求矩阵的秩的步骤
线性代数:矩阵秩的求法

6/44
定理 Ax=0 的解的情况:
1.Ax=0 有非零解 r(A)<n 只有零解 r(A)=n
2.若A是方阵,Ax 0有非零解 A 0 只有零解 A 0
3.Ax 0,若m n,则一定有非零解。 m :方程个数 n :未知量个数
k
2
1 2
0
3 2
1
.
其中k1
,
k
为任意常数。
2
12/44
定理 3 线性方程组 Ax=b 有解 r(A)=r(Ab)
定理 4 设线性方程组 Ax=b 有解。 若A为方阵,
如果 r(A)=n,则它有唯一解; A 0,唯一解
如果
r(A)<n,则它有无穷多解。
A
0,无穷解
13/44
x1 x2 a1
a4
x5 x1 a5
RA RB
5
ai 0
i 1
15/44
5
方程组有解的充要条件是 ai 0.
i 1
x1 x2 a1
由于原方程组等价于方程组
x2 x3
x3 x4
a2 a3
例4
证明方
程组
x2 x3
x3 x4
a2 a3
x4
x5
a4
x5 x1 a5
有解的充要条件
是a1 a2 a3 a4 a5 0.在有解的情况下,
求出它的一切解.
解证 对增广矩阵B进行初等变换, 方程组的增广矩阵为
14/44
1 1 0 0 0 a1
0 1 1 0 0 a2
第十-十一次
求秩的方法

求秩的方法在矩阵运算中,求秩是一个非常重要的问题。
矩阵的秩代表了矩阵中线性无关的列或者行的最大个数,它在很多领域都有着重要的应用,比如线性代数、统计学、计算机科学等。
因此,掌握求秩的方法对于深入理解矩阵运算和解决实际问题都是非常有帮助的。
首先,我们来介绍一下求秩的方法。
常见的求秩方法有高斯消元法、矩阵的初等变换法和矩阵的特征值法等。
接下来,我们将分别介绍这几种方法的具体步骤和应用场景。
高斯消元法是一种常见的求解线性方程组的方法,同时也可以用来求解矩阵的秩。
其基本思想是通过一系列的初等行变换,将矩阵化为阶梯形矩阵或者行简化阶梯形矩阵,然后通过观察零行的个数来确定矩阵的秩。
这种方法简单直观,适用于一般的矩阵求秩问题。
矩阵的初等变换法是另一种常用的求秩方法。
它包括矩阵的行初等变换和列初等变换,通过一系列的变换操作将矩阵化为简化形,然后通过观察简化形中非零行的个数来确定矩阵的秩。
这种方法在处理特殊类型的矩阵时比较方便,比如对角矩阵、上三角矩阵等。
除了以上两种方法外,矩阵的特征值法也是一种常用的求秩方法。
它利用矩阵的特征值和特征向量的性质来确定矩阵的秩。
具体来说,通过计算矩阵的特征值,然后观察特征值的个数和重数来确定矩阵的秩。
这种方法在矩阵比较大或者特征值已知的情况下比较方便。
总的来说,求秩的方法有很多种,每种方法都有其适用的场景和特点。
在实际问题中,我们可以根据具体情况选择合适的方法来求解矩阵的秩。
同时,掌握不同的求秩方法也有助于我们更深入地理解矩阵的性质和应用。
在实际问题中,我们经常会遇到需要求解矩阵的秩的情况,比如在数据分析、信号处理、最优化问题等领域。
因此,掌握求秩的方法对于我们解决实际问题非常有帮助。
希望通过本文的介绍,读者能够对求秩的方法有所了解,并且能够灵活运用这些方法来解决实际问题。
矩阵的秩及其求法矩阵秩求法演示文稿

