几何最值问题——动点在圆上

合集下载

初中数学几何最值专题44:阿波罗尼斯圆问题(最全修正版)

初中数学几何最值专题44:阿波罗尼斯圆问题(最全修正版)

阿波罗尼斯圆问题(阿氏圆)所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.如下图,已知A 、B 两点,点P 满足PA :PB=k (k ≠1),则满足条件的所有的点P 构成的图形为圆.【问题引入】如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12PA PB 的最小值为__________;则PA+23PB 的最小值为__________;解析提示:解析提示:【问题分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB 最小值,直接连BM 即可. 【问题剖析】(1)这里为什么是12PA ?(2)如果问题设计为PA+kPB 最小值,k 应为多少?【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决. 【思考】分析解析提示2中原理EAB C DPMPDCBA【问题引入】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点C为圆心,2为半径作圆C,分别交AC、BC于D、E两,则2PM+PN的最小值为__________;则2PM+3PN的最小值为点,点P是圆C上一个动点,CM=1,CN=43__________;解析提示:解析提示:【问题分析】这个问题最大的难点在于转化2PM,此处P点轨迹是圆,注意到圆C半径为2,CM=1,连接CP,构造包含线段PM的△CMP,连接AP,可得△CPA∽△CMP,故PA:PM=2:1,即2PM=PA.问题转化为PN+PA最小值,直接连AN即可.【问题剖析】(1)这里为什么是2PM?(2)如果问题设计为PM+kPN最小值,k应为多少?【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决.【思考】分析解析提示2中原理【例题精讲】例1、如图,点A、B在圆O上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB上,且OD=4。

借助几何性质解决圆中的最值问题

借助几何性质解决圆中的最值问题

类型四 利用“数形结合方法”解决直线与圆的问题
例4 已知圆C:(x+2)2+y2=1,P(x,y)为圆C上任一点. (1)求xy--21的最大、最小值; 解 法一 设 k=xy--21, 则 y-2=kx-k,即 kx-y+2-k=0. ∵P(x,y)为圆 C 上任一点, ∴圆心(-2,0)到直线 kx-y+2-k=0 的距离 d=|-2k1++2k-2 k|=|21-+3kk2|≤1,
索引
∴3t++1t=-12.∴t=-73, ∵CA= 1+4= 5, ∴直线 l 被圆 C 截得的弦长的最小值为 2 9-5=4.
索引
思维升华
当直线与圆相交时,弦长最短,需使弦心距最大,然后根据垂径定理由垂直 得中点,进而利用弦长的一半,圆的半径及弦心距构造直角三角形,利用勾 股定理解决问题.
索引
借助几何性质解决圆中的最值问题
索引
高中数学中,在研究圆的相关问题时,最值问题又是研究的重点和热点,现把 常见的与圆相关的最值问题总结如下.希望对学生有些启发.
索引
类型一 “圆上一点到直线距离的最值”问题
例 1 已知圆 C 经过(2,5),(-2,1)两点,并且圆心 C 在直线 y=21x 上. (1)求圆 C 的方程; 解 点(2,5)与点(-2,1)连线的中点为(0,3),中垂线方程为 y=-x+3,
索引
即|2-3k|≤ 1+k2, 平方得 8k2-12k+3≤0, 解得3-4 3≤k≤3+4 3, 故xy--21的最大值为3+4 3,最小值为3-4 3;
索引
(2)求x-2y的最大、最小值.
解 设b=x-2y,即x-2y-b=0. ∵P(x,y)为圆C上任一点, ∴圆心(-2,0)到直线的距离 d= 12|+-(2--b2| )2=|b+52|≤1,即|b+2|≤ 5, 则-2- 5≤b≤ 5-2,

中考数学最值—阿氏圆问题(解析+例题)

中考数学最值—阿氏圆问题(解析+例题)

中考数学最值——阿氏圆问题(点在圆上运动)(PA+k·PB型最值)【问题背景】与两个定点距离之比为一个不为0的常数的点的轨迹是一个圆,这个圆为阿氏圆。

这个定理叫阿波罗尼斯定理。

【知识储备】①三角形三边关系:两边之和大于第三边;两边之差小于第三边。

②两点之间线段最短。

③连接直线外一点和直线上各点的所有线段中,垂线段最短。

【模型分析】①条件:已知A、B为定点,P为 O上一动点,OPOB=k(0<k<1)。

②问题:P在何处时,PA+k·PB的值最小。

③方法:连接OP,OB,在OB上取点C,使OCOP =k,可得△POC∽△BOP,所以CPPB=OPOB=k,所以得CP=k·PB。

所以PA+k·PB=PA+CP≥AC,当P为AC与 O的交点时,PA+k·PB的最小值为AC。

总结:构造母子三角形相似若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到括号外边,将其中一条线段的系数化成,再构造△相似进行计算。

