考研数学一真题及答案解析参考
2020年考研数学一真题及答案解析

(4)【答案】(A).
【解析】若 anrn 发散,则 r R ,否则,若 r R ,由阿贝尔定理知, anrn
n 1
n 1
绝对收敛,矛盾. 故应选(A).
(5)若矩阵 A 经过初等列变换化成 B ,则
()
(A)存在矩阵 P ,使得 PA B.
(B)存在矩阵 P ,使得 BP A.
(C)存在矩阵 P ,使得 PB A.
x a2 a1
y b2 b1
z c2 c1
与直线 L2
:
x a3 a2
y b3 b2
z c3 c2
相交于一
ai
点,法向量 αi
bi
,
i
1, 2,3 .则
ci
()
(A) α1 可由 α2 , α3 线性表示.
(B) α2 可由 α1, α3 线性表示.
(C) α3 可由 α1, α2 线性表示. (6)【答案】(C).
f x
,
f y
, 1
0,0
fx0, 0, fy 0, 0 , 1 ,故
n x, y, f x, y fx0, 0 x fy 0, 0 y f x, y x2 y2 ,
3
n x, y, f x, y
x2 y2
则 lim
lim
0. 故应选(A).
x, y0,0
x2 y2
x, y0,0
x2 y2
(4) 设 R 为幂级数 an xn 的收敛半径, r 是实数,则 n 1
()
(A) anrn 发散时, r R . n 1
(B) anrn 发散时, r R . n 1
(C) r R 时, anrn 发散. n 1
2020年考研数学(一)真题及解析

2020年考研数学(一)真题一、选择题:1~8小题,每小题4分,共32分. 下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。
1. +→0x 时,下列无穷小量中最高阶是( )A.()⎰-xt dt e 012B.0ln(1x dt +⎰C.⎰xdt t sin 02sin D.⎰-xdt t cos 103sin【答案】D【解析】()A 22++3200(1)(1)1lim lim33xxt t x x e dt e dt x x →→--==⎰⎰,可知0x +→,2301(1)~3x t e dt x -⎰, ()B ++500222limlim ln(155xx x xx dt→→==+⎰,可知5202ln(1~5x dt x +⎰,0x +→ ()C +++s 3in 2200020sin sin(sin )co cos 1limlim lim 333s x x x xx x t dt x x x →→→===⋅⎰,可知sin 2301sin ~3x t dt x ⎰,0x +→()D ++1co 50s 0limlim x x x →→-===⎰,可知1cos 50~x -⎰,0x +→ 通过对比,⎰-xdt t cos 103sin 的阶数最高,故选()D2. 设函数()x f 在区间()1,1-内有定义,且()0lim 0=→x f x ,则( )A. 当()0lim=→xx f x ,()x f 在0=x 处可导.B. 当()0lim2=→xx f x ,()x f 在0=x 处可导.C. 当()x f 在0=x 处可导时,()0lim=→xx f x .D. 当()x f 在0=x 处可导时,()0lim2=→xx f x .【答案】C 【解析】当()f x 在0x =处可导时,由()0(0)lim 0x f f x →==,且0()(0)()(0)limlim 0x x f x f f x f x x →→-'==-,也即0()lim x f x x →存在,从而()0lim0=→xx f x ,故选C 3. 设函数(),f x y 在点()0,0处可微,()00,0=f ,()0,01,,⎪⎪⎭⎫⎝⎛-∂∂∂∂=y f x f n 非零向量d 与n 垂直,则( )A.()()()()0,,,lim220,0,=+⋅→yx y x f y x n y x 存在. B.()()()()0,,,lim220,0,=+⨯→yx y x f y x n y x 存在.C. ()()()()0,,,lim220,0,=+⋅→yx y x f y x d y x 存在. D.()()()()0,,,lim220,0,=+⨯→yx y x f y x d y x .【答案】A【解析】函数(),f x y 在点()0,0处可微,()00,0=f ,(,)(0,0)(0,0)(0,0)0x y f x y f f x f y→→''---=,00(,)(0,0)(0,0)0x y f x y f x f y→→''--=由于()(),,,n x y f x y ⋅=(0,0)(0,0)(,)x y f x f y f x y ''+-,所以()()()()0,,,lim220,0,=+⋅→yx y x f y x n y x 存在4. 设R 为幂级数1nn n a r∞=∑的收敛半径,r 是实数,则( )A.1nn n a r∞=∑发散时,R r ≥. B.1nn n a r∞=∑发散时,R r ≤.C.R r ≥时,1nn n a r∞=∑发散. D. R r ≤时,1nn n a r∞=∑发散.【答案】A【解析】R 为1nn n a r∞=∑的收敛半径,所以1nn n a r∞=∑在(,)R R -必收敛,所以1nn n a r∞=∑发散时,R r ≥.故选A5. 若矩阵A 经初等列变换化成B ,则( )A. 存在矩阵P ,使得B PA =.B.存在矩阵P ,使得A BP =.C.存在矩阵P ,使得A PB =.D. 方程组0=Ax 与0=Bx 同解. 【答案】B【解析】A 经过初等列变换化成B ,存在可逆矩阵1P 使得1AP B =,令11PP -=,得出A BP =,故选B6. 已知直线12121212:c c b b y a a x L -=-=-与直线23232322:c c b b y a a x L -=-=-相交于 一点,法向量i i i i a b c α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,3,2,1=i . 则 A. 1a 可由32,a a 线性表示. B. 2a 可由31,a a 线性表示. C.3a 可由21,a a 线性表示. D. 321,,a a a 线性无关. 【答案】C【解析】令22211112:x a y b c L t a b c ---===,即有21212121=+a a x y b t b t z c c αα⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由2L 方程得32323223=+a a x y b t b t z c c αα⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两条线相交,得2132++t t αααα=即2123123+(1)t t t t ααααααα-=⇔+-=,故选C 7. 设A ,B ,C 为三个随机事件,且()()()41===C P B P A P ,()0=AB P , ()()121==BC P AC P ,则A ,B ,C 中恰有一个事件发生的概率为 A. 43. B. 32. C. 21. D. 125. 【答案】D【解析】()()()(())P ABC P ABUC P A P A BUC ==-111()()()()004126P A P AB P AC P ABC =--+=--+=()()()(())P BAC P B AUC P B P B AUC ==-111()()()()004126P B P AB P BC P ABC =--+=--+=()()()(())P CAB P C AUB P B P C AUB ==-1111()()()()04121212P C P CB P CA P ABC =--+=--+=所以1115()()()661212P ABC P ABC P ABC ++=++= 8. 设n x x x ,,,21 为来自总体X 的简单随机样本,其中()()2110====X P X P , ()x Φ表示标准正态分布函数,则利用中心极限定理可得⎪⎭⎫⎝⎛≤∑=100155i i X P 的近似值为A. ()11Φ-.B. ()1Φ.C.()2,01Φ-.D.()2,0Φ. 【答案】B【解析】由题意12EX =,14DX =,根据中心极限定理1001~(50,25)i i X N =∑,所以⎪⎭⎫ ⎝⎛≤∑=100155i i X P=10050(1)iX P ⎛⎫- ⎪≤=Φ⎝⎭∑二、填空题:9~14小题,每小题2分,共24分.请将解答写在答题纸指定位置上. 9. ()=⎥⎦⎤⎢⎣⎡+--→x e x x 1ln 111lim 0 . 【答案】-1【解析】()()()()2000ln 11ln 1111lim lim lim 1ln 1(1)ln 1x x x x x x x x e x e e x e x x →→→⎡⎤⎡⎤+-++-+-==⎢⎥⎢⎥-+-+⎣⎦⎣⎦ =()2222001111ln 1122lim lim 1xx x x x x x x e x x→→----++-+==-10. 设()⎪⎩⎪⎨⎧++=+=1ln 122t t y t x ,则==122t dx y d .【答案】【解析】1dy dy dt dx dx dt t ===22231=dy dy d d d y dt dx dt dx dx dt dx t t t⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭===--得212t d y dx==11. 若函数()x f 满足()()()()00>=+'+''a x f x f a x f ,且()m f =0,()n f ='0,则()f x dx +∞=⎰.【答案】n am +【解析】特征方程210a λλ++=,则1212,1a λλλλ+=-⋅=,所以两个特征根都是负的。
