薄膜材料复习

合集下载

薄膜材料第三章薄膜沉积的物理方法.

薄膜材料第三章薄膜沉积的物理方法.
支撑加热材料 (蒸发舟)
电阻加热蒸发沉积装置
3 薄膜沉积的物理方法
3.1 真空蒸发沉积(蒸镀)
3.1.2 蒸发沉积装置
三、闪烁蒸发:
待蒸发材料以粉末形式被送入送粉机构,通过机械式或 电磁式振动机构的触发,被周期性少量输送到温度极高的蒸 发盘上,待蒸发材料瞬间蒸发形成粒子流,随后输运到基片 完成薄膜的沉积。 1、蒸发温度: 与电阻加热蒸发基本相同 (1500~1900 ℃)。 2、主要改进: 解决了薄膜成分偏离源材料组分的问题! 3、应用场合: 制备蒸发温度较低的半导体、金属陶瓷和氧化物薄膜。 4、主要问题: 蒸发温度依然有限; 待蒸发材料是粉末态,易于吸附气体且除气难度较大; 蒸发过程中释放大量气体,易导致“飞溅”,影响成膜质量。
2、主要优点:
与电子束蒸发类似,可避免加热体/坩锅材料蒸发污染薄膜; 加热温度高,可沉积难熔金属和石墨 (蒸发源即电极,须导电); 设备远比电子束蒸发简单,成本较低。
3、主要问题:
电弧放电会产生 m大小的颗粒飞溅,影响薄膜的均匀性和质量。
电弧加热蒸发装置示意图
4、主要应用:沉积高熔点难熔金属及其化合物薄膜、碳材料薄膜 (如DLC薄膜)。
薄膜材料
3 薄膜沉积的物理方法
薄膜 沉积 的 物理 方法
蒸发(Evaporatio n) 物理气相沉积技术 (PVD) Physical Vapor Deposition 溅射(Sputtering ) 离化PVD (离子镀、IBAD 、IBD 等) 分子束外延 ( MBE ,Molecular Beam Epitaxy ) 外延技术 液相外延 (LPE ,Liquid Phase Epitaxy ) Epitaxy 热壁外延 (HWE ,Hot Wall Epitaxy )

薄膜材料与薄膜技术复习

薄膜材料与薄膜技术复习

薄膜材料与薄膜技术第一章1.真空度划分:粗真空:105-102Pa 接近大气状态热运动为主低真空:102-10-1Pa高真空:10-1-10-6Pa超高真空:<10-6Pa2.吸附与脱附物理吸附与化学吸附气体吸附:固体表面捕获气体分子的现象物理吸附:没有选择性、主要靠分子之间的吸引力、容易发生脱附、一般只在低温下发生化学吸附:在较高温度下发生、不容易脱附,只有气体和固体表面原子接触生成化合物才能产生吸附作用;气体脱附:是吸附的逆过程;3.旋片式机械真空泵用油来保持各运动部件之间的密封,并靠机械的办法,使该密封空间的容积周期性地增大,即抽气;缩小,即排气,从而达到连续抽气和排气的目的;4.分子泵牵引泵:结构简单、转速小、压缩比大效率低涡轮式分子泵:抽气能力高、压缩比小效率高5.低温泵深冷板装在第二级冷头上,温度为10-20k,板正面光滑的金属表面可以去除氮、氧等气体,反面的活性炭可以吸附氢、氦、氖等气体;通过两极冷头的作用,可以达到去除各种气体的目的,从而获得超高真空状态;6.真空的测量电阻真空计:压强越低,电阻越高 p↓→R↑测量范围105---10-2Pa热偶真空计:压强越低,电动