【经典例题】已知∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点.(1)求12AP BP+的最小值为。

(2)求13AP BP+的最小值为。

【巩固训练】练习1:如图,点A、B在⊙O 上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB 上,且OD=4,动点P在⊙O 上,则2PC+PD的最小值为;练习2:如图,在Rt△ABC中,∠ACB=90°,D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),若AC=4,BC=3,那么在旋转过程中,线段CM长度的取值范围是__________。

练习3:Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+32BD 的最小值为_______.练习4:如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+23PD 的最小值为________.练习5:如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+21PC 的最小值为_________.练习6:如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是圆上动点,求2PB+PC 的最小值.值。

初中数学圆中最值定值问题专题(推荐)

初中数学圆中最值定值问题专题(推荐)

初中数学圆中最值定值问题专题(推荐)圆中最值域定值问题研究类型一:例1:在图中,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP。

求MP+NP的最小值。

例2:已知圆O的面积为3π,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点。

求PC+CD的最小值。

例3:在菱形ABC中,∠A=60度,AB=3,圆A、圆B的半径为2和1,P、E、F分别是CD、圆A和圆B上的动点。

求PE+PF的最小值。

类型二:折叠隐圆基本原理】:点A为圆外一点,P为圆O上动点,连接AO并延长交圆于P1,则AP的最小值为AP2,最大值为AP1.例1:在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△XXX沿MN所在的直线翻折得到△A′MN,连接A′C,求A′B长度的最小值。

例2:已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(1,1),点B(5,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,则CB’的最小值为多少?例3:在四边形ABCD中,AD∥BC,∠A=90,AD=1,AB=2,BC=3,P是线段AD上一动点,将△ABP沿BP所在直线翻折得到△QBP,则△CQD的面积最小值为多少?类型三:随动位似隐圆例:在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6,点D是边AC上一点且AD=23,将线段AD绕点A旋转得线段AD′,点F始终为BD′的中点,则将线段CF最大值为多少?分析]:易知D’轨迹为以A为圆心AD为半径的圆,则在运动过程中AD’为定值23,故取AB中点G,则FG为中位线,FG=3,故F点轨迹为以G为圆心,3为半径的圆。