2020年考研数学一真题及答案解析(完整版)

2020年考研数学一真题及答案解析(完整版)2020年考研数学一真题及答案解析(完整版)一、选择题:1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。
XXX 时,下列无穷小量中最高阶是()A。
$\int_{x^2}^{et-1}dt$B。
$\int_0^x\frac{3\ln(1+tdt)}{t}$C。
$\int_0^x\frac{\sin x}{\sin t^2}dt$D。
$\int_0^x\frac{1-\cos x}{\sin t^2}dt$2.设函数 $f(x)$ 在区间 $(-1,1)$ 内有定义,且$\lim\limits_{x\to 0}f(x)=0$,则()A。
当 $\lim\limits_{x\to 0}\frac{f(x)}{|x|}=0$,$f(x)$ 在$x=0$ 处可导。
B。
当 $\lim\limits_{x\to 0}\frac{f(x)}{x^2}=0$,$f(x)$ 在$x=0$ 处可导。
C。
当 $f(x)$ 在 $x=0$ 处可导时,$\lim\limits_{x\to0}\frac{f(x)}{|x|}=0$。
D。
当 $f(x)$ 在 $x=0$ 处可导时,$\lim\limits_{x\to0}\frac{f(x)}{x^2}=0$。
3.设函数 $f(x,y)$ 在点 $(0,0)$ 处可微,$f(0,0)=0,n=\begin{pmatrix}\frac{\partial f}{\partialx}(0,0)\\\frac{\partial f}{\partial y}(0,0)\\-1\end{pmatrix}$ 非零向量 $d$ 与 $n$ 垂直,则()A。
$\lim\limits_{(x,y)\to(0,0)}n\cdot(x,y,f(x,y))$ 存在。
B。
$\lim\limits_{(x,y)\to(0,0)}n\times(x,y,f(x,y))$ 存在。
数学1考研试题及答案

数学1考研试题及答案一、选择题(每题4分,共20分)1. 设函数f(x)=x^2-4x+c,若f(x)在区间[2,+∞)上单调递增,则c 的取值范围是()。
A. c≥0B. c≥4C. c≤0D. c≤4答案:B2. 已知函数f(x)=x^3-3x+1,求f'(x)的值。
A. 3x^2-3B. x^2-3xC. 3x^2-9xD. x^3-3答案:A3. 计算定积分∫(0,1) x^2 dx的值。
A. 1/3B. 1/2C. 1D. 2答案:B4. 若矩阵A = [1 2; 3 4],则|A|的值为()。
A. 2B. -2C. 6D. -6答案:C5. 设等比数列{a_n}的前n项和为S_n,若S_3=7,S_6=28,则S_9的值为()。
A. 63B. 56C. 49D. 84答案:A二、填空题(每题4分,共20分)6. 已知函数f(x)=2x+3,求f(-1)的值。
答案:17. 设等差数列{a_n}的公差为d=3,若a_3=12,则a_1的值为。
答案:38. 计算极限lim(x→0) (sin x)/x的值。
答案:19. 设矩阵B = [1 0; 0 2],则B^2的值为。
答案:[1 0; 0 4]10. 已知函数g(x)=x^3-6x^2+11x-6,求g'(x)的值。
答案:3x^2-12x+11三、解答题(每题10分,共60分)11. 证明:若x>0,则x^2>2x。
证明:因为x>0,所以x-1>-1,所以(x-1)^2>0,即x^2-2x+1>0,所以x^2>2x。
12. 求函数f(x)=x^3-3x+1在x=1处的导数。
解:f'(x)=3x^2-3,所以f'(1)=3×1^2-3=0。
13. 计算定积分∫(0,2) (x^2-4x+4) dx。
解:∫(0,2) (x^2-4x+4) dx = [1/3x^3-2x^2+4x](0,2) = (1/3×2^3-2×2^2+4×2) - (0) = 8/3。
2021考研数学一真题及解析

2021年全国硕士研究生入学统一考试数学(一)试题解析一、选择题:110小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)函数1,0()1,0x e x f x xx ⎧-≠⎪=⎨⎪=⎩,在0x =处( ) (A)连续且取极大值. (B)连续且取极小值. (C)可导且导数为0. (D)可导且导数不为0.【答案】D【解析】因为001lim ()lim 1(0)x x x e f x f x→→-=-=,故()f x 在0x =处连续.因为200011()(0)11lim lim lim 002x x x x x e f x f e x x x x x →→→-----===--,故1(0)2f '=,故选D . (2)设函数(,)f x y 可微,且2(1,)(1)x f x e x x +=+,22(,)2ln f x x x x =,则(1,1)df =( )(A)dx dy +. (B)dx dy -. (C)dy . (D)dy -.【答案】C【解析】212(1,)(1,)(1)2(1)x x x f x e e f x e x x x ''+++=+++ ①2212(,)2(,)4ln 2f x x xf x x x x x ''+=+ ②分别将00x y =⎧⎨=⎩,11x y =⎧⎨=⎩代入①②式有12(1,1)(1,1)1f f ''+=,12(1,1)2(1,1)2f f ''+=联立可得1(1,1)0f '=,2(1,1)1f '=,12(1,1)(1,1)(1,1)df f dx f dy dy ''=+=,故选C .(3)设函数2sin ()1x f x x=+在0x =处的3次泰勒多项式为23+ax bx cx +,则( ) (A)1a =,0b =,76c =-. (B)1a =,0b =,76c =.(C)1a =-,1b =-,76c =-. (D)1a =-,1b =-,76c =.【答案】A【解析】3323332sin 7()()1()()166x x f x x o x x o x x x o x x ⎡⎤⎡⎤==-+⋅-+=-+⎢⎥⎣⎦+⎣⎦,故1a =,0b =,76c =-,故选A .(4)设函数()f x 在区间[0,1]上连续,则10()f x dx =⎰(A)1211lim 22nx n k f n n →∞=-⎛⎫ ⎪⎝⎭∑(B )1211l i m 2nx n k f n n→∞=-⎛⎫ ⎪⎝⎭∑. (C)2111lim 2nx n k f n n →∞=-⎛⎫ ⎪⎝⎭∑. (D)212lim 2n x n k f n n→∞=⎛⎫ ⎪⎝⎭∑. 【答案】B【解析】由定积分定义秩,将(0,1)分成n 份,取中间点的函数11211()lim 2nx n k f x dx f n n →∞=-⎛⎫= ⎪⎝⎭∑⎰,即选B . (5)二次型222123122331(,,)()()()f x x x x x x x x x =+++--的正惯性指数与负惯性指数依次为( )(A)2,0. (B)1,1. (C)2,1. (D)1,2.【答案】B【解析】22221231223312122313(,,)()()()2222f x x x x x x x x x x x x x x x x =+++--=+++所以011121110⎛⎫⎪= ⎪ ⎪⎝⎭A ,故多项式11121(1)(3)11λλλλλλ---=---=+---E A .令上式等于零,故特征值为1-,3,0,故该二次型正惯性指数为1,负惯性指数为1,故选B .