5 3 6
0
8
5
4
1 1 1 2
0 3 4 4 0 5 1 0
R(A) 2, 5 0, 1 0
5, 1
三、满秩矩阵 定义3 A 为 n 阶方阵时,
RA n, 称 A 是满秩阵,(非奇异矩阵)
RA n, 称 A 是降秩阵,(奇异矩阵) 可见:RA n A 0
RA n A ~ E
RA n A ~ En
例如 1 A 2 3
2 1 1
3 2 2
1 0 0
2 3 2
3 1 4 0 3 0
0 1 2
0 1 3
1 0 0
0 0
1 0 E 0 1
RA 3
A为满秩方阵。
关于矩阵的秩的一些重要结论:
定理5
R(AB) R(A), R(AB) R(B),即
对于满秩方阵A施行初等行变换可以化为单位阵E, 又根据初等阵的作用:每对A施行一次初等行变换, 相当于用一个对应的初等阵左乘A, 由此得到下面的 定理
定理3 设A是满秩方阵,则存在初等方阵
P1, P2,, Ps. 使得 Ps Ps1 , P2P1A E
对于满秩矩阵A,它的行最简形是 n 阶单位阵 E .
2 1 所构成的二阶子式为 D2 0 1
12 3 而 D3 4 6 5 为 A 的一个三阶子式。
1 0 1
显然, m n 矩阵 A 共有 cmk cnk 个 k 阶子式。
2. 矩阵的秩
定义2 设 A aij mn ,有r 阶子式不为0,任何r+1阶
子式(如果存在的话)全为0 , 称r为矩阵A的秩,
0 1
2 3
4 6
求 RA.
1 1 1 2
线性代数§3.3矩阵的秩

设A为n阶可逆方阵. 因为| A | 0, 所以, A的最高阶非零子式为| A |, 则R(A)=n.
故, 可逆方阵A的标准形为单位阵E, 即A E. 即可逆矩阵的秩等于阶数. 故又称可逆(非奇异)矩 阵为满秩矩阵, 奇异矩阵又称为降秩矩阵. 1 2 2 1 1 2 4 8 0 2 , b , 例5:设 A 2 4 2 3 3 3 6 0 6 4 求矩阵A和矩阵B=(A | b)的秩. 分析: 设矩阵B的行阶梯形矩阵为B=(A| b), 则A就是A的行阶梯形矩阵. 因此可以从B=(A| b)中同时考察出R(A)及R(B).
性质6: R(A + B) R(A) + R(B). 证明: 设A, B为mn矩阵, 对矩阵(A+B ¦ B)作列变 换: ci – cn+i (i =1,2, · · · , n)得, (A+B ¦ B) (A+O ¦ B) B) R(A) + R(B). 于是, R(A+B) R(A+B ¦ B) =R(A+O ¦ 性质7: R(AB) min{R(A), R(B)}. 性质8: 若AmnBnl =O, 则R(A)+R(B) n . 这两条性质将在后面给出证明. 例7: 设A为n阶方阵, 证明R(A+E)+R(A–E) n . 证明: 因为(A+E)+(E–A)=2E, 由性质6知, R(A+E)+R(E–A)R(2E)=n, 而R(E–A)=R(A–E), 所以 R(A+E)+R(A–E) n .
§3.3 矩阵的秩
一、矩阵秩的概念
由上节讨论知: 任何矩阵Amn, 总可以经过有限次 初等行变换把它们变为行阶梯形矩阵和标准形矩阵. 行阶梯形矩阵中非零行的行数, 也就是标准形矩阵中 的数字r 是唯一确定的. 它是矩阵理论中非常重要的数 量关系之一——矩阵的秩. 定义: 在mn矩阵A中任取 k 行 k 列( km, kn ), 位于这 k 行 k 列交叉处的 k2个元素, 不改变它们在A 中所处的位置次序而得到的 k 阶行列式, 被称为矩阵A 的k阶子式. k C k 个. mn矩阵A的k阶子式共有 C m n
求矩阵的秩的步骤

矩阵秩的计算方法:将矩阵A按初等行数变换为梯形矩阵B,梯形矩阵B的非零行数即为矩阵A的秩。
在线性代数中,矩阵A的列秩是A的线性独立列数的最大值,类似地,行秩是A的线性独立的水平行数的最大值,一般说来,如果将矩阵看作行向量或列向量,则秩是这些行向量或列向量的秩,即包含在最大不相关群中的向量的个数。
矩阵秩的性质;
1.矩阵的行秩、列秩、秩均相等。
2.初等变换不改变矩阵的秩。
3.矩阵Rab<=min{Ra,Rb}乘积的秩。
4.如果p和q是可逆矩阵,则r(PA)=r(A)=r(AQ)=r(PAQ)。
5.当r(A)<=n-2时,最高阶非零子公式的阶数<=n-2,n-1阶子公式为零,而伴随矩阵中的每个元素都是n-1阶子公式加一个符号,所以伴随矩阵是零矩阵。
6.当r(A)<=n-1时,最高阶非零子公式的阶数为<=n-1,因此n-1
阶子公式可能不为零,因此伴随矩阵可能为非零(等号成立时伴随矩阵必须为非零)。
矩阵的秩及其求法课件

