计算方法 线性代数方程组的解法

合集下载

线性方程组的几种求解方法

线性方程组的几种求解方法

线性方程组的几种解法线性方程组形式如下:常记为矩阵形式其中一、高斯消元法高斯(Gauss)消元法的基本思想是:通过一系列的加减消元运算,也就是代数中的加减消去法,将方程组化为上三角矩阵;然后,再逐一回代求解出x向量。

现举例说明如下:(一)消元过程第一步:将(1)/3使x1的系数化为1 得再将(2)、(3)式中x1的系数都化为零,即由(2)-2×(1)(1)得由(3)-4×(1)(1)得)1(32)2(......3432=+xx)1(321)1(......23132=++xxx第二步:将(2)(1)除以2/3,使x 2系数化为1,得再将(3)(1)式中x 2系数化为零,即 由(3)(1)-(-14/3)*(2)(2),得第三步:将(3)(2)除以18/3,使x 3系数化为1,得经消元后,得到如下三角代数方程组:(二)回代过程由(3)(3)得 x 3=1, 将x 3代入(2)(2)得x 2=-2, 将x 2 、x 3代入(1)(1)得x 2=1 所以,本题解为[x]=[1,2,-1]T(三)、用矩阵演示进行消元过程第一步: 先将方程写成增广矩阵的形式第二步:然后对矩阵进行初等行变换初等行变换包含如下操作(1) 将某行同乘或同除一个非零实数(2) 将某行加入到另一行 (3) 将任意两行互换第三步:将增广矩阵变换成上三角矩阵,即主对角线全为1,左下三角矩阵全为0,形)3(3)3(......1-=x )2(3)3( (63)18-=x )2(32)2(......02=+x x )1(32)3( (63)10314-=--x x示例:(四)高斯消元的公式综合以上讨论,不难看出,高斯消元法解方程组的公式为1.消元(1)令a ij(1) = a ij , (i,j=1,2,3,…,n)b i(1) =b i , (i=1,2,3,…,n)(2)对k=1到n-1,若a kk(k)≠0,进行l ik = a ik(k) / a kk(k) , (i=k+1,k+2,…,n)a ij(k+1) = a ij(k) - l ik * a kj(k), (i,j= k+1,k+2,…,n)b i(k+1) = b i(k) - l ik * b k(k), (i= k+1,k+2,…,n)2.回代若a nn(n) ≠0x n = b n(n) / a nn(n)x i = (b i(i) – sgm(a ij(i) * x j)/- a ii(i),(i = n-1,n-2,…,1),( j = i+1,i+2,…,n )(五)高斯消元法的条件消元过程要求a ii(i) ≠0 (i=1,2,…,n),回代过程则进一步要求a nn(n) ≠0,但就方程组Ax=b 讲,a ii(i)是否等于0时无法事先看出来的。

计算方法(3)第三章 线性代数方程组的解法

计算方法(3)第三章 线性代数方程组的解法

“回代”解得

xn

bn ann


xk

1 akk
[bk

n
akj x j ]
j k 1

其中aii 0 (i 1,2,......, n)
(k n 1, n 2, ,1)
返回变量
函数名
function X=backsub(A,b) 参数表
%Input—A is an n×n upper- triangular nonsingullar matrix % ---b is an n×1 matrix
x1

xi

b1 / a11
i 1
(bi aik
k 1
xk ) / aii
(i

2,3,
, n)
如上解三角形方程组的方法称为回代法.
二. 高斯消元法(Gaussian Elimination)
高斯消元法的求解过程,可大致分为两个阶段:首先, 把原方程组化为上三角形方程组,称之为“消元”过 程;然后,用逆次序逐一求出上三角方程组(原方程组的 等价方程组)的解,称之为“回代”过程.
符号约定:
1. (λEi )(Ei ): 第i个方程乘以非零常数λ。 2. (Ei +λEj )(Ei ): 第j个方程乘以非零常数λ
加到第i个方程。
3.(Ei )(Ej ): 交换第i个方程与第j个方程。
a11 x1 a12 x2 ... a1n xn b1
a21
x1 4 x4 x2 4 1 2 1
故解为(x1,x2 ,x3 ,x4 )T (1,2,0,1)T
A=[1 1 0 1;0 -1 -1 -5;0 0 3 13;0 0 0 -13] b=[4;-7;13;-13] X=backsub(A,b)

