过本次实验,学生不仅能对光敏电阻的特性有一定的了解,还可以学习到光路的调整方法,有助于学生动手能力的培养.教学安排:本实验学时数为4学时。
原理综述:光照下物体电导率改变的现象称为内光电效应(光导效应)光敏电阻是基于内光电效应的光电元件,当内光电效应发生时,固体材料吸收的能量使部分价带电子迁移到导带,同时在价带留下空穴,由于材料中载流子数目增加,材料的电导率增加,电导率的改变量为p n pe ne σμμ∆=∆+∆ (1)式中e 为电荷电量, △P 为空穴浓度的改变量, △n 为电子浓度的改变量, μΡ为空穴的转移率, μn 为电子的迁移率.当光敏电阻两端加上电压U 之后,光电流为ph A I U dσ=∆ (2) 其中A 为与电流垂直的截面积,d 为电极间的距离,由(1)和(2)可知,光照一定时,光敏电阻两端电压与光电流为线性关系,呈电阻特性,该直线经过零点,其斜率反映在该光照下的阻值状态.光照特性是指在一定的外加电压下,光敏电阻的光电流与光通量之间的关系.。
实验一光敏电阻特性测量实验

光电子技术基础实验报告实验题目光敏电阻特性测量实验日期2020.09.04 姓名组别04 班级18B 学号【实验目的】1、了解光敏电阻的工作原理和使用方法;2、掌握光强与光敏电阻电流值关系测试方法;3、掌握光敏电阻的光电特性及其测试方法;4、掌握光敏电阻的伏安特性及其测试方法;5、掌握光敏电阻的光谱响应特性及其测试方法;6、掌握光敏电阻的时间响应特性及其测试方法。
【实验器材】光电技术创新综合实验平台一台特性测试实验模块一块光源特性测试模块一块连接导线若干【实验原理】光敏电阻在黑暗的室温条件下,由于热激发产生的载流子使它具有一定的电导,该电导称为暗电导,其倒数为暗电阻,一般的暗电导值都很小(或暗电阻阻值都很大)。
当有光照射在光敏电阻上时,电导将变大,这时的电导称为光电导。
电导随光照量变化越大的光敏电阻,其灵敏度就越高,这个特性就称为光敏电阻的光电特性,也可定义为光电流与照度的关系。
光敏电阻在弱辐射和强辐射作用下表现出不同的光电特性(线性和非线性),实际上,它的光电特性可用在“恒定电压”下流过光敏电阻的电流IP ,与作用到光敏电阻上的光照度 E 的关系曲线来描述,不同材料的光照特性是不同的,绝大多数光敏电阻光照特性是非线性的。
光敏电阻的本质是电阻,因此它具有与普通电阻相似的伏安特性。
在一定的光照下,加到光敏电阻两端的电压与流过光敏电阻的亮电流之间的关系称为光敏电阻的伏安特性。
光敏电阻的符号和连接【实验注意事项】1、打开电源之前,将“电源调节”处旋钮逆时针调至底端;2、实验操作中不要带电插拔导线,应该在熟悉原理后,按照电路图连接,检查无误后,方可打开电源进行实验;3、若照度计、电流表或电压表显示为“1_”时说明超出量程,选择合适的量程再测量;4、严禁将任何电源对地短路。
5、仪器通电测试前,一定要找老师检查后方可通电测试。
【主要实验步骤】基础实验:组装好光源、遮光筒和光探结构件,如下图所示:1、打开台体电源,调节照度计“调零”旋钮,至照度计显示为“000.0”为止。
光敏电阻特性研究实验报告

课程名称:大学物理实验(一)实验名称:光敏电阻特性研究图3 光敏电阻光照特性光敏电阻器是利用半导体的光电效应制成的一种电阻值随入射光(可见光)的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。
在黑暗条件下,它的阻值(暗阻)可图4 无光照时的光敏电阻原理示意图图5 有光照时的光敏电阻原理示意图光敏电阻是一种能够感知光的电子元件,其原理在于光照射到光敏电阻表面时,会激发其中的电子发生跃迁,导致电阻值发生变化。
具体来说,光敏电阻中含有一种半导体材料的物质作为感光元件如硒化铋、硫化镉等,当光线照射到这种材料上时,会让一些电子从价带跃迁到导带,使得电子数量增加,从而导致电阻值降低。
导体材料在没有光照射时,其中的电子处于价带中,不能自由移动。
因此,当光线强度增加时,电阻值就会相应地减小;反之,当光线强度减小或消失时,电阻值则会增大。