问题实质为已知圆外一点C和圆G上一点F,求CF的最大值。

方法归纳:1.如图,点A和点O1为定点,圆O1半径为定值,P为圆O1上动点,M为AP中点。

与圆有关的最值问题

与圆有关的最值问题

与圆有关的最值问题圆是自然界中优美的图形之一,也是数学中的重要研究对象.由于其图形的对称性和完美性,很多与圆有关的最值问题都可以运用圆的图形特点,利用数形结合来求解.当然,我们也会用到函数思想和基本不等式来处理与圆有关的最值问题.在处理与圆有关的最值问题时,应把握两个“思想”:几何思想和代数思想.所谓几何思想,即利用圆心,将最值问题转化为与圆心有关的问题.所谓代数思想,即利用圆的参数方程.【与圆有关的最值类型】①一定点与定圆上动点间距离的最大与最小值.处理方法:利用定点到圆心的距离加(减)圆的半径. ①定直线与定圆上动点间距离的最大与最小值. 处理方法:定点到圆心的距离加(减)圆的半径. ①分别在两定圆上的两动点间距离的最大与最小值. 处理方法:圆心距加(减)两圆的半径.例1.(1)圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是( ).A.6;3.B.6;4.C.5;3.D.5;4.(2)已知点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,则a 2+b 2的最小值是_____. 解:(1)法1.圆心O 到直线的距离为d=25√32+42=5,而圆的半径为1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是5+1=6和5-1=4.故应选B.法2.设圆x 2+y 2=1上的点P(cos θ,sinθ),点P 到直线l :3x +4y -25=0距离d ′, 则 d ′=|3cosθ+4sinθ−25|5=|sin (θ+φ)−5|,① −1≤sin (θ+φ)≤1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是6和4.故应选B.(2)法1. ① 圆x 2+y 2-2x +4y -20=0的圆心和半径分别为(1,-2),r=5.而圆心到原点的距离d=√5,① 5−√5≤√a 2+b 2≤5+√5,⇒30−10√5≤a 2+b 2≤30+10√5. 因此,a 2+b 2的最小值是30-10 5.法2. ① 点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,可设P(1+5cos θ,-2+5sin θ), ① a 2+b 2=(1+5cos θ)2+(-2+5sin θ)2=30+10√5sin (θ+φ),① −1≤sin (θ+φ)≤1, ① a 2+b 2的最小值是30-10 5.例2.在圆x 2+y 2=4上且与直线4x+3y -12=0距离最小的点的坐标是( ). A.(85,65). B.( 85,−65). C.( −85,65) D.( −85,−65). 解:法1.过原点且与直线4x+3y -12=0垂直的直线为3x -4y=0, 联立{x 2+y 2=4,3x −4y =0,⇒{x =85y =65或{x =−85y =−65.结合图4.7—1知选A. xyO 4x+3y -12=0CAE FGHxOM N y 图3.7—2法2.由圆的几何性质可知,所求点为与直线4x+3y -12=0平行且与圆x 2+y 2=4相切的切点.设切线方程为4x+3y+c=0,由|c|5=2,⇒c =∓10.结合图3.7—1 知,c=10.联立{4x +3y −10=0,x 2+y 2=4,⇒{x =85y =65, 故应选A. 法3.对于选择题,可结合图形知所求点应在第一象限内,再看选择支,极易确定选A.想一想①:1.圆x 2+y 2=1上与直线4x -3y -12=0距离最短的点坐标是 .2.已知A (0,1),B (2,3).Q 为圆C:(x -3)2+y 2=1上任一点,则S ΔOAB 的最小值为 .3.若实数x 、y 满足x 2+y 2+2x -4y=0,求x -2y 的最大值.例2.(1)已知a 、b 是单位向量且a ①b.若向量c 满足|c -a -b |=1,则|c |的取值范围是 .(2)已知点A(-1,1)和圆C :(x -5)2+(y -7)2=4.一束光线从A 点经过x 轴反射到圆周C 的最短路程是( ).A.10.B.2√6.C.4√6.D.8. 解:(1) ① a 、b 是单位向量且a ①b ,可设a=(1,0),b=(0,1),c=(x ,y),又① |c -a -b |=1,① (x -1)2+(y -1)2=1. ① 原点O 到圆心(1,1)的距离为√2.① |c | =√x 2+y 2∈[√2−1,√2+1].(2)由光学原理知,点A 关于x 轴的对称点A ′(-1,-1)在反射线上,① 光线从A 点经过x 轴反射到圆周C 的最短路程是过A ′且与圆相切的切线段长|A ′T|=√(−1−5)2+(−1−7)2−4= 4√6.应选C.例3.已知圆C :(x+2)2+y 2=4,过点A(-1,0)作两条互相垂直的直线l 1,l 2,l 1交圆C 与E 、F两点,l 2交圆C 与G 、H 两点.(1)EF+GH解:(1)令圆心C 到弦EF 的距离为d 1,到弦GH 则EF +GH =2(√4−d 12+√4−d 22),又d 12+d 22=CA 2=1由:√4−d 12+√4−d 222≤√8−(d 12+d 22)2=√8−12= √142,(当且仅当d 1=d 2= √22取等号).故EF +GH ≤√14. (2)① EF ⊥GH ,① S 四边形EFGH =12EF ×GH =2(√4−d 12√4−d 22 ≤2×8−(d 12+d 22)2=7.(当且仅当d 1=d 2= √22取等号).例4(1)如图3.7—3(1).点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan①BOC=m ,则m 的取值范围是_________.(2)如图3.7—3(2).在边长为1的等边①OAB 中,以边AB 为直径作①D , C 为半圆弧AB 上的一个动点(不与A 、B 两点重合).BC=a ,AC=b ,求a+b 的最大值.(3)如图3.7—3(3).线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边①ACD 和等边①BCE ,①O 外接于①CDE ,则①O 半径的最小值为( ). A.4. B. 2√33. C. √33. D.2._ B_y_ COED解:(1)由已知,点C 是第一象限内在圆(x -3)2+y 2=4点,结合图2.8—4(1)知,tan①AOC ∈(0,2√55],∵①AOC 与①BOC 互余,① m ≥√52. (2)① AC 2+BC 2=AB 2,即a 2+b 2=1 由柯西不等式得,(12+12)(a 2+b 2)≥(a+b)2, ① (a+b)≤√2,故 a +b 的最大值为√2.