线性代数求解方法和技巧

线性代数求解方法和技巧

线性代数求解方法和技巧线性代数是数学中重要的一个分支,研究向量空间、线性变换和线性方程组等内容。

在实际问题中,我们常常需要用线性代数的方法来解决问题,因此掌握线性代数的求解方法和技巧对于理解和应用数学是非常重要的。

首先,我们讨论线性方程组的求解方法。

线性方程组是由一组线性方程组成的方程组,其中每个方程的未知数的次数都为1。

对于n个未知数和m个方程的线性方程组,我们有以下几种常用的求解方法:1. 列主元消元法:这是最常用的线性方程组求解方法之一。

它的基本思想是通过行变换将线性方程组化为一个三角形式,进而求解得到方程组的解。

在进行行变换时,要选择合适的列主元,即选择主元元素绝对值最大的一列作为主元素。

2. 矩阵求逆法:对于一个可逆的n阶方阵A,我们可以通过求A的逆矩阵来求解线性方程组Ax=b。

具体地,我们首先通过高斯消元法将方程组化为三角形式,然后根据三角形式的矩阵求逆公式来求解x。

3. LU分解法:对于一个n阶非奇异矩阵A,我们可以将其分解为一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。

接着,我们可以通过LU分解来求解线性方程组Ax=b。

具体地,我们首先通过LU分解将方程组化为Lc=b和Ux=c两个方程组,然后依次求解这两个方程组得到x的值。

除了以上的求解方法,还有一些线性方程组的特殊情况和对应的求解方法:1. 齐次线性方程组:如果线性方程组右边的常数项都为0,即b=0,那么我们称为齐次线性方程组。

对于齐次线性方程组,其解空间是一个向量空间。

我们可以通过高斯消元法来求解齐次线性方程组,先将其化为三角形式,然后确定自由未知量的个数,最后确定解空间的基底。

2. 奇异线性方程组:如果线性方程组的系数矩阵A是奇异矩阵,即det(A)=0,那么我们称为奇异线性方程组。

对于奇异线性方程组,其解可能不存在,或者存在无穷多解。

我们可以通过计算矩阵A的秩来确定线性方程组的解的情况。

另外,在实际问题中,我们可能会遇到大规模的线性方程组,这时候求解方法和技巧还需要考虑到计算效率的问题。

线性代数方程组的解法

线性代数方程组的解法

2 3 2 n O( n ) 3
mult a(i , j ) a( j, j ); for k j 1 : n a(i , k ) a(i , k ) mult * a( j , k ); end b(i ) b(i ) mult * b( j ); end
end
LU分解
求A的LU分解(L是下三角矩阵,U是上三角矩阵)
1 1 1 1 3 4 3 4
LU分解
性质1 设向量
, xn ) 且 xk 0 T 则存在唯一的下三角阵 Lk I lk ek ,满足 x ( x1 , x2 ,
T
Lk x ( x1 ,
第三章 线性方程组的直接解法
/*Direct Method for Solving Linear Systems*/
求解 A x b, A R
Cramer法则:
nn
det( A) 0
Di xi D
i 1, 2,
,n
所需乘除法的运算量大约为(n+1)!+n
n=20时,每秒1亿次运算速度的计算机要算30多万年!
Gauss消去法的消元过程算法
for for
j 1: n 1
i j 1: n
2 3 2 n O( n ) 3
mult a(i , j ) a( j, j ); for k j 1 : n a(i , k ) a(i , k ) mult * a( j , k ); end b(i ) b(i ) mult * b( j ); end
方程组可化为下面两个易求解的三角方程组
Ly b Ux y
二、 高斯消去法