(6)已知1101α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2121α⎛⎫ ⎪= ⎪ ⎪⎝⎭,3312α⎛⎫ ⎪= ⎪ ⎪⎝⎭,记11βα=,221k βαβ=-,331122l l βαββ=--,若将1β,2β,3β两两正交,则1l ,2l 依次为( )(A)52,12. (B)52-,12. (C)52,12-. (D)52-,12-. 【答案】A 【解析】利用斯密斯正交化21221110[,]2[,]0αββαβββ⎛⎫⎪=-= ⎪ ⎪⎝⎭,313233121122[,][,][,][,]αβαββαββββββ=--,故31111[,]5[,]2l αβββ==,322222[,]1[,]2l αββββ==.故选A .(7)设A ,B 为n 阶实矩阵,则下列不成立的是( ) (A)T2()r r ⎛⎫= ⎪⎝⎭A O A O A A . (B )T 2()r r ⎛⎫= ⎪⎝⎭AAB A O A . (C)T 2()r r ⎛⎫=⎪⎝⎭A BA A OAA . (D)T 2()r r ⎛⎫= ⎪⎝⎭AO A BAA . 【答案】C 【解析】(A)TT()()2()r r r r ⎛⎫=+=⎪⎝⎭A O A A A A O A A ,故A 正确. (B)AB 的列向量可由A 的列线性表示,故T T ()()2()r r r r ⎛⎫=+=⎪⎝⎭AAB A A A OA . (C)BA 的列向量不一定可由A 的列线性表示.(D)BA 的列向量可由A 的行线性表示,T T ()()2()r r r r ⎛⎫=+=⎪⎝⎭AO A A A BAA . (8)设A ,B 为随机变量,且0()1P B <<,下列命题中不成立的是 (A)若()()P A B P A =,则()()P A B P A =. (B)若()()P A B P A >,则()()P A B P A >. (C)()()P A B P A B >,则()()P A B P A >. (D)若()()P A A B P A A B >,则()()P A P B >.【答案】D 【解析】(())()()()()()()P A A B P A P A AB P A B P A P B P AB ==+-(())()()()()()()()()()P A A B P AB P B P AB P A A B P A B P A B P A P B P AB -===+-因为()()P A A B P A A B >,固有()()()P A P B P AB >-,故选D .(9)设11(,)X Y ,22(,)X Y ,,(,)n n X Y 为来自总体1212(,;,;)N μμσσρ的简单随机样本,令12θμμ=-,11ni i X X n ==∑,11n i i Y Y n ==∑,X Y θ∧=-,则(A)θ∧是θ的无偏估计,2212()D nσσθ∧+=.(B)θ∧不是θ的无偏估计,2212()D nσσθ∧+=.(C)θ∧是θ的无偏估计,2212122()D nσσρσσθ∧+-=.(D)θ∧不是θ的无偏估计,2212122()D nσσρσσθ∧+-=.【答案】C【解析】因为X ,Y 是二维正态分布,所以X 与Y 也服从二维正态分布,则X Y -也服从二维正态分布,即12()()()()E E X Y E X E Y θμμθ∧=-=-=-=,2212122()()()()cov(,)D D X Y D X D Y X Y nσσρσσθ∧+-=-=+-=,故选C .(10)设1216,,,X X X 是来自总体(,4)N μ的简单随机样本,考虑假设检验问题::10o H μ≤,1:10H μ>. ()x Φ表示标准正态分布函数,若该检验问题的拒绝域为 {11}W X =≥,其中161116i i X X ==∑,则11.5μ=,该检验犯第二类错误的概率为(A)1(0.5)-Φ. (B)1(1)-Φ. (C)1(1.5)-Φ. (D)1(2)-Φ.【答案】(B)【解析】所求概率为{11}P X < 1~(11.5,)4X11.51111.5{11}1(1)1122X P X P ⎧⎫⎪⎪--<=<=-Φ⎨⎬⎪⎪⎩⎭故选B .二、填空题:1116小题,每小题5分,共30分.请将答案写在答题纸...指定位置上. (11)222dxx x +∞++⎰= _______________ 【答案】4π【解析】2200022(1)1==arctan(1)|==244dx x x x dx x πππ+∞+∞+∞+++++-⎰⎰ (12) 设函数由参数方程22104(1),t t x e t x y t e t x ⎧=++<⎪⎨=-+≥⎪⎩,确定,则202|t d ydx == _______________【答案】23【解析]】由4221t t dy te t dx e +=+,得223(442)(21)(42)2(21)t t t t tt d y e te e te t e dx e +++-+=+,将0t =代入得202|t d y dx == 23(13) 欧拉方程2"'40x y xy y +-=满足条件'(1)1,(1)2y y ==的解为_______________ 【答案】2x【解析】令,tx e =,则',dy xy dt=22"2d y dy x y dx dt =-原方程化为2240d y y dx -=.特征方程为240,λ-=特征根为12,λ=22,λ=-通解为22221212,t t y c e c e c x c x --=+=+将初始条件'(1)1,(1)2y y ==代入得121,0.c c ==故满足初始条件的解为2y x =(14) 设∑为空间区域}{22(,,)|44,02x y z x y z +≤≤≤表面的外侧,则曲面积分22x dydz y dzdx zdxdy ∑++=⎰⎰ _______________【答案】4π【解析】 由高斯公式得原式2214Dx y dV dz dxdy πΩ=++==⎰⎰⎰⎰⎰⎰(15)设ij A a =为3阶矩阵,ij A 为代数余子式,若A 的每行元素之和均为2,且3A =,则112131A A A ++= . 【答案】32【解析】1112111A ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,A αλα=,2λ=,1=11α⎛⎫ ⎪ ⎪ ⎪⎝⎭,则A *的特征值为A λ,对应的特征向量为1=11α⎛⎫⎪⎪ ⎪⎝⎭,A A ααλ*=,又112131122232132333A A A A A A A AA A *⎛⎫ ⎪= ⎪ ⎪⎝⎭,112131122232132333321131121132A A A A A A A A A A A λ*⎛⎫⎪++⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪=++== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭. (16)甲乙两个盒子中各装有2个红球和2个白球,先从甲盒中任取一球,观察颜色后放入乙盒中,再从乙盒中任取一球.令X Y ,分别表示从甲盒和乙盒中取到的红球个数,则X 与Y 的相关系数 .【答案】15【解析】联合分布律(0,0)(0,1)(1,0)(1,1)(,)322310101010X Y ⎛⎫ ⎪ ⎪ ⎪⎝⎭,X 的边缘分布011122X ⎛⎫ ⎪⎪ ⎪⎝⎭,Y 的边缘分布011122Y ⎛⎫⎪ ⎪ ⎪⎝⎭,易知1(,)20Cov X Y =,14DX =,1,4DY =即15XY ρ=.三、解答题:17~22小题,共70分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分10分)求极限2001+1lim 1sin x t x x e dt e x →⎛⎫⎪- ⎪- ⎪⎝⎭⎰. 【答案】12【解析】()()()2220002000sin 1+11+sin 1sin 1lim lim lim 1sin sin 1xx x t x t x t x x x x x x e dt e e dt x e x e dt e x x x e →→→⎛⎫---++ ⎪-== ⎪-- ⎪⎝⎭⎰⎰⎰ 2222202220001()1()1sin sin 12lim+limlimlimxxt t xx x x x x o x x x o x x e dte dt x e x xxx→→→→⎡⎤⎡⎤+-++++⎣⎦⎢⎥-+⎣⎦==+⎰⎰2222001()112lim lim 122x x x x o x e x →→-+=+=-+=(18)(本题满分12分)设11()(1,2,)(1)nxn n u x ex n n n -+=+=+,求级数1()n n u x ∞=∑的收敛域及和函数. 