(3)设外接圆的半径为R ,由已知可得∠DOE =600.再由正弦定理知DE=2Rsin600,① R=√33DE .在∆DCE 内由余弦定理可得DE 2=DC 2+CE 2-DC ∙CE =(DC+CE)2-3DC ∙CE =16-3DC ∙CE ≥16-3(DC+CE 2)2=4,即DE ≥2. ① R=√33DE ≥2√33.应选B.想一想①:1.如图3.7—4.①M ,①N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为①M 上的任意一点,Q 为①N 上的任意一点,直线PQ 与连心线所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α的最大值为( ).A.√612B.43.C.√33.D.34.2.如图3.7—5.①BAC=600,半径长为1的圆O 与①BAC 的两边相切, P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ). A.3. B.6. C. .3√32.D. 3√3.例5.(1)过点M(−2,,0)的直线l 与曲线y=√4−x 2相交于A ,B 两点,当∆ABO (O 为坐标原点)的面积最大时,直线l 的斜率为 . (2)两个圆C 1:x 2+y 2+2ax+a 2-4=0(a ∈R )与圆C 2:x 2+y 2-2by+b 2-1=0(b ∈R )恰有三条公切线,则a+2b 的取值范围为 . 解:(1) ① 曲线y=√4−x 2的方程可变形为x 2+y 2=4(y ≥0),① 此曲线表示以原点为圆心,2为半径,在x 轴及其上方的半圆,如图3.7—6.① S ∆ABO =12OA ×OB ×sin∠AOB =2sin∠AOB , 当∆ABO 的面积最大时,∠AOB =900,此时∆ABO为等腰直角三角形,① 点O 到直线AB 的距离为√2. 设直线AB 的方程为 y=k(x+2√2),即kx -y+2√2k =0, ①2√2k √1+k 2=√2,解得k=±√33,又由已知k>0,① k= √33.(2) ① 圆C 1的圆心为C 1(-a ,0),半径为2;圆C 2的圆心为C 2(0,b),半径为1.l xy MABO 图3.7—6图3.7—4P QMNA D E BCP. . O图3.7—5由已知两圆外切,① | C 1 C 2|=2+1=3,即a 2+b 2=9.令a+2b=m ,则 √1+4≤3,解得 −3√5≤m ≤3√5,① a+2b 的取值范围为[−3√5,3√5].习题3.71.已知A 、B 两点的坐标分别为(-2,0)、(0,1),①C 的圆心坐标为(0,-1),半径为1,D 是①C 上的一个动点,射线AD 与y 轴交于点E ,则①ABE 面积的最大值是( ).A.3.B. 103. C.103. D.4. 2.圆x 2+y 2-2x -2y+1=0上的点到直线2x y -=距离的最大值是( ).A.2.B.1+√2.C.2+√22. D.1+2√2.3.由直线y=x +1上一点向圆C :(x -3)2+y 2=1引切线,则切线长的最小值为 .4.已知P 为直线y=x +1上一动点,过P 作圆C :(x -3)2+y 2=1的切线PA ,PB(A 、B 为切点),则四边形PACB 面积的最小值为 .5.求过直线2x+y+4=0和圆x 2+y 2+2x -4y+1=0的交点,且满足下列条件之一的圆的方程.①过原点;①有最小面积.6.求圆(x -2)2+(y+3)2=4上的点到直线x -y +2=0最远和最近的距离.7.已知圆M 过两点C(1,-1),D(-1,1),且圆心M 在x+y -2=0上. (1)求圆M 的方程. (2)设P 是直线3x+4y+8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点.求四边形PAMB 面积的最小值.8.在平面直角坐标系中,M(3,4),P 是以M 为圆心,2为半径的①M 上一动点,A(-1,0)、B(1,0),连接PA 、PB ,求PA 2+PB 2最大值.9.过定点M 的直线l 1:ax+y -1=0与过定点N 的直线l 2:x - ay +2a -1=0交于点P.求|PM|∙|PN|的最大值.【参考答案】想一想①:1. (45,−35). 2.4+√2. 3.10.想一想①:1.D.考虑PQ 为两圆的内公切线时的情形.2.在△ADE 中,由正弦定理得|DE|=2Rsin600,其中R 为△ADE 的外接圆半径.如图2.8—4(3)知,AP 的最大值为|OP|+1=3,① |DE|max =3√3. 故应选D.习题3.71. A.2. B.3. √7.4. √7.5.(1)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① 所求圆过原点,得λ=−14. ①x 2+y 2+32x+74y =0为所求.(2)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① R 2=D 2+E 2−4F 4=5λ2−16λ+164,① 当 λ=85时R 2最小. ① x 2+y 2+265x −125y +375=0为所求6.7√2−42;7√2+42. 7.(1)设圆M 的方程为:(x -a)2+(y -b)2=r 2(r >0).根据题意得, {(1−a)2+(1+b)2=r 2,(−1−a)2+(1−b)2=r 2,a +b −2=0. 解得a=b=1,r=2.故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)① 四边形PAMB 的面积S=S ①PAM +S ①PBM =|AM|·|PA|+|BM|·|PB|,又|AM|=|BM|=2,|PA|=|PB|,① S=2|PA|,而|PA|=√|PM|2−|AM|2=√|PM|2−4, 即S=2√|PM|2−4.因此要求S 的最小值,只需求|PM|的最小值即可, 即在直线3x+4y+8=0上找一点P,使得|PM|的值最小, ① |PM|min =√32+42=3.因此,四边形PAMB 面积的最小值为S=2√|PM|2−4=2√5.8.设P(3+2cos θ,4+2sin θ),则PA 2+PB 2=60+24cos θ+32sin θ=60+40sin(θ+φ)≤100. ① PA 2+PB 2最大值为100.9. 1. 由已知有,直线l 1过定点M(0,1),直线l 2过定点N(1,2),且|MN|=√2,l 1⊥l 2.由平面几何的知识知,点P 在以MN 为直径的圆上运动.设点P 到MN 的距离为PD ,则有|PM|∙|PN|=|MN||∙|PD| =√2∙|PD|,∴ 当|PD|取最大值√22 时,(|PM|∙|PN|)max =√2∙√22=1.。