线性方程组的求解方法

线性方程组的求解方法

线性方程组的求解方法线性方程组是数学中的基础概念,广泛应用于各个领域,如物理、经济学、工程学等。

解决线性方程组的问题,对于推动科学技术的发展和解决实际问题具有重要意义。

本文将介绍几种常见的线性方程组的求解方法,包括高斯消元法、矩阵法和迭代法。

一、高斯消元法高斯消元法是求解线性方程组的经典方法之一。

它的基本思想是通过一系列的行变换将方程组化为阶梯形或行最简形,从而得到方程组的解。

首先,将线性方程组写成增广矩阵的形式,其中增广矩阵是由系数矩阵和常数向量组成的。

然后,通过行变换将增广矩阵化为阶梯形或行最简形。

最后,通过回代法求解得到方程组的解。

高斯消元法的优点是简单易懂,容易实现。

但是,当方程组的规模较大时,计算量会很大,效率较低。

二、矩阵法矩阵法是求解线性方程组的另一种常见方法。

它的基本思想是通过矩阵运算将方程组化为矩阵的乘法形式,从而得到方程组的解。

首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。

然后,通过矩阵运算将方程组化为矩阵的乘法形式。

最后,通过求逆矩阵或伴随矩阵求解得到方程组的解。

矩阵法的优点是计算效率高,适用于方程组规模较大的情况。

但是,对于奇异矩阵或非方阵的情况,矩阵法无法求解。

三、迭代法迭代法是求解线性方程组的一种近似解法。

它的基本思想是通过迭代计算逐步逼近方程组的解。

首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。

然后,选择一个初始解,通过迭代计算逐步逼近方程组的解。

最后,通过设定一个误差限,当迭代结果满足误差限时停止计算。

迭代法的优点是计算过程简单,适用于方程组规模较大的情况。

但是,迭代法的收敛性与初始解的选择有关,有时可能无法收敛或收敛速度较慢。

综上所述,线性方程组的求解方法有高斯消元法、矩阵法和迭代法等。

每种方法都有其适用的场景和特点,选择合适的方法可以提高计算效率和解决实际问题的准确性。

在实际应用中,根据问题的具体情况选择合适的方法进行求解,能够更好地推动科学技术的发展和解决实际问题。

常见的线性代数求解方法

常见的线性代数求解方法

常见的线性代数求解方法
1.列主元消去法
列主元消去法是一种经典的求解线性方程组的方法。

它通过将
方程组转化为上三角矩阵的形式来求解。

这个方法的关键在于选取
主元的策略。

一种常见的选取主元的策略是选择当前列中绝对值最
大的元素作为主元,然后进行消去操作,直到将矩阵转化为上三角
矩阵。

2.高斯-约当消去法
高斯-约当消去法是另一种常见的线性方程组求解方法。

它通
过消去矩阵的下三角部分来将线性方程组转化为上三角矩阵的形式。

这个方法也需要选择主元,常见的选择策略是选取当前行中绝对值
最大的元素作为主元,然后进行消去操作。

3.LU分解法
LU分解法是将矩阵分解为一对矩阵的乘积的方法。

这个方法的思想是先将矩阵分解为一个下三角矩阵和一个上三角矩阵,然后通过求解上三角矩阵和下三角矩阵的两个方程组来求解原始的线性方程组。

4.Jacobi迭代法
Jacobi迭代法是一种迭代求解线性方程组的方法。

它通过将原始的线性方程组转化为一个对角矩阵和另一个矩阵的乘积的形式,然后通过迭代求解这个对角矩阵和另一个矩阵的方程组来逼近线性方程组的解。

5.Gauss-Seidel迭代法
Gauss-Seidel迭代法是另一种迭代求解线性方程组的方法。

它与Jacobi迭代法类似,但是在每一次迭代中,它使用前一次迭代得到的部分解来更新当前的解。

这个方法通常比Jacobi迭代法收敛得更快。

以上是一些常见的线性代数求解方法。