4.光敏电阻的伏安特性:光敏电阻在光强一定的情况下(偏振片角度θ不变)时,电阻是一个定值电阻。
根据R = U/I,可得到光强不变时电阻是一条直线,它的斜率就是电阻的阻值。
图1 光敏电阻特性研究实验装置图图2偏振片角度θ=30°时光敏电阻的伏安特性曲线由图可知:直线斜率即为此时的光敏电阻的阻值。
由于电压单位是(V)而电流单位是(mA),根据欧姆定律,其中U的单位是(V),I的单位是(A),故此时光敏电阻阻值为1505Ω。
变形式R=UI3.光敏电阻的光照特性和电阻特性研究表3 光敏电阻电流随相对光照强度变化数据表θ0º10º20º30º40º50º60º70º80º90º图3 光敏电阻光照特性曲线由图可知:电压一定时,当相对光强增大时,电流也逐渐增大。
当相对光照强度达到最大时,电流也取到最大值。
当相对光照强度为0时,电流不为0,但接近0,因为光敏电阻的暗阻较大。
除此之外,实验时电压恒定为2V,故可根据欧姆定律变形式R=UI计算不同相对光照强度时的电阻。
光敏电阻特性

光敏电阻特性【实验目的】1.了解光敏电阻的基本特性。
2.测量光敏电阻的伏安特性曲线和光照特性曲线。
【实验仪器】DH-CGOP1光电传感器实验仪1套(包括灯泡盒,光敏电阻LDR ,九孔板实验箱,1K 电阻);DH-VC3直流恒压源1台;万用表1块;导线若干【实验原理】光敏电阻是采用半导体材料制作,利用内光电效应工作的光电元件。
它在光线的作用下其阻值往往变小,这种现象称为光导效应,因此,光敏电阻又称光导管。
用于制造光敏电阻的材料主要是金属的硫化物、硒化物和碲化物等半导体。
通常采用涂敷、喷涂、烧结等方法在绝缘衬底上制作很薄的光敏电阻体及梳状欧姆电极,然后接出引线,封装在具有透光镜的密封壳体内,以免受潮影响其灵敏度。
在黑暗环境里,它的电阻值很高,当受到光照时,只要光子能量大于半导体材料的禁带宽度,则价带中的电子吸收一个光子的能量后可跃迁到导带,并在价带中产生一个带正电荷的空穴,这种由光照产生的电子一空穴对增加了半导体材料中载流子的数目,使其电阻率变小,从而造成光敏电导率增加,电导率的改变量为p n pe ne σμμ∆=∆+∆\*MERGEFORMAT (1)式中e 为电荷电量,∆p 为空穴浓度的改变量,∆n 为电子浓度的改变量,μp 为空穴的迁移率,μn 为电子的迁移率。
当光敏电阻两端加上电压U 后,光电流为ph A I U d σ=∆\*MERGEFORMAT (2)其中A 为与电流垂直的截面积,d 为电极间的距离。
由和可知,光照一定时,光敏电阻两端所加电压与光电流为线性关系,呈电阻特性。
光照愈强,阻值愈低。
入射光消失后,由光子激发产生的电子一空穴对将逐渐复合,光敏电阻的阻值也就逐渐恢复原值。
在光敏电阻两端的金属电极之间加上电压,其中便有电流通过,受到适当波长的光线照射时,电流就会随光强的增加而变大,从而实现光电转换。
光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。
1.伏安特性光敏传感器在一定的入射照度下,光敏元件的电流I与所加电压U之间的关系称为光敏器件的伏安特性。
光敏电阻的光电特性实验报告

竭诚为您提供优质文档/双击可除光敏电阻的光电特性实验报告篇一:光敏电阻的光敏特性研究实验报告光敏电阻光敏特性的研究一、实验设计方案1.1、实验目的1、了解光敏电阻的基本特性,测出它的光照特性曲线。
2、学习使用电脑实测。
3、学习使用Datastudio软件。
4、学习了解设计性实验的基本方法。
1.2、实验原理光敏电阻器是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器,(如图1);入射光强,电射光弱,电阻增大。
光敏电敏感性与人眼对可见光μm的响应很接近,只要人光,都会引起它的阻值变化。
路时,通用白炽灯泡光线或控制光源,但本实验采用激通过两偏振片控制光照强度传感器测出。
阻减小,入阻器对光的(0.4~0.76)眼可感受的设计光控电自然光线作光做光源,并由角速度1.2.1光敏电阻的光照特光电流随照度的变化而称为光照特性。
不同类型的光照特性不同,大多数光敏特性是非线性的。