动点问题最值

动点问题最值

GFD AEA C BD FBACDB动点问题最值最值问题有四种情形:定点到动点的最值,动点在圆上或直线上,就是点到圆的最近距离,和点到直线的最近距离;三角形两边之和大于第三边的问题,当两边成一直线最大;几条线段之和构成一条线段最小;还有就是对称点最小问题。

一、定点到动点所在圆的最大或最小值,动点在一个定圆上运动,其实质是圆外一点到圆的最大或最小距离,就是定点与圆心所在直线与圆的交点的两个距离。

方法:证明动点在圆上或者去找不变的特殊三角形,证明两个三角形相似,求出某些边的值。

1.如图,△ABC 、△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是( ) A .32-B .13+C .2D .13-提示:点M 在以AC 为直径的圆上2.(2015•咸宁)如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE =BF ;③点G 运动的路径长为π;④CG 的最小值为﹣1.其中正确的说法是 ②③ .(把你认为正确的说法的序号都填上)提示:G 在以AB 为直径的圆上:正确答案是:②④3、如图,正方形ABCD 的边长为4cm,正方形AEFG 的边长为1cm ,如果正方形AEFG 绕点A旋转,那么C 、F 两点之间的最小距离为 4、如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是 5、如图,等腰直角△ACB ,AC=BC=5,等腰直角△CDP ,且PB=2,将△CDP 绕C 点旋转.(1)求证:AD=PB(2)若∠CPB=135°,求BD ;(3)∠PBC= 时,BD 有最大值,并画图说明; ∠PBC= 时,BD 有最小值,并画图说明.分析:在△ABD 中有:BD ≤AB+AD ,当BD=AB+AD 时BD 最大,此时AB 与AD 在一条直线上,且AD 在BA 的延长线上,又△ACB 是等腰直角三角形,∠CAB=45°,由(1)知∠PBC=∠CAD=180°-45°=135° BD ≥AB-AD ,当BD=AB-AD 时BD 最小,此时,AB 与AD 在一条直线上,且AD 此时∠CAD=45°,所以∠PBC=∠CAD=45°6、如图,△ABC 和△ADE 都是等腰直角三角形,∠ACB=∠ADE=90°,∠BAE=135°,AD=1,2,F 为BE 中点.(1)求CF 的长(2)将△ADE 绕A 旋转一周,求点F 运动的路径长; (3)△ADE 绕点A 旋转一周,求线段CF 的范围.CO ABPE ABC DFD A BC EHGF DAEH G FDA Exy MCM 1M 2A PO B A提示:本题根据中点构造三角形相似,△BOF ∽△BAE,且122OF AE == 7、如图,AB=4,O 为AB 中点,⊙O 的半径为1,点P 是⊙O 上一动点,以点P 为直角顶点的等腰△PBC (点P ,B ,C 按逆时针方向排列)则线段AC 的取值范围 2≤AP ≤32 提示:发现定等腰直角△AOC 与等腰直角△OBE ,从而得到相似。