目 录
• 矩阵的秩的定义 • 矩阵的秩的求法 • 矩阵的秩的应用 • 矩阵的秩的特殊情况 • 矩阵的秩的注意事项
矩阵的秩的定义
01
秩的定义
秩
一个矩阵的秩是其行向量组或列向量组的一个最大线性无关组中所含向量的个数。
定义中的关键词
线性无关、最大、个数。
秩的性质
性质1
矩阵的秩是其行向量组的秩或列向量组的秩,即r(A)=r(A 的行向量组)=r(A的列向量组)。
矩阵的秩的特殊情
04
况
零矩阵的秩
要点一
总结词
零矩阵的秩总是为0。
要点二
详细描述
对于任何n阶零矩阵,其秩都为0,因为零矩阵其行列式值。
详细描述
对于n阶方阵A,其秩r(A)等于其行列式值|A|,当且仅当 A是满秩矩阵时。
特殊矩阵的秩
总结词
特殊矩阵的秩可以通过其元素性质计算。
详细描述
对于一些具有特定元素性质的矩阵,如上三 角矩阵、下三角矩阵、对角矩阵等,其秩可
以通过元素的性质直接计算得出。
矩阵的秩的注意事
05
项
秩的计算与误差
计算方法
矩阵的秩可以通过多种方法计算,如行初等变换法、 列初等变换法、子式法等。
误差控制
在计算过程中,应尽量减少误差,确保结果的准确性 。
精度要求
方法2
初等列变换法。通过初等列变换将矩阵化为阶梯形矩阵,阶梯形矩阵中非零行的行数即为 原矩阵的秩。
方法3
利用子式求秩。一个n阶矩阵的秩等于其所有n阶子式的秩,而n阶子式的秩又等于其所有 元素的最高次幂系数乘积不为0时的最高阶数。
矩阵的秩的求法
02
行列式法
矩阵中秩的计算

矩阵中秩的计算全文共四篇示例,供读者参考第一篇示例:矩阵是线性代数中的一个重要概念,它是由m行n列元素排成的矩形阵列。
在实际问题中,经常会遇到需要对矩阵进行分析和计算的情况。
矩阵的秩是一个非常重要的概念,它可以帮助我们理解矩阵的性质和特点。
矩阵的秩是指矩阵中线性独立的行或列的最大个数,也可以理解为矩阵中非零的行列式数量。
计算矩阵的秩是一项复杂而重要的工作,它涉及到矩阵的行变换和列变换等操作。
在计算矩阵的秩时,我们可以采用多种方法,如高斯消元法、矩阵的行列式等。
我们来看一种常用的计算矩阵秩的方法,即高斯消元法。
高斯消元法是一种基本的线性代数运算方法,在计算矩阵的秩时非常有效。
其基本思想是通过一系列的行变换操作将矩阵化为行阶梯形式,然后统计非零行的个数即为矩阵的秩。
具体步骤如下:1. 将矩阵化为增广矩阵形式,也就是矩阵的最右边添加一个单位矩阵。
2. 从左上角开始,通过一系列的行变换操作将矩阵化为行阶梯形式。
3. 统计非零行的个数,即为矩阵的秩。
通过高斯消元法,我们可以比较容易地计算矩阵的秩。
但需要注意的是,由于矩阵的秩是矩阵自带的性质,所以在进行行变换过程中需要保持同构性,即不能改变矩阵的秩。
另一种常用的方法是通过求解矩阵的行列式来计算矩阵的秩。
矩阵的行列式是一个标量值,表示矩阵中所有元素的线性组合。
矩阵的秩等于行列式非零的最大子式的阶数。
这种方法的优点是简单直观,适用于小规模矩阵的计算。
通过计算矩阵的秩,我们可以得到很多关于矩阵的信息。
矩阵的秩可以反映矩阵的线性无关性,即矩阵中非零行列向量的独立性。
当矩阵的秩小于其行数或列数时,说明矩阵中存在线性相关的行列向量;当矩阵的秩等于其行数或列数时,说明矩阵是满秩的,行列向量线性无关。
矩阵的秩还可以反映矩阵的奇异性。
一个矩阵是奇异的,当且仅当其秩小于其阶数。
奇异矩阵的行列式为0,没有逆矩阵。
通过计算矩阵的秩可以判断矩阵是否奇异。
矩阵的秩还与方程组的解有密切关系。
求矩阵的秩的三种方法