每种方法都有其特点和适用范围,我们可以根据具体情况选择合适的方法来求解线性方程组的问题。

线性方程组的几种求解方法

线性方程组的几种求解方法

线性方程组的几种求解方法1.高斯消元法高斯消元法是求解线性方程组的一种常用方法。

该方法的基本思想是通过对方程组进行一系列简化操作,使得方程组的解易于求得。

首先将方程组表示为增广矩阵,然后通过一系列的行变换将增广矩阵化为行简化阶梯形,最后通过回代求解出方程组的解。

2.列主元高斯消元法列主元高斯消元法是在高斯消元法的基础上进行改进的方法。

在该方法中,每次选取主元时不再仅仅选择当前列的第一个非零元素,而是从当前列中选取绝对值最大的元素作为主元。

通过选取列主元,可以避免数值稳定性问题,提高计算精度。

3.LU分解法LU分解法是一种将线性方程组的系数矩阵分解为一个下三角矩阵L 和一个上三角矩阵U的方法。

首先进行列主元高斯消元法得到行阶梯形矩阵,然后对行阶梯形矩阵进行进一步的操作,得到L和U。

最后通过回代求解出方程组的解。

4.追赶法(三角分解法)追赶法也称为三角分解法,适用于系数矩阵是对角占优的三对角矩阵的线性方程组。

追赶法是一种直接求解法,将系数矩阵分解为一个下三角矩阵L和一个上三角矩阵U,然后通过简单的代数运算即可求得方程组的解。

5.雅可比迭代法雅可比迭代法是一种迭代法,适用于对称正定矩阵的线性方程组。

该方法的基本思想是通过不断迭代求解出方程组的解。

首先将方程组表示为x=Bx+f的形式,然后通过迭代计算不断逼近x的解。

6.高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进方法。

该方法在每一次迭代时,使用已经更新的解来计算新的解。

相比于雅可比迭代法,高斯-赛德尔迭代法的收敛速度更快。

7.松弛因子迭代法松弛因子迭代法是一种对高斯-赛德尔迭代法的改进方法。

该方法在每一次迭代时,通过引入松弛因子来调节新解与旧解之间的关系。

可以通过选择合适的松弛因子来加快迭代速度。

以上是一些常用的线性方程组求解方法,不同的方法适用于不同类型的线性方程组。

在实际应用中,根据问题的特点和要求选择合适的求解方法可以提高计算的效率和精度。

线性代数方程组的解法

线性代数方程组的解法

说明:线性方程组的初等变换是可逆的。 即,方程组(1)经初等变换化为一个新方 程组,那么新方程组也可以经过初等变换还 原为原方程组(1)。因而,方程组(1)与 它经过若干此初等变换之后得到的新方程组 是同解的。
⎧ a11 x1 + a12 x 2 + L + a1n x n = b1 ⎪ a x + a x + L+ a x = b ⎪ 21 1 22 2 2n n 2 ⎨ ⎪ LLLLLLLLLLLL ⎪a m 1 x1 + a m 2 x 2 + L + a mn x n = bm ⎩
L a1n ⎞ ⎟ L a2 n ⎟ L L⎟ ⎟ L amn ⎟ ⎠
矩阵A的 (m , n)元
这m × n个数称为 A的元素 , 简称为元素 (元 ).
元素是实数的矩阵称为实矩阵, 元素是复数的矩阵称为复矩阵.
例如
⎛ 1 0 3 5⎞ ⎟ 是一个 2 × 4 实矩阵, ⎜ ⎝ − 9 6 4 3⎠ ⎛ 1⎞ ⎜ ⎟ ⎜ 2⎟ ⎜ 4⎟ ⎝ ⎠
问题:是否每个矩阵都可以经过初等行变换化 为梯矩阵呢? 定理1 任意m × n矩阵A总可以经初等行变换化为梯
矩阵及最简形。
证明 Step1 若A的元全为0, A已经是一个阶梯矩阵。
Step2 设非零矩阵A的第 j1 列是自左而右的第 一个非零列,设 a1 j ≠ 0 (否则,若 a ij1 非零,作 行变换 r1 ↔ ri ,总可使第j1列的第一个元非零), 矩阵A的各行分别作行变换:

同理可得
−2 −2 1 1 −2 1 0 1 − 3 = −10, −1
D1 = 1 0
1
1 1
− 3 = −5, D2 = 2 −1 −1 1 = −5, 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3.6.1)
将其改写成 ... ... a22 ... ... ... ... x1 0 ... x2 − a21 = ... ... ... ... ... ann xn − an1 ... − a1n x1 b1 ... − a2 n x2 b2 + ... ... ... ... ... 0 xn bn
即 lim
(k ) k →∞
x
=
*
(k )
*
k →∞ *
*
ቤተ መጻሕፍቲ ባይዱ
*
也是 Ax = b 的解。
综上所述 : 设方程组(3.6.1)唯一解
x
*
* * * = ( x1 , x2 ,..., xn ) T
令A = M − N , 其中M非奇异, 则方程(3.6.1)改写为 (M − N ) x = b 即 所以 Mx = Nx + b x = Gx + f (3.6.2)
取初值
x = ( 0 0 0)T
迭代 方 程 组 的 近 次数 0.001 9 (1.0002507 1.0000694 0.0001 10 (0.9999541 1.0001253 0.00001 14 (0.9999981 1.0000020
Gauss-Seidel迭代法 取初值 迭代法 计 算 结 果
3.6 解线性方程组的迭代法
一、迭代法概述
设线性方程组 Ax = b
(3.6.1)
其中, A ∈ R n×n 且非奇异, x ∈ R n , b ∈ R n 且b ≠ 0. 由线性方程组理论知式(3.6.1)有唯一解x *。 类似非线性方程迭代法将(3.6.1)写成等价方程组 x = Gx + f
任取初始向量x ( 0 )作
,x
( k+1) 2
,⋯, x
( k+1) 从而得到G-S迭代法。 迭代法。 迭代法 i −1 值,从而得到
G-S迭代法是 迭代法的一种改进 迭代法是J迭代法的一种 迭代法是 迭代法的一种改进 G-S迭代法的分量形式: 迭代法的分量形式: 迭代法的分量形式
bi − ∑ aij x x
( k +1) i
(1) 1 (0) 2 (0) n (1) 2 ( ( ( ( 第3步 同理由x1(1) , x21) , x30) ,..., xn0 )得x31);
依此类推 第n步由x , x ,x , x , x 得x 。 ...,
(1) 1 (1) 2 (1) 3 (1) n −1 (0) n (1) n
故将迭代法改写成 x i( k +1)
( ( x1( k +1) = 0 .2 x 2k ) + 0 .1x3 k ) + 0 .3 ( k +1 ) ( x2 = 0 .2 x1( k ) + 0 .1x3 k ) + 1 .5 x ( k +1 ) = 0 . 2 x ( k ) + 0 . 1 x ( k ) + 2 1 2 3
如果 aii 相应的迭代格式
x
( k +1)
= Bx
(k )
+ f ; k = 0,1, 2,⋯
上述方法称为Jacobi迭代法,简称 法或简单迭代法 迭代法,简称J法或简单迭代法 法或简单 上述方法称为 迭代法 分量形式: 分量形式: 形式
bi − ∑ aij x x
( k +1) i
i −1
=
j =1
解:因为迭代矩阵为 2 1 0 10 10 2 1 0 GJ = 10 10 2 1 0 5 5
原方程改写为 x1 0 x = 0 .2 2 x3 0 .2 其迭代格式 0 .2 0 0 .4 0 .1 x1 0 .3 0 .1 x 2 + 1 .5 0 x3 2
( k +1)
= GJ x
n
(k )
+f
k = 0,1,2,...
而迭代序列的分量形式 为: x
(k +1 ) i
= (bi − ∑ aij x ) / aii
j =1 j ≠i (k ) j
i = 1,2,..., n
称其为Jacbi迭代法。
例 1、
试用 Jacbi 迭代法解线性方程组 10 − 2 − 1 −2 10 −2 − 1 x1 3 − 1 x 2 = 15 5 x 3 10
i −1
=
j =1
( k +1) j