【答案】(1)ln(1),(0,1)1(),11xxe x x x x e S x e x e --⎧+--+∈⎪⎪-=⎨⎪=⎪-⎩【解析】易知1nxn e∞-=∑为几何级数,故收敛区间为(0,)+∞;111(1)n n x n n ∞+=+∑的收敛半径为1,收敛区间为(1,1)-,所以1()n n u x ∞=∑的收敛区间为(0,1)当0x =时,1nxn e∞-=∑发散,故1()n n u x ∞=∑发散;当1x =时,1nx n e ∞-=∑与111(1)n n x n n ∞+=+∑均收敛,故1()n n u x ∞=∑收敛;综上,1()n n u x ∞=∑的收敛域为(]0,1.令1()()n n S x u x ∞==∑,(]0,1x ∈(1)(0,1)x ∈时11xnxxn e ee-∞--==-∑ 1111111111(1)11n n n n n n n n n n x x x x x x n n n n n n +++∞∞∞∞∞+======-=-+++∑∑∑∑∑ []ln(1)ln(1)(1)ln(1)x x x x x x =-----=--+()(1)ln(1)1xxe S x x x x e --=+--+-(2)1x =时1111nn e e e -∞--==-∑11(1)n n n ∞=+∑的前n 项和111nSn =-+,lim 1n n S →∞= ()1e S x e =- 综上,(1)ln(1),(0,1)1(),11xxe x x x x e S x e x e --⎧+--+∈⎪⎪-=⎨⎪=⎪-⎩(19)(本题满分12分)已知曲线2226:4230x y z C x y z ⎧+-=⎨++=⎩,求C 上的点到xOy 坐标面距离的最大值.【答案】66【解析】设拉格朗日函数222(,,,,)(26)(4230)L x y z z x y z x y z λμλμ=++--+++- 22240420202=64230xy z L x L y L z L x y z L x y z λμλμλμλμ'=+=⎧⎪'=+=⎪⎪'=-+=⎨⎪'=+-⎪'=++=⎪⎩解得驻点:(4,1,12),(8,2,66)-- 故C 上的点(8,2,66)--到xOy 坐标面距离最大为66. (20)(本题满分12分)设2D R ⊂是有界单连通闭区域,22()(4)DI D x y dxdy =--⎰⎰取得最大值的积分区域记为1D .(1)求1()I D 的值; (2)计算222214422()(4)4xy xy D xe y dx ye x dyx y ++∂++-+⎰,其中1D ∂是1D 的正向边界.【答案】(1)8π;(2)π- 【解析】(1)由二重积分的几何意义知:22()(4)DI D x y d σ=--⎰⎰,当且仅当224x y --在D 上大于0时,()I D 达到最大,故{}221(,)4D x y x y =+,且22210()=(4)8I D d r rdr πθπ-=⎰⎰.(2)补{}2222(,)4D x y x y ε=+(ε很小),取2D 的方向为顺时针方向,22422(,)4x y xe yP x y x y ++=+,224224(,)4x y ye x Q x y x y +-=+,且Q P x y ∂∂=∂∂ 222214422()(4)4xy xy D xe y dx ye x dyx y ++∂++-+⎰2222222212244442222+()(4)()(4)44xy xy xy xy D D D xe y dx ye x dyxe y dx ye x dyx y x y ++++∂∂∂++-++-=-++⎰⎰22222221124D DD e xdx ydy ydx xdy dxdy επεεε∂∂∂-=-+--==-⎰⎰⎰⎰.(21)(本题满分12分)已知111111a A a a -⎛⎫⎪=- ⎪ ⎪--⎝⎭.(1)求正交矩阵P ,使得T P AP 为对角矩阵; (2)求正交矩阵C ,使得2(3)C a E A =+-.【答案】(1)0P ⎛ ⎪=⎪ ⎪⎪ ⎪⎝⎭;(2)51135113315133C ⎛⎫-- ⎪ ⎪⎪=- ⎪ ⎪⎪- ⎪⎝⎭ 【解析】(1)由21111(1)(2)011aE A a a a aλλλλλλ---=--=-+--=-,得1=2a λ+,23==1a λλ- 当1=2a λ+时211101((2))121011112000a E A -⎛⎫⎛⎫ ⎪ ⎪+-=-→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭的特征向量为11=11α⎛⎫⎪⎪ ⎪-⎝⎭当23==1a λλ-时111111((1))111000111000a E A ---⎛⎫⎛⎫ ⎪ ⎪--=--→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭的特征向量为2311=1,=102αα--⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭令312123,,0P αααααα⎛ ⎛⎫ ⎪== ⎪⎪ ⎪⎝⎭ ⎪ ⎪⎪⎝⎭,则T211a P AP a a +⎛⎫⎪=Λ=- ⎪ ⎪-⎝⎭. (2)T 2T 1((3))(3)44P C P P a E A P a E ⎛⎫ ⎪=+-=+-Λ= ⎪ ⎪⎝⎭T T T114242P CPP CP P CP ⎛⎫⎛⎫ ⎪ ⎪=⇒= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故T 51131512133215133C P P ⎛⎫-- ⎪⎛⎫ ⎪⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪- ⎪⎝⎭. (22)(本题满分12分)在区间(0,2)上取一点,将该区间分成两段,较短的一段长度记为X ,较长的一段长度记为Y ,令XZ Y=. (1)求X 的概率密度.(2)求Z 的概率密度.(3) 求XE Y ⎛⎫⎪⎝⎭. 【答案】(1)101~()0,x X f x <<⎧=⎨⎩,其他;(2)()22,1(1)()()0,Z Z z z f z F z ⎧≥⎪'+==⎨⎪⎩其他;(3)12ln 2-+.【解析】(1)由题知:101~()0,x X f x <<⎧=⎨⎩,其他.(2)由2Y X =-,即2XZ X-=,先求Z 的分布函数. {}22()1Z X F z P Z z P z P z X X -⎧⎫⎧⎫=≤=≤=-≤⎨⎬⎨⎬⎩⎭⎩⎭当1z <时,()0Z F z =.当1z ≥时,210222()1111111t Z F z P z P X dx X z z +⎧⎫⎧⎫=-≤=-≤=-=-⎨⎬⎨⎬++⎩⎭⎩⎭⎰. ()22,1(1)()()0,Z Z z z f z F z ⎧≥⎪'+==⎨⎪⎩其他. (3)10112ln 222X X x E E dx Y X x ⎛⎫⎛⎫==⋅=-+ ⎪ ⎪--⎝⎭⎝⎭⎰.。
考研数学一真题及答案解析参考

考研数学⼀真题及答案解析参考2019年考研数学⼀真题⼀、选择题,1~8⼩题,每⼩题4分,共32分.下列每题给出的四个选项中,只有⼀个选项是符合题⽬要求的.1.当0→x 时,若x x tan -与k x 是同阶⽆穷⼩,则=k . . ..2.设函数>≤=,0,ln ,0,)(x x x x x x x f 则0=x 是)(x f 的A.可导点,极值点.B.不可导点,极值点.C.可导点,⾮极值点.D.不可导点,⾮极值点.3.设{}n u 是单调增加的有界数列,则下列级数中收敛的是A..1∑∞=n n nu B.nn nu 1)1(1∑∞=-. C.∑∞=+-111n n n u u . D.()∑∞=+-1221n n n u u . 4.设函数2),(y xy x Q =,如果对上半平⾯(0>y )内的任意有向光滑封闭曲线C 都有?=+Cdy y x Q dx y x P 0),(),(,那么函数),(y x P 可取为A.32y x y -.B.321yx y -. C.yx 11-. D.yx 1-. 5.设A 是3阶实对称矩阵,E 是3阶单位矩阵.若E A A 22=+,且4=A ,则⼆次型Ax x T 的规范形为A.232221y y y ++.B.232221y y y -+. C.232221y y y --.D.232221y y y ---.6.如图所⽰,有3张平⾯两两相交,交线相互平⾏,它们的⽅程组成的线性⽅程组的系数矩阵和增⼴矩阵分别记为A A ,,则A..3)(,2)(==A r A rB..2)(,2)(==A r A rC..2)(,1)(==A r A rD..1)(,1)(==A r A r7.设B A ,为随机事件,则)()(B P A P =的充分必要条件是 A.).()()(B P A P B A P +=Y B.).()()(B P A P AB P = C.).()(A B P B A P =D.).()(B A P AB P =8.设随机变量X 与Y 相互独⽴,且都服从正态分布),(2σµN ,则{}1<-Y X P A.