求矩阵的秩的三种方法矩阵是线性代数中的一个重要概念,它由一个数域中的矩形阵列组成,是线性变换的一种表现形式。
矩阵的秩是矩阵的重要性质之一,它可以告诉我们矩阵中行向量或列向量之间的关系。
在实际应用中,求解矩阵的秩是非常常见的问题。
本文将介绍矩阵的三种求解秩的方法。
方法一:高斯消元法高斯消元法是求解矩阵秩的一种基础方法。
对于一个矩阵A,如果它的秩为r,则A必然存在一个大小为r的非零行列式。
我们可以通过对矩阵A进行初等行变换将矩阵转化为行简化阶梯矩阵,然后统计矩阵中非零行的个数来确定矩阵的秩。
具体步骤如下:1. 对矩阵A进行高斯列变换,将A转化为行简化阶梯矩阵形式。
2. 统计矩阵中非零行的个数,即为矩阵的秩。
对于下面的矩阵A,我们可以通过高斯消元法求解矩阵的秩:$$A=\begin{bmatrix}1 &2 & 3\\4 &5 & 6\\7 & 8 & 9\end{bmatrix}$$按照高斯消元法的步骤对A进行初等行变换,得到行简化阶梯矩阵:方法二:矩阵的列空间对于一个矩阵A,其列空间是由A中所有列向量所张成的向量空间。
矩阵的秩等于它的列空间的维度。
我们可以先求解矩阵A的列空间的维度,然后确定矩阵A的秩。
具体步骤如下:2. 取矩阵A中与非零列对应的列向量,将它们作为张成列空间的一组基。
3. 求解列空间的维度,即为矩阵A的秩。
阶梯矩阵中非零列的位置分别是1和2,因此取A中的第1列和第2列作为列空间的一组基。
可以看出,这组基中存在一个线性关系:第2列 = 2*第1列。
矩阵A的列空间实际上只由A中的第1列张成,其维度为1,因此矩阵A的秩为1。
总结:本文介绍了求解矩阵秩的三种方法:高斯消元法、矩阵的列空间和矩阵的行空间。
对于一般的矩阵,三种方法的求解结果并不一定相同。
但无论采用哪种方法,都能够有效地求解矩阵的秩。
还有一些特殊的矩阵,它们的秩具有一些特殊性质:1. 对于一个n阶矩阵A,如果它是一个可逆矩阵,那么它的秩为n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵的秩就是指这个矩阵经过行列变换过后,化为最简式,以后非零行或者是非零列的最小的数目,这里简单介绍一下,怎样求矩阵的秩。
工具/原料
•矩阵
•matlab
方法/步骤
1.1
启动matlab程序。
2.2
在命令窗口任意输入一个矩阵a。
>>a=rand(9,9)
3.3
调用rank函数,按一下回车键即可求得矩阵的秩=9。
4.4
再任意输入一个矩阵b。
>>b=rand(5,8)
5.5
再次调用rank函数,即可求到矩阵的秩=5。
END
注意事项
•当一个矩阵的秩等于五的时候,就表示矩阵当中有五个飞线性
相关的向量组。
•出现的字肯定是小于行数,或者是小于列数。
r3-2r1,r4-r1~
1 1
2 2 1
0 2 1 5 -1
0 -2 -1 -5 1
0 0 -2 2 -2 r3+r2,交换r3 r4
~
1 1
2 2 1
0 2 1 5 -1
0 0 -2 2 -2
0 0 0 0 0
只是求秩就不用再计算,显然矩阵的秩为3
矩阵的秩一般有2种方式定义
1.用向量组的秩定义
矩阵的秩= 行向量组的秩= 列向量组的秩
2.用非零子式定义
矩阵的秩等于矩阵的最高阶非零子式的阶
单纯计算矩阵的秩时,可用初等行变换把矩阵化成梯形
梯矩阵中非零行数就是矩阵的秩
这个定义涉及到向量的极大线性无关组.设a1,a2……as为一个n维向量组,如果向量组中有r个向量线性无关,而任何r+1个向量都线性相关,那么这r个线性无关的向量称为向量组的一个极大线性无关组.
向量组的极大线性无关组中所含向量的个数,称为向量的秩. 矩阵的行向量的秩称为行秩.列向量的秩成为列秩.。