圆中巧用几何意义求最值

圆中巧用几何意义求最值

1 圆中巧用几何意义求最值在圆中,有几种利用几何意义求最值的类型,没有这种意识,将无从下手,并且这类题目充分体现了数形结合的思想,容易考到,因此值得我们归纳总结一下。

一、利用直线的斜率例1.如果实数x 、y 满足等式()2223x y -+=,求y x 的最大值。

分析:y x 可视为圆上的点(),x y 与原点所确定直线的斜率,即求斜率的最大值。

解:y x可视为圆上的点(),x y 与原点所确定直线的斜率,由图可知,当相切时斜率最大或最小。

设切线的方程为y kx =,即0kx y -=,()2223x y -+=表示圆心为()2,0,半径=k =y x。

变式:已知实数y x ,满足122=+y x ,求12++x y 的取值范围 解:令(2),(1)y k x --=--则k 可看作圆122=+y x 上的动点到点(1,2)--的连线的斜率,而相切时的斜率为34,2314y x +∴≥+ 二、利用两点间的距离公式 例2.如果实数x 、y 满足等式()2223x y -+=,求22x y +的最大值。

分析:22x y +表示圆上的点(),x y 与原点间距离的平方,圆心和原点所确定直线与圆的两交点到原点的距离分别为距离的最小值和最大值。

解:22x y +表示点(),x y 与原点间距离的平方。

因为圆心到原点的距离为2,故圆上的点到原点的距离的最大值为2+,22x y+的最大值为(227=+变式:已知x +y +1=0,那么(x +2)2+(y +3)2的最小值是________.解析:答案为 2 2 (x +2)2+(y +3)2表示点(x ,y)与点(-2,-3)之间的距离,又点(x ,y)在直线x +y +1=0上,故最小值为点(-2,-3)到直线x +y +1=0的距离,即d =|-2-3+1|2=2 2. 三、利用直线在y 轴上的截距例3.如果实数x 、y 满足等式()2223x y -+=,求y x -的最大值。

动点问题最值

动点问题最值

GFDAB CE动点问题最值最值问题有四种情形:定点到动点的最值,动点在圆上或直线上,就是点到圆的最近距离,和点到直线的最近距离;三角形两边之和大于第三边的问题,当两边成一直线最大;几条线段之和构成一条线段最小;还有就是对称点最小问题。