与µ⽆关,⽽与2σ有关. B.与µ有关,⽽与2σ⽆关.C.与2,σµ都有关.D.与2,σµ都⽆关.⼆、填空题:9~14⼩题,每⼩题4分,共24分. 9. 设函数)(u f 可导,,)sin (sin xy x y f z +-=则yz cosy x z cosx +11=. 10. 微分⽅程02'22=--y y y 满⾜条件1)0(=y 的特解=y .11. 幂级数nn n x n ∑∞=-0)!2()1(在)0∞+,(内的和函数=)(x S .12. 设∑为曲⾯)0(44222≥=++z z y x 的上侧,则dxdy z x z--2244=.13. 设),,(321αααA =为3阶矩阵.若21αα,线性⽆关,且2132ααα+-=,则线性⽅程组0=x A 的通解为.14. 设随机变量X 的概率密度为<<=,其他,020,2)(x xx f )(x F 为X 的分布函数,X E 为X 的数学期望,则{}=->1X X F P E )(. 三、解答题:15~23⼩题,共94分.解答应写出⽂字说明、证明过程或演算步骤.15.(本题满分10分)设函数)(x y 是微分⽅程2'2x e xy y -=+满⾜条件0)0(=y 的特解.(1)求)(x y ;(2)求曲线)(x y y =的凹凸区间及拐点. 16.(本题满分10分)设b a ,为实数,函数222by ax z ++=在点(3,4)处的⽅向导数中,沿⽅向j i l 43--=的⽅向导数最⼤,最⼤值为10.(1)求b a ,;(2)求曲⾯222by ax z ++=(0≥z )的⾯积. 17.求曲线)0(sin ≥=-x x e y x 与x 轴之间图形的⾯积. 18.设dx x x a n n ?-=1 021,n =(0,1,2…)(1)证明数列{}n a 单调减少,且221-+-=n n a n n a (n =2,3…)(2)求1lim-∞→n nn a a .19.设Ω是锥⾯())10()1(2222≤≤-=-+z z y x 与平⾯0=z 围成的锥体,求Ω的形⼼坐标.20.设向量组TT T a )3,,1(,)2,3,1(,)1,2,1(321===ααα,为3R 的⼀个基,T)1,1,1(=β在这个基下的坐标为Tc b )1,,(.(1)求c b a ,,.(2)证明32,a a ,β为3R 的⼀个基,并求,,32a a β到321,,a a a 的过度矩阵.21.已知矩阵----=20022122x A 与-=y B 00010012相似(1)求y x ,.(2)求可可逆矩阵P ,使得.1B AP P =-22.设随机变量X 与Y 相互独⽴,X 服从参数为1的指数分布,Y 的概率分布为{}{}),10(,11,1<<-===-=p p Y P p Y P 令XY Z =(1)求z 的概率密度.(2)p 为何值时,X 与Z 不相关. (3)X 与Z 是否相互独⽴?23.(本题满分11分)设总体X 的概率密度为其中µ是已知参数,0>σ是未知参数,A 是常数,n X …X X ,,21来⾃总体X 的简单随机样本.(1)求A ;(2)求2σ的最⼤似然估计量2019年全国硕⼠研究⽣⼊学统⼀考试数学试题解析(数学⼀)9.yxx y cos cos + 10.23-x e 11.x cos 12.332 13. ,T )1,2,1(-k k 为任意常数. 14. 解:(1))()()(2 222c x ec dx e ee x y x xdxx xdx+=+??=---?,⼜0)0(=y ,故0=c ,因此.)(221x xe x y -=(2)22221221221)1(x x x ex ex ey ----=-=',22222122132121)3()3()1(2x x x x ex x e x x xex xey -----=-=---='',令0=''y 得3,0±=x所以,曲线)(x y y =的凹区间为)0,3(-和),3(+∞,凸区间为)3,(--∞和)3,0(,拐点为)0,0(,)3,3(2 3---e ,)3,3(23-e .15. 解:(1))2,2(by ax z =grad ,)8,6()4,3(b a z =grad ,由题设可得,4836-=-ba ,即b a =,⼜()()108622=+=b a z grad ,所以,.1-==b a(2)dxdy y z x z S y x ??≤+??+??+=22222)()(1=dxdy y x y x ??≤+-+-+22222)2()2(1 =dxdy y x y x ??≤+++22222441=ρρρθπd d ??2241=20232)41(12 12ρπ+?= .313π19.由对称性,2,0==y x ,--===ΩΩ102102101)1()1(dz z dz z z dxdy dz dxdy zdz dv zdv z zzD D ππ=.4131121)1()1(1212==--??dz z dz z z20.(1)123=b c βααα++即11112311231b c a ???????? ? ? ? ?++= ? ? ? ? ? ? ? ?????????,解得322a b c =??=??=-?.(2)()23111111=331011231001ααβ→-,,,所以()233r ααβ=,,,则23ααβ,,可为3R 的⼀个基.则()()1231231101=0121002P ααβααα-??=-??,,,,. 21.(1)A 与B 相似,则()()tr A tr B =,A B =,即41482x y x y -=+??-=-?,解得3 2x y =??=-?(2)A 的特征值与对应的特征向量分别为1=2λ,11=20α?? ?- ? ;2=1λ-,22=10α-?? ? ? ???;3=2λ-,31=24α-??. 所以存在()1123=P ααα,,,使得111212P AP -??=Λ=-??-. B 的特征值与对应的特征向量分别为1=2λ,11=00ξ?? ? ?;2=1λ-,21=30ξ?? ?- ? ;3=2λ-,30=01ξ??. 所以存在()2123=P ξξξ,,,使得122212P AP -??=Λ=-??-. 所以112211=P AP P AP --=Λ,即1112112B P P APP P AP ---== 其中112111212004P PP --??==--. 22.解:(I )Z 的分布函数(){}{}{}{}(){},1,11F z P XY z P XY z Y P XY z Y pP X z p P X z =≤=≤=-+≤==≥-+-≤从⽽当0z ≤时,()z F z pe =;当0z >时,()()()()1111z z F z p p e p e --=+--=--则Z 的概率密度为()(),01,0z zpez f z p e z -. (II )由条件可得()()()()()()()()()22E XZ E X E Z E X E Y E X E Y D X E Y -=-=,⼜()()1,12D X E Y p ==-,从⽽当12p =时,(),0Cov X Z =,即,X Z 不相关.(III )由上知当12p ≠时,,X Z 相关,从⽽不独⽴;当12p =时,121111111111,,,,2222222222112P X Z P X XY P X X P X X F e -≤≤=≤≤=≤≥-+≤≤???==- ?⽽12112P X e -??≤=-,121111112222222P Z P X P X e -≤=≤+≥-=-?????? ?????????,显然1111,2222P X Z P X P Z≤≤≠≤≤,即,X Z 不独⽴.从⽽,X Z 不独⽴.23.解:(I )由()2221x Aedx µσµσ--+∞=?t =201t e dt +∞-==?,从⽽A =(II )构造似然函数()()22112212,,1,2,,,,,,0,ni i n x i n A e x i n L x x x µσµσσ=--?∑≥= ?=? L L 其他,当,1,2,,i x i nµ≥=L 时,取对数得()22211ln ln ln 22ni i n L n A x σµσ==---∑,求导并令其为零,可得()22241ln 1022nii d L n x d µσσσ==-+-=∑,解得2σ的最⼤似然估计量为()211n ii x n µ=-∑.。
2024年考研数学一真题及解析

2024年全国硕士研究生入学统一考试数学(一)试题解析一、选择题:1~10小题,每小题5分,共50分。
下列每题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