某种光敏特性如图1所示。
利用光敏电阻的光照特一些材料的光吸收系数。
性改变的规律光敏电阻的电阻的光照电阻的光照性可以测出1.2.2光敏电阻特性图3为某光敏电阻的的关系,利用光敏电阻的光敏阻值与光强特性,可以分别模拟设计一个简单的光控自动报警实验与一个光控自动照明实验。
光敏电阻的电阻与光强间关系曲线的线性关系,不可以用在线性的光感测量中.1.3.2选用仪器列表二、实验内容及具体步骤:2.1、测绘光敏电阻的光照特性曲线。
(1)按右图连接好电路,电压传感器连接到750接口。
(2)光敏电阻的光源由一激光提供。
并经过两偏振片调整光强后照射在光敏电阻上。
其中一偏振片与角速度传感器相连到750接口。
试验中保持光强从最弱到最强间变化。
(3)打开Datastudio软件,创建一个新实验。
(4)在Datastudio软件的窗口中设置750接口的传感器连接,并设置采样率。
(5)在Datastudio软件的窗口打开一个图表。
(5)接通光敏电阻所在电路电源;(6)打开激光器,调整两偏振片,然后调整带有角速度传感器的偏振片使照到光敏电阻处的光强最小;(7)在Datastudio软件窗口中启动数据采集,并转动带有角速度传感器的偏振片使光敏电阻处的光强从最小到最强间变化。
光敏电阻实验报告

光敏电阻实验报告光敏电阻实验报告引言:光敏电阻是一种能够根据光照强度变化而改变电阻值的器件,广泛应用于光敏控制、光敏传感和光敏测量等领域。
本实验旨在通过对光敏电阻的实际应用与实验验证,深入了解光敏电阻的工作原理、特性和应用。
一、实验目的本实验的主要目的是通过实际操作,深入了解光敏电阻的基本特性,包括光敏电阻的光敏特性、电阻变化规律等,并通过实验结果验证光敏电阻的工作原理。
二、实验器材和原理实验所需器材包括:光敏电阻、电源、电压表、电流表、光源、万用表等。
光敏电阻是一种半导体器件,其工作原理基于光照强度对半导体电阻的影响。
当光照强度增大时,光敏电阻的电阻值减小;当光照强度减小时,光敏电阻的电阻值增大。
三、实验步骤1. 将光敏电阻与电路连接,其中光敏电阻的一端接地,另一端接电源正极。
2. 通过电流表和电压表测量光敏电阻的电流和电压值。
3. 调节光源的光照强度,观察光敏电阻的电流和电压变化。
4. 记录实验数据,并绘制光照强度与光敏电阻电阻值的关系曲线。
四、实验结果与分析根据实验数据绘制的光照强度与光敏电阻电阻值的关系曲线显示,在光照强度增大的情况下,光敏电阻的电阻值呈现逐渐减小的趋势;而在光照强度减小的情况下,光敏电阻的电阻值逐渐增大。
这验证了光敏电阻的工作原理,即光照强度对光敏电阻的电阻值有直接影响。
五、实验应用光敏电阻在实际应用中具有广泛的用途。
其中,最常见的应用是在光敏控制系统中,通过光敏电阻感知光照强度的变化,并控制其他设备的开关。
例如,室内照明系统中的光敏电阻可以根据光照强度的变化自动调节灯光的亮度,实现能源的节约和舒适的照明环境。
此外,光敏电阻还被广泛应用于光敏传感器和光敏测量领域。
例如,光敏电阻可以用于血氧饱和度检测仪器中,通过测量光敏电阻的电阻变化来判断人体的血氧饱和度。
光敏电阻也可以应用于光敏测量仪器中,用于测量光源的亮度和光照强度等参数。
六、实验总结通过本次实验,我们深入了解了光敏电阻的工作原理、特性和应用。
光敏电阻特性测量实验报告

光敏电阻特性测量实验报告光敏电阻特性测量实验报告引言:光敏电阻是一种能够根据光照强度变化而改变电阻值的电子元件。
它广泛应用于光电传感器、光控开关等领域。
本实验旨在通过测量光敏电阻的特性曲线,了解其在不同光照条件下的电阻变化规律。
实验装置:本实验所用的装置包括一个光敏电阻、一个可变电阻、一个电压表、一个电流表和一个光源。
光敏电阻的两个引脚分别连接在电路的两个端点,可变电阻则用于调节电路中的电流。
实验步骤:1. 将实验装置搭建好后,先调节可变电阻,使电路中的电流达到一个适当的范围。
2. 将光源照射在光敏电阻上,并记录下此时的电流和电压值。
3. 逐渐增加光源的亮度,重复步骤2,记录不同光照强度下的电流和电压值。