一、定点到动点所在圆的最大或最小值,动点在一个定圆上运动,其实质是圆外一点到圆的最大或最小距离,就是定点与圆心所在直线与圆的交点的两个距离。

方法:证明动点在圆上或者去找不变的特殊三角形,证明两个三角形相似,求出某些边的值。

1.如图,△ABC 、△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是( ) A .32-B .13+C .2D .13-提示:点M 在以AC 为直径的圆上2.(2015?咸宁)如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE =BF ;③点G 运动的路径长为π;④CG 的最小值为﹣1.其中正确的说法是 ②③ .(把你认为正确的说法的序号都填上)提示:G 在以AB 为直径的圆上:正确答案是:②④3、如图,正方形ABCD 的边长为4cm,正方形AEFG 的边长为1cm ,如果正方形AEFG 绕点A旋转,那么C 、F 两点之间的最小距离为ABC4、如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是5、如图,等腰直角△ACB,AC=BC=5,等腰直角△CDP,且PB=2,将△CDP绕C点旋转. (1)求证:AD=PB(2)若∠CPB=135°,求BD;(3)∠PBC= 时,BD∠PBC= 时,BD分析:在△ABD中有:BD≤AB+AD,当BD=AB+AD时BD最大,此时AB与AD在一条直线上,且AD在BA的延长线上,又△ACB是等腰直角三角形,∠CAB=45°,由(1)知∠PBC=∠CAD=180°-45°=135°BD≥AB-AD,当BD=AB-AD时BD最小,此时,AB与AD在一条直线上,且AD在线段AB上,此时∠CAD=45°,所以∠PBC=∠CAD=45°6、如图,△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,∠BAE=135°,AD=1,,F为BE中点.(1)求CF的长(2)将△ADE绕A旋转一周,求点F运动的路径长;(3)△ADE绕点A旋转一周,求线段CF的范围.A BAACCAGDAGDA提示:本题根据中点构造三角形相似,△BOF∽△BAE,且12OF AE==7、如图,AB=4,O为AB中点,⊙O的半径为1,点P是⊙O上一动点,以点P为直角顶点的等腰△PBC(点P,B,C按逆时针方向排列)则线段AC提示:发现定等腰直角△AOC与等腰直角△OBE,从而得到相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的最大值和最小值的乘积为 48.
提高练习
如图,E,F是正方形ABCD的边AD上两个动点, 满足AE=DF.连接CF交BD于G,连接BE交AG 于点H.若正方形的边长为2,则线段DH长度的 最小值是___5_-_1_.
提高练习
如图,△ABC、△EFG均是边长为2的等边三角形, 点D是边BC、EF的中点,直线AG、FC相交于点M.
移动,则顶点C到原点O的最大距离是( C )
A. 6
B. 8 C. 3 3 3 D. 3 3 2
C′
小结
Hale Waihona Puke 编题如图,已知正方形ABCD的边长为2,顶点A,D分别在x
轴、y轴上.当点A在x轴上运动时,点D随之在y轴上运动
,则运动过程中,点B到原点O的最大距离为
.
编题
如图,正六边形ABCDEF的边长为4,两顶点A、 B分别在x轴和y轴上运动,则顶点D到原点O的距离
腰Rt△ABC所在平面内一点,且满足PA⊥PB,则PC 的取值范围为 5-1 PC 5 1 。
D
练习
如图∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON 上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的 形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的
最大距离为( A )
A. 2 1 B. 5 C. 5
D.2
小结:动点比较多时,可以采用 相对运动的思想。
E
小组合作
你能将上题中的矩形改换成其他 多边形,并设置数据,编制出一道 上述类型的题目吗?
拓展
【2016考试说明(二) 12题】
如图,边长为3的等边△ABC的顶点A在x轴的正半
轴上移动,∠AOD=30°,顶点B在射线OD上随之
则B′A长度的最小值是__1____ .
练习
如图,在边长为2的菱形ABCD中,∠A=60°,M是 AD边的中点,N是AB边上一动点,将△AMN沿MN所在 的直线翻折得到△A′MN,连接A′C. 则A′C长度的 最小值是 7-1 .
例2
【2016考试说明(一 ) 17题】 如图,在等腰Rt△ABC中,AB=BC=2,点P为等
当△EFG绕点D旋转时,线段BM长的最小值是(D )
A.2 3 B. 3 1 C. 2
D. 3 1
小结:多次画图常能让我们发现 动态过程中不变的结论。
提高练习
【2016考试说明(四 ) 12题】
如图,⊙O半径为3,Rt△ABC的顶点A,B在⊙O上, ∠B=90°,点C在⊙O内,且tanA=3/4,当点A在圆上 运动时,OC的最小值为 3/2 。
课前热身
如图,在△ABC中,CA=CB,AB=6,CD=4,E是 高线CD的中点,以CE为半径作⊙C,点G是⊙C上的一
个动点,P是AG中点,DP的最大值为 3.5 。
几何最值问题(一)
—— 动点在圆上
O
A
P
B
江北实验中学:杨晓玲
例1
如图,在△ABC中,∠ACB=90°,AB=5,BC=3, P是AB边上的动点(不与点B重合),将△BCP 沿CP所在的直线翻折,得到△B′CP,连接B′A,
相关文档
最新文档