(1)已知函数cos 0()xtf x edt =⎰,2sin 0()xt g x e dt =⎰,则()(A )()f x 是奇函数,()g x 是偶函数(B )()f x 是偶函数,()g x 是奇函数(C )()f x 与()g x 均为奇函数(D )()f x 与()g x 均为周期函数【答案】C ,【解析】由于cos te 是偶函数,所以()f x 是奇函数;又2(sin )cos ()x xg x e'=是偶函数,所以是()g x 奇函数.(2)设(,,),(,,)P P x y z Q Q x y z ==均为连续函数,∑为曲面0,0)Z x y = 的上侧,则Pdydz Qdzdx ∑+=⎰⎰()(A )()x yP Q dxdy z z ∑+⎰⎰(B )()x yP Q dxdy z z ∑-+⎰⎰(C )()xyP Q dxdy zz∑-⎰⎰(D )()xyP Q dxdy zz∑--⎰⎰【答案】A ,【解析】由,z x z y z x z y z ∂∂==-=-∂∂,1cos cos dS dxdy dS dxdy γγ=→=cos cos cos cos cos cos Pdydz Qdzdx P dS Q dS Pdxdy Q dxdy αβαβγγ∑∑∑+=+=+⎰⎰⎰⎰⎰⎰(()()z z x yP dxdy Q dxdy P Q dxdy x y z z∑∑∂∂=-+-=+∂∂⎰⎰⎰⎰.(3)设幂级数nn nxa ∑∞=0的和函数为)2ln(x +,则∑∞=02n nna()(A )61-(B )31-(C )61(D )31【答案】(A )【解析】法1,∑∞=--+=++=+=+11)21()1(2ln )211ln(2ln )211(2ln )2ln(n nn n x x x x所以⎪⎩⎪⎨⎧>-==-0,21)1(0,2ln 21n n n a n n ,当n n n a n 22221,0⋅-=>,所以61411)21(21)2213112112202-=--=-=⋅-⋅==∑∑∑∑∞=+∞=∞=∞=n n n n n n n n n n na na (,故选(A);法2:n n n xx x x )2()1(21)21(2121])2[ln(0∑∞=-=+=+='+C n x C n x x n n n n n n +-=++-=+∑∑∞=-+∞=1110)21()1(1)21()1()2ln(,2ln )02ln()0(=+==C S ,⎪⎩⎪⎨⎧>-==-0,21)1(0,2ln 21n n n a n n ,所以)221(112202∑∑∑∞=∞=∞=⋅-==n n n n n n n n na na 61411)21(213112-=--=-=∑∞=+n n (4)设函数()f x 在区间上(1,1)-有定义,且0lim ()0x f x →=,则()(A )当0()limx f x m x→=时,(0)f m '=(B )当(0)f m '=时,0()limx f x m x→=(C )当0lim ()x f x m →'=时,(0)f m '=(D )当(0)f m '=时,0lim ()x f x m→'=【答案】B ,【解析】因为(0)f m '=所以()f x 在0x =处连续,从而0lim ()(0)0x f x f →==,所以0()()(0)limlim 0x x f x f x f m x x →→-==-,故选B .(5)在空间直角坐标系O xyz -中,三张平面:(1,2,3)i i i i i a x b y c z d i π++==的位置关系如图所示,记(),,i i i i a b c α=,(),,,i i i i i a b c d β=若112233,r m r n αβαβαβ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则()(A )1,2m n ==(B )2m n ==(C )2,3m n ==(D )3m n ==【答案】B ,【解析】由题意知111222333x d x d x d ααα⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭有无穷多解,故1122333r r αβαβαβ⎛⎫⎛⎫ ⎪ ⎪=< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又由存在两平面的法向量不共线即线性无关,故1232r ααα⎛⎫ ⎪≥ ⎪ ⎪⎝⎭,则1122332r r αβαβαβ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故2m n ==,故选B.(6)设向量1231111,,1111ab a a ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,若123,,ααα线性相关,且其中任意两个向量均线性无关,则()(A )1,1a b =≠(B )1,1a b ==-(C )2,2a b ≠=(D )2,2a b =-=【答案】D ,【解析】由于123,,ααα线性相关,故1111011a a a =得1a =或2-,当1a =时,13,αα相关,故2a =-,又由112111111201111aa b b -=-=----得2b =故选D .(7)设A 是秩为2的3阶矩阵,α是满足0A α=的非零向量,若对满足0Tβα=的3维向量β均有A ββ=,则()(A )3A 的迹为2(B )3A 的迹为5(C )2A 的迹为8(D )2A 的迹为9【答案】A ,【解析】由0A α=且0α≠,故10λ=,由于A 是秩为2的3阶矩阵,对于0Ax =仅有一个解向量,所以,1λ是一重,0Tβα=可得到所有的β有两个无关的向量构成,A ββ=,故21λ=为两重,故3A 的特征值为0,1,1,故3()2tr A =.(8)设随机变量,X Y 相互独立,且()()~0,2,~2,2X N Y N -,若}{}{2P X Y a P X Y +<>=,则a =()(A)2-(B)2-+(C)2-(D)2-+【答案】B ,【解析】()2~ 2,10;~ (2,4)X Y N Y X N +---,所以{2}P X Y a +<=Φ={0}P Y X -<=02()2+Φ,022+=,2a =-+(9)设随机变量X 的概率密度为2(1)01()0,x x f x -<<⎧=⎨⎩,其他,在(01)X x x =<<的条件下,随机变量Y 服从区间(,1)x 上的均匀分布,则Cov(,)X Y =()(A )136-(B )172-(C )172(D )136【答案】D ,【解析】当01x <<时,|1el 1,(|)1se 0,Y X x y f y x x ⎧<<⎪=-⎨⎪⎩,则2,1,01(,)0,x y x f x y else <<<<⎧=⎨⎩10,1(,)24yx y EXY xyf x y dxdy d y xydx -∞<<+∞-∞<<+∞===⎰⎰⎰⎰112(1)3EX x x dx =-=⎰,,2(,)3x y EY y f x y dxdy -∞<<+∞-∞<<+∞==⎰⎰所以1(,)36Cov X Y EXY EXEY =-=,故选D (10)设随机变量,X Y 相互独立,且均服从参数为λ的指数分布,令Z X Y =-,则下列随机变量中与Z 同分布的是()(A )X Y +(B )2X Y+(C )2X (D )X【答案】(D )【解析】令{}{}zY X P z Z P z F Y X Z z ≤-=≤=-=)(,则0)(0=<z F z z 时,当当0≥z 时,dxdy e e dxdy y x f z F y x zy x zy x z λλλλ--≤-≤-⎰⎰⎰⎰==),()(zy x zy ye dy e e dy λλλλλ---+∞+-==⎰⎰120所以⎩⎨⎧≥-<=-0,10,0)(z ez z F zz λ,显然Y X Z -=与X 同步,故选(D )二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上。
2023 年考研数学一真题及答案解析