4. 根据实验数据,绘制光敏电阻的特性曲线。
实验结果与讨论:通过实验测量,我们得到了光敏电阻在不同光照强度下的电流和电压值。
根据这些数据,我们可以绘制出光敏电阻的特性曲线。
特性曲线的形状与光敏电阻的材料和结构有关。
一般情况下,当光照强度增加时,光敏电阻的电阻值会减小,电流值会增大。
这是因为光照能量激发了光敏电阻中的载流子,使其在材料中移动,导致电阻减小。
而当光照强度减小时,电阻值会增加,电流值会减小。
光敏电阻的特性曲线可以用来描述其在不同光照条件下的工作状态。
通过观察特性曲线,我们可以了解到光敏电阻的灵敏度和响应速度。
灵敏度指的是光敏电阻对光照强度变化的响应程度,而响应速度则表示光敏电阻从接收到光照信号到产生响应的时间。
实验中,我们还可以通过改变可变电阻的值,观察光敏电阻的特性曲线是否发生变化。
可变电阻的作用是调节电路中的电流,当电流变化时,光敏电阻的特性曲线也会发生相应的变化。
这可以帮助我们更好地理解光敏电阻的工作原理。
结论:通过本次实验,我们成功测量了光敏电阻的特性曲线,并了解了其在不同光照强度下的电阻变化规律。
光敏电阻的特性曲线可以用来描述其工作状态,帮助我们了解其灵敏度和响应速度。
此外,通过改变可变电阻的值,我们还可以观察到光敏电阻特性曲线的变化。
光敏电阻特性实验报告

光敏电阻特性实验报告实验目的:通过实验研究光敏电阻的特性,并探究光敏电阻的光照度对电阻值的影响。
实验器材:1.光敏电阻2.电阻箱3.多用电表4.正弦波信号发生器5.光源6.PPT实验执行时序图实验原理:光敏电阻是一种根据光照强度变化而改变电阻值的电子元件。
光敏电阻由光敏材料制成,其电阻值与光照强度成反比。
当光敏电阻暴露在光线下时,光敏材料吸收光子,并产生载流子,从而使电阻值减小。
实验步骤:1.将光敏电阻与电阻箱和电源相连,组成电路。
2.将多用电表设置为电阻测量模式,并连接到电路中,用于测量光敏电阻的电阻值。
3.使用正弦波信号发生器,连接到电路中的电源,提供交流电源。
4.将光源对准光敏电阻,并调整光照强度。
5.分别测量不同光照强度下光敏电阻的电阻值。
6.记录测量结果,并对实验数据进行分析和总结。
实验结果:根据实验数据测量结果,在不同光照强度下记录了光敏电阻的电阻值。
随着光照强度的增加,光敏电阻的电阻值逐渐减小。
这表明光敏电阻的电阻值与光照强度成反比。
实验总结与分析:通过本次实验,我们了解了光敏电阻的特性,并验证了光敏电阻的电阻值与光照强度的关系。
光敏电阻在光线下表现出明显的特性变化,可以被应用于光敏开关、自动调光等领域。
在实际应用中,我们还可以通过调整光敏电阻的参数来满足不同的要求。
然而,本实验还存在一些限制和改进空间。
首先,光敏电阻的光照度与电阻值的关系是非线性的,在高光照强度时,电阻值接近零,而在低光照强度时,电阻值较大。
因此,我们可以进一步研究光敏电阻在不同光照强度下的电阻值变化曲线,探索其非线性特性。
此外,本实验的光照强度调节仅使用了光源的近距离调节,可以尝试使用不同光源、不同距离和不同角度进行光照度的变化,以进一步研究光敏电阻的响应特性。
综上所述,实验结果表明,光敏电阻的电阻值受光照强度的影响,并且具有非线性特性。
进一步研究光敏电阻的特性可以为其在光电领域的应用提供更多可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告姓名:班级:学号:实验成绩:同组:实验日期:08/4/14 指导老师:助教15 批阅日期:光敏电阻基本特性的测量【实验目的】1.了解光敏电阻的工作原理及相关的特性。
2.了解非电量转化为电量进行动态测量的方法。
3.了解简单光路的调整原则和方法.4.在一定照度下,测量光敏电阻的电压与光电流的关系。
5.在一定电压下,测量光敏电阻的照度与光电流的关系。
【实验原理】1 光敏电阻的工作原理在光照作用下能使物体的电导率改变的现象称为光电效应。
本实验所用的光敏电阻就是基于光电效的光电元件。
当光电效应发生时,固体材料吸收的能量使部分价带电子迁移到导带,同时在价带中留下空穴。
这样由于材料中载流子个数增加,使材料的电导率增加。