j = i +1
∑a
n
ij
x
(k ) j
a ii
; i = 1, 2,⋯ , n
利用Jacobi和Gauss-Seidel迭代法求解方程组 例2:利用 和 迭代法求解方程组
10 3 1
x
x
( k +1) 1
( k +1) 2
1
2 −10 3
解:
Jacobi 迭 代 格 式
B <1 Gauss-Seidel迭代法收敛的充分条件是 G < 1 迭代法收敛的充分 迭代法收敛的充分条件是
如例1 利用J和 如例1:利用 和G-S迭代法求解方程组 迭代法求解方程组
10 3 1
1
2 −10 3 3
x1 x2
=
14 −5
10 x3
14
系数矩阵 A
= 2 −10 3 λ1,2 = −0.05 ± 0.384i
= diag ( a11 , a22 ,… , ann )
0 a12 a13 0 a 23 −U = 0 0 an,n−1 0
0
−L = a31 a32 0
a n1 a n 2
a21 0
a1n a2n
0 an−1,n 0
≠ 0( i = 1, 2,⋯ , n) −1 −1 原方程组可化为 x = D ( L + U ) x + D b = Bx + f 其中B = D −1 ( L + U ) = ( I − D −1 A); f = D −1b
要求 精度
x = ( 0 0 0)
T
迭代 方 程 组 的 近 次数 0.001 5 (0.9997916 0.9998479 0.0001 7 (0.9999929 0.9999949 0.00001 8 (1.0000013 1.0000009
似 解
1.0000664) ) 1.0000022) ) 0.9999996) )
i −1 1 = (bi − ∑ a ij x (jk +1) − a ii j =1 j = i +1
a ij x (jk ) ) ∑
n
(i = 1,2,..., n ) ( k = 0,1,...) 矩阵形式:由于 Dx 所以 故有
( k +1)
= Lx
( k +1)
+ Ux
−1
(k )
+b
( D − L ) x = Ux + b
其中,G = M −1 N , f = M −1b。
( 0 任取初始向量x ( 0 ) = ( x1( 0 ) , x20 ) ,..., xn )T
代入方程(3.6.2)的右端得
x

( k +1)
= Gx ( k ) +
f
(k = 0,1,2,...)
(3.6.3)
lim x ( k ) = x*
=
=
(14 − 3 x
10 ( k +1) (k ) ( −5 − 2 x1 − 3 x3 ) (14 − x
( k +1) 1
(k ) 2
−x )
(k ) 3
Jacobi迭代法 迭代法 计 算 结 果
要求 精度
G-S
( −10)
x
( k +1) 3
=
− 3x
( k +1) 2
) 10
似 解
1.0002507) ) 0.9999541) ) 0.9999981) )
k = 0,1,...
取 x ( 0 ) = ( 0,0,0 ) T 迭代到第 11次有
x
(11 )
= (1 .0000 , 2 .0000 ,3 .0000 ) T
三、 Jacobi迭代法的矩阵形式 迭代法的矩阵形式 设方程组 Ax = b; A = ( a ij ) n× n , b = ( bi )1× n ;det( A) ≠ 0 将系数矩阵分裂为 将系数矩阵分裂为:A = D− L−U 分裂 其中 D
x = ( D − L ) Ux + ( D − L ) b
−1 −1
−1
因此 Gauss − Seidel 迭代矩阵为 G s = ( D − L ) U, f s = ( D − L )
b
迭代公式中, 在J迭代公式中,计算 迭代公式中
x
( k+1) 时,利用已经算出来的新的 i
x
( k+1) 1
三、 Jacobi和Gauss-Seidel迭代法的收敛性 和 迭代法的收敛性 定理 Jacobi迭代法收敛的充要条件是 ρ ( B ) < 1 迭代法收敛的充要 迭代法收敛的充要条件是 Gauss-Seidel迭代法收敛的充要条件是 ρ (G ) < 1 迭代法收敛的充要 迭代法收敛的充要条件是 推论1: 迭代法收敛的充分 推论 :Jacobi迭代法收敛的充分条件是 迭代法收敛的充分条件是
相关文档
最新文档