2023年全国硕士研究生招生考试数学一试题一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是最符合题目要求的.1.曲线1ln 1y x e x的斜渐近线为A.y x e B.1y x eC.y xD.1y x e2.若微分方程0y ay by 的解在 , 上有界,则A.0,0a b B.0,0a b C.0,0a b D.0,0a b 3.设函数 y f x 是由2,sin x t t y t t确定,则A. f x 连续, 0f 不存在.B. 0f 存在, f x 在0x 处不连续.C. f x 连续, 0f 不存在.D. 0f 存在, f x 在0x 处不连续.4.已知(1,2,...)n n a b n ,若级数1nn a与1nn b均收敛,则“1nn a绝对收敛”是“1nn b绝对收敛”的A.充分必要条件 B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件5.已知n 阶矩阵,,A B C .满足 ABC O ,E 是n 阶单位矩阵,记矩阵OA BC E ,AB C O E ,E AB ABO 的秩分别为123,,r r r ,则A.123r r r B.132r r r C.312r r r D.213r r r 6.下列矩阵中不能相似于对角矩阵的是A.11022003aB.1112003a aC.11020002aD.11022002a7.已知向量121212212,1,5,03191.若 既可由12, 线性表示,也可由12, 线性表示,则A.33,4k kR B.35,10k k R C.11,2k kR D.15,8k kR 8.设随机变量X 服从参数为1的泊松分布,则E X EXA.1e B.12C.2eD.19.设12,,,n X X X 为来自总体 21,N的简单随机样本,12,,,mY Y Y为来自总体22,2N 的简单随机样本,且两样本相互独立.记1111,,n m i i i i X X Y Y n m221111n i i S X X n ,22111mi i S Y Y m ,则A. 2122~,S F n m S B. 2122~1,1S F n m S C. 21222~,S F n m S D. 21222~1,1S F n m S 10.设12,X X 为来自总体 2,N的简单随机样本,其中(0) 是未知参数.若12ˆa X X为 的无偏估计.则aA.2B.2二、填空题:11~16小题,每小题5分,共30分.11.当0x 时,函数 2ln 1f x ax bx x 与 2cos x g x e x 是等价无穷小,则ab.12.曲面222ln 1z x y x y 在点 0,0,0处的切平面方程为.13.设f x 是周期为2的周期函数,且 1,0,1f x x x ,若01cos 2n n a f x a n x,则21n n a.14.设连续函数 f x 满足: 2f x f x x ,20f x dx ,则 31f x dx.15.已知向量12311010111,,,10111111αααβ,112233k k k γααα,若,(1,2,3)T T i i i γαβα,则222123k k k.16.设随机变量,X Y 相互独立,且1~1,3X B,1~2,2Y B,则 2P X Y .三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.设曲线 0y y x x 经过点 1,2,该曲线上任一点 ,P x y 到y 轴的距离等于该点处的切线在y 轴上的截距.(1)求 y y x .(2)求函数 1x f x y t dt在(0,) 的最大值.18.(本题满分12分)求函数 23,f x y y x y x 的极值.19.(本题满分12分)设空间有界区域 由柱面221x y 和平面0z 和1x z 所围成, 为 的边界曲面的外侧,计算曲面积分2cos 3sin I xzdydz xz ydzdx yz xdxdy.20.(本题满分12分)已知 f x 在 ,a a 上具有二阶连续导数.证明:(1)若 00f ,则存在 ,a a ,使得 21f f a f a a.(2)若f x 在,a a 内取得极值,则存在,a a ,使得212f f a f a a.21.(本题满分12分)已知二次型2221231231213,,2222f x x x x x x x x x x ,22212312323,,2g y y y y y y y y .(1)求可逆变换x y P ,将二次型 123,,f x x x 化成 123,,g y y y .(2)是否存在正交变换x y Q ,将二次型 123,,f x x x 化成 123,,g y y y .设二维随机变量 ,X Y 的概率密度为 22222,1,0,x y x y f x y,其他.(1)求,X Y 的协方差.(2),X Y 是否相互独立?(3)求22+Z X Y ,求Z 的概率密度.23考研数一真题答案速查一、选择题1.考点:渐近线答案:B.1y x e2.考点:常系数线性微分方程答案:C.0,0a b 3.考点:参数方程求导,分段函数求导答案:C. f x 连续,但 0f 不存在.4.考点:数项级数敛散性的判定答案:A.充分必要条件5.考点:矩阵的秩答案:B.132r r r 6.考点:相似对角化答案:D.11022002a 7.考点:向量的线性表示答案:D.15,8k kR 8.考点:常见分布答案:C.2e9.考点:三大抽样分布答案:D.21222~1,1S F n m S 10.考点:估计量的评选标准(无偏性)答案:A.2二、填空题11.考点:等价无穷小答案:212.考点:空间曲面的切平面答案:20x y z 13.考点:傅里叶级数答案:014.考点:定积分的换元法答案:1215.考点:向量内积与线性方程组答案:11916.考点:常见分布答案:13三、解答题17.考点:切线方程、一阶线性微分方程、函数求最值答案:(1)ln 2y x x x ;(2) f x 的最大值为241544f e e.18.考点:多元函数求极值答案: ,f x y 在210,327处取极大值2104,327729f.19.考点:第二类曲面积分(高斯公式)答案:5420.考点:泰勒中值定理的证明答案:(1)在0x 处泰勒展开,用介值定理推论处理余项.(2)在极值点处泰勒展开,用介值定理推论处理余项.21.考点:二次型的配方法、合同与相似答案:(1)111010001P ,x y P (2)不存在正交变换,因为两个二次型的系数矩阵不相似.22.考点:协方差、独立性、随机变量函数的分布答案:(1)0.(2)不独立.(3) 2,01,0,Z z z f z其他.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年考研数学一真题一、选择题,1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当0→x 时,若x x tan -与k x 是同阶无穷小,则=k . . ..2.设函数⎩⎨⎧>≤=,0,ln ,0,)(x x x x x x x f 则0=x 是)(x f 的A.可导点,极值点.B.不可导点,极值点.C.可导点,非极值点.D.不可导点,非极值点.3.设{}n u 是单调增加的有界数列,则下列级数中收敛的是A..1∑∞=n n nu B.nn nu 1)1(1∑∞=-. C.∑∞=+⎪⎪⎭⎫ ⎝⎛-111n n n u u . D.()∑∞=+-1221n n n u u . 4.设函数2),(y xy x Q =,如果对上半平面(0>y )内的任意有向光滑封闭曲线C 都有⎰=+Cdy y x Q dx y x P 0),(),(,那么函数),(y x P 可取为A.32y x y -.B.321yx y -. C.yx 11-. D.yx 1-. 5.设A 是3阶实对称矩阵,E 是3阶单位矩阵.若E A A 22=+,且4=A ,则二次型Ax x T 的规范形为A.232221y y y ++.B.232221y y y -+. C.232221y y y --.D.232221y y y ---.6.如图所示,有3张平面两两相交,交线相互平行,它们的方程组成的线性方程组的系数矩阵和增广矩阵分别记为A A ,,则A..3)(,2)(==A r A rB..2)(,2)(==A r A rC..2)(,1)(==A r A rD..1)(,1)(==A r A r7.设B A ,为随机事件,则)()(B P A P =的充分必要条件是 A.).()()(B P A P B A P +=Y B.).()()(B P A P AB P = C.).()(A B P B A P = D.).()(B A P AB P =8.设随机变量X 与Y 相互独立,且都服从正态分布),(2σμN ,则{}1<-Y X P A.与μ无关,而与2σ有关. B.与μ有关,而与2σ无关. C.与2,σμ都有关. D.与2,σμ都无关.二、填空题:9~14小题,每小题4分,共24分. 9. 设函数)(u f 可导,,)sin (sin xy x y f z +-=则yz cosy x z cosx ∂∂⋅+∂∂⋅11=. 10. 微分方程02'22=--y y y 满足条件1)0(=y 的特解=y .11. 幂级数nn n x n ∑∞=-0)!2()1(在)0∞+,(内的和函数=)(x S .12. 设∑为曲面)0(44222≥=++z z y x 的上侧,则dxdy z x z⎰⎰--2244=.13. 设),,(321αααA =为3阶矩阵.若21αα,线性无关,且2132ααα+-=,则线性方程组0=x A 的通解为.14. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=,其他,020,2)(x xx f )(x F 为X 的分布函数,X E 为X 的数学期望,则{}=->1X X F P E )(. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分10分)设函数)(x y 是微分方程2'2x e xy y -=+满足条件0)0(=y 的特解.(1)求)(x y ;(2)求曲线)(x y y =的凹凸区间及拐点. 16.(本题满分10分)设b a ,为实数,函数222by ax z ++=在点(3,4)处的方向导数中,沿方向j i l 43--=的方向导数最大,最大值为10.(1)求b a ,;(2)求曲面222by ax z ++=(0≥z )的面积. 17.求曲线)0(sin ≥=-x x e y x 与x 轴之间图形的面积. 18.设dx x x a n n ⎰-=1021,n =(0,1,2…)(1)证明数列{}n a 单调减少,且221-+-=n n a n n a (n =2,3…) (2)求1lim-∞→n nn a a .19.设Ω是锥面())10()1(2222≤≤-=-+z z y x 与平面0=z 围成的锥体,求Ω的形心坐标.20.设向量组TT T a )3,,1(,)2,3,1(,)1,2,1(321===ααα,为3R 的一个基,T)1,1,1(=β在这个基下的坐标为Tc b )1,,(.(1)求c b a ,,.(2)证明32,a a ,β为3R 的一个基,并求,,32a a β到321,,a a a 的过度矩阵.21.已知矩阵⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----=20022122x A 与⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=y B 00010012相似 (1)求y x ,.(2)求可可逆矩阵P ,使得.1B AP P =-22.设随机变量X 与Y 相互独立,X 服从参数为1的指数分布,Y 的概率分布为{}{}),10(,11,1<<-===-=p p Y P p Y P 令XY Z =(1)求z 的概率密度.(2)p 为何值时,X 与Z 不相关. (3)X 与Z 是否相互独立?23.(本题满分11分) 设总体X 的概率密度为其中μ是已知参数,0>σ是未知参数,A 是常数,n X …X X ,,21来自总体X 的简单随机样本.(1)求A ;(2)求2σ的最大似然估计量2019年全国硕士研究生入学统一考试数学试题解析(数学一)9.yxx y cos cos + 10.23-x e 11.x cos 12.332 13. ,T )1,2,1(-k k 为任意常数. 14. 解:(1))()()(2222c x ec dx e ee x y x xdxx xdx+=+⎰⎰=---⎰,又0)0(=y ,故0=c ,因此.)(221x xe x y -=(2)22221221221)1(x x x ex ex ey ----=-=',222221221321221)3()3()1(2x x x x ex x e x x xex xey -----=-=---='',令0=''y 得3,0±=x所以,曲线)(x y y =的凹区间为)0,3(-和),3(+∞,凸区间为)3,(--∞和)3,0(,拐点为)0,0(,)3,3(23---e ,)3,3(23-e .15. 解:(1))2,2(by ax z =grad ,)8,6()4,3(b a z =grad ,由题设可得,4836-=-ba ,即b a =,又()()108622=+=b a z grad ,所以,.1-==b a(2)dxdy y z x z S y x ⎰⎰≤+∂∂+∂∂+=22222)()(1=dxdy y x y x ⎰⎰≤+-+-+22222)2()2(1 =dxdy y x y x ⎰⎰≤+++22222441=ρρρθπd d ⎰⎰+202241=20232)41(1212ρπ+⋅=.313π19.由对称性,2,0==y x ,⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--===ΩΩ102102101)1()1(dz z dz z z dxdy dz dxdy zdz dv zdv z zzD D ππ=.4131121)1()1(1212==--⎰⎰dz z dz z z20.(1)123=b c βααα++即11112311231b c a ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,解得322a b c =⎧⎪=⎨⎪=-⎩.(2)()23111111=331011231001ααβ⎡⎤⎡⎤⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,,,所以()233r ααβ=,,,则23ααβ,,可为3R 的一个基.则()()1231231101=0121002P ααβααα-⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦,,,,. 21.(1)A 与B 相似,则()()tr A tr B =,A B =,即41482x y x y -=+⎧⎨-=-⎩,解得32x y =⎧⎨=-⎩(2)A 的特征值与对应的特征向量分别为1=2λ,11=20α⎛⎫ ⎪- ⎪ ⎪⎝⎭;2=1λ-,22=10α-⎛⎫ ⎪ ⎪ ⎪⎝⎭;3=2λ-,31=24α-⎛⎫⎪ ⎪ ⎪⎝⎭. 所以存在()1123=P ααα,,,使得111212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦. B 的特征值与对应的特征向量分别为1=2λ,11=00ξ⎛⎫ ⎪ ⎪⎪⎝⎭;2=1λ-,21=30ξ⎛⎫ ⎪- ⎪ ⎪⎝⎭;3=2λ-,30=01ξ⎛⎫⎪ ⎪ ⎪⎝⎭. 所以存在()2123=P ξξξ,,,使得122212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦. 所以112211=P AP P AP --=Λ,即1112112B P P APP P AP ---== 其中112111212004P PP --⎡⎤⎢⎥==--⎢⎥⎢⎥⎣⎦. 22.解:(I )Z 的分布函数(){}{}{}{}(){},1,11F z P XY z P XY z Y P XY z Y pP X z p P X z =≤=≤=-+≤==≥-+-≤从而当0z ≤时,()z F z pe =;当0z >时,()()()()1111z z F z p p e p e --=+--=--则Z 的概率密度为()(),01,0z zpez f z p e z -⎧<⎪=⎨->⎪⎩. (II )由条件可得()()()()()()()()()22E XZ E X E Z E X E Y E X E Y D X E Y -=-=,又()()1,12D X E Y p ==-,从而当12p =时,(),0Cov X Z =,即,X Z 不相关.(III )由上知当12p ≠时,,X Z 相关,从而不独立;当12p =时,121111111111,,,,2222222222112P X Z P X XY P X X P X X F e -⎧⎫⎧⎫⎧⎫⎧⎫≤≤=≤≤=≤≥-+≤≤⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭⎛⎫⎛⎫==- ⎪⎪⎝⎭⎝⎭而12112P X e -⎧⎫≤=-⎨⎬⎩⎭,121111112222222P Z P X P X e -⎛⎫⎧⎫⎧⎫⎧⎫≤=≤+≥-=-⎨⎬⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎩⎭⎝⎭,显然1111,2222P X Z P X P Z ⎧⎫⎧⎫⎧⎫≤≤≠≤≤⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,即,X Z 不独立.从而,X Z 不独立.23.解:(I )由()2221x Aedx μσμσ--+∞=⎰t =201t e dt +∞-==⎰,从而A =(II )构造似然函数()()22112212,,1,2,,,,,,0,ni i n x i n A e x i n L x x x μσμσσ=--⎧∑⎛⎫⎪≥= ⎪=⎨⎝⎭⎪⎩L L 其他,当,1,2,,i x i nμ≥=L 时,取对数得()22211ln ln ln 22ni i n L n A x σμσ==---∑,求导并令其为零,可得()22241ln 1022nii d L n x d μσσσ==-+-=∑,解得2σ的最大似然估计量为()211n ii x n μ=-∑.。