电导率的改变量为:(1) 式中e为电荷电量;为空穴浓度的改变量;为电子浓度的改变量;为空穴的迁移率;为电子的迁移率。
当光敏电阻两端加上电压U后,光电流为(2) 式中A为与电流垂直的截面积,d为电极间的距离。
用于制造光敏电阻的材料主要有金属的硫化物、硒化物和锑化物等半导体材料.目前生产的光敏电阻主要是硫化镉.光敏电阻具有灵敏度高、光谱特性好、使用寿命长、稳定性能高、体积小以及制造工艺简单等特点,被广泛地用于自动化技术中.本实验光敏电阻得到的光照由一对偏振片来控制。
当两偏振片之间的夹角为时,光照为,其中:为不加偏振片时的光照,D为当量偏振片平行时的透明度。
2 光敏电阻的基本特性光敏电阻的基本特性包括伏-安特性、光照特性、光电灵敏度、光谱特性、频率特性和温度特性等。
本实验主要研究光敏电阻的伏-安特性和光照特性。
3.附上实验中的光路图:【实验数据记录、实验结果计算】1测量光敏电阻的电压与光电流的关系在调整好光路后,就可以做这一个容的实验了。
下面附上这个实验容的电路图:表中记录的数据为的值,单位为U(V)0 0.0 0.0 0.00 0.0001 2.7 2.2 1.28 0.0652 5.4 4.5 2.58 0.1383 8.2 7.0 3.77 0.2014 11.0 9.5 5.05 0.2715 13.8 12.0 6.26 0.3396 16.8 14.6 7.51 0.4077 19.8 17.2 8.75 0.4848 22.8 19.9 10.01 0.5519 25.9 22.6 11.32 0.61910 29.0 25.4 12.63 0.68711 32.1 28.2 13.93 0.75712 35.2 31.0 15.35 0.836 下面绘出各个照度对应的曲线时:线性拟合结果如下:Y = A + B * XParameter Value ErrorA 0.17952 0.05409B 0.33977 0.00266------------------------------------------------------------ R SD N P0.99966 0.10544 3 <0.0001所以此时339时:线性拟合结果如下:Y = A + B * XParameter Value ErrorA 0.25369 0.0669B 0.38486 0.00376R SD N P0.99948 0.13157 13 <0.0001 所以此时时线性拟合结果如下:Y = A + B * XParameter Value ErrorA 0.0252 0.03197B 0.78903 0.00358R SD N P0.99989 0.06117 13 <0.0001------------------------------------------------------------所以此时时线性拟合结果如下:Y = A + B * XParameter Value ErrorA 0.06568 0.02854B 14.40637 0.05862R SD N P0.99991 0.05489 13 <0.0001 所以此时对上面实验结果的一点分析:1. 可以发现,当时,即光照最弱时,光敏电阻的阻值很大,可达一万四千多欧姆,随着光照的加强时,光敏电阻的阻值在不断减小,在时,即在当时的最强光照时,光敏电阻的阻值已经降到了三百余欧姆,可见其变化幅度很大。
据查资料显示,在完全黑暗时,光敏电阻的阻值甚至可达几兆欧姆,而在更强的光下,其阻值会更小。
2. 还有重要的一点是,我们从“马吕斯定律”知道,这里光照强度与成正比,所以根据这几个数据点可以发现光敏电阻的阻值随光照强度的变化“似乎”不是线性的,这也是这个实验下面将要验证的容。
2测量光敏电阻的照度与光电流的关系首先调整好光路与电路,便可开始测量,整数据表格将在下一页中显示。
表中记录的数据为的值,单位为下面是作图结果:U(V)32.62 7.91 13.26 34.8 2.59 7.76 12.94 34.1 2.41 7.37 11.94 32.5 2.20 6.72 10.66 29.3 1.875.85 9.39 24.8 1.65 4.81 7.98 20.5 1.26 3.696.13 15.4 0.86 2.54 4.22 9.8 0.49 1.36 2.42 5.20.050.150.310.8U=1V时:首先需要说明的是几个公式的推导:由马吕斯定律: (为光电流强度)由本节公式: (R为光敏电阻阻值)我们要研究和R的关系,所以而图中斜率代表,所以图中曲线的上升表示光敏电阻阻值的下降,而阻值导函数的变化趋势则不变。
从这个图中可以看出,光敏电阻的光照特性曲线确实不是线性的。
而且容易发现:阻值在附近变化很快,而随着的减小,阻值的变化则趋于平缓,曲线也趋于线性。
结合前面实验的4个数据来看,也确实符合这一点,这也印证了前面的想法,前后实验结果也很符合。
从前面的实验结果,我们也知道当照度固定时,光敏电阻的电压与光电流是成线性关系的,所以此表中同一行数据应是与电压成线性关系的,观察表中数据,也可印证这一结论.这样一来下面的三幅关系图应与上面这一幅图形状类似,那么我们就先做出这三幅图:U=3V时:U=5V时:U=12V时:观察这几幅图,也可以看出刚才的判断是正确的,这几幅图基本一致,只有第3幅有些细节上的偏差。
至此本实验的所有数据均处理完毕,结果也很理想。
【分析讨论】1.在这个实验中,前期的准备工作其实是重中之重。
调整光路是首先要做的,接下来重要的一点就是找到光电流最大值点。
这个点的确定对下面实验至关重要。
我在这个环节上进行了仔细的调整,确保准确后才开始下面的实验。
从测得的结果来看,数据还是很满意的。
【思考题解答】1.在利用数字万用表作为测量仪器时,是否需要考虑万用表阻,为什么?答:不用考虑。
因为我们采用电流表外接法,万用表电压档产生的电流不足以影响到实验结果。
2.根据测量结果,总结光敏电阻的伏—安特性和光照特性。
答:从测量结果来看光敏电阻的伏—安特性是线性关系。
可以说光敏电阻在照度固定时是线性元件。
而光敏电阻的阻值随光照的增强而减少,而且这个关系不是线性的,随着光照的增强,减少的速率也在减小。
【对实验的一些想法】1.我想,研究光敏电阻光照特性的实验可以换一种方式进行:就是通过研究光强变化与电压变化对电流的等效影响来得出光敏电阻的特性。
具体方法就是:我们先固定一个电压值(定为1V)和偏振片偏角,记下此时光敏电阻的阻值(记为R),这时电流表有一个电流读数。
我们现在每次等量改变电压值(每次加1V),然后转动偏振片使电流回到开始值,记下这个转动的角度,这个过程可以进行10多次,电压可加至12V左右,则每次对应了一个偏振片转动的角度值。
每次转动角度对应的光强差就是光敏电阻在当前阻值大小的情况下再增加一个R值需要减少的光强,这样也可以做出光敏电阻的光照特性曲线(直接作出关系图)。
但是这种方法不易控制,随着阻值的增大,每次的改变量会越来越小,这样对于偏振片上刻度粗略的转盘来说是不易控制的,也是无法计数的;如果将来偏振片等变成电子读数的,那就好多了。
而且这种方法对于“使电流回到当初值”是不易控制的,电流会有一定的波动,所以会产生一定的误差。
而且电阻变化的围是受限制的,所以这种方法的可行性有待考虑。
但这种方法还是有一定价值的。
以上只是我的一些想法,望助教老师指点。
【个人感想】其实我一直对光学和电学都很感兴趣,所以选择了这个实验 ,这次做这个实验对光敏电阻的性能有了更详细的了解。
光敏电阻,是一个光与电连接的很好的例子。
电学中电阻的变化由光学中光强的变化来控制,这就如在电学与光学之间的一座桥。
因此光敏电阻也有着广泛的应用,尤其是在自动化技术中。
其实,大自然就是一个统一的整体,光能与电能可以互相转化,光可以影响物体的电学属性,同样电也可以物体的光学属性,因为我认为光和电的本质应是相通的,更深层次的容可能就要归结于大统一理论(TOE)了吧,我想物理学的更广泛的统一终将到来。
至此,我本学期的8个物理实验已全部完成了,也希望这个实验能为本学期物理实验课程画上一个完美的句号。
在此,非常感助教老师对我的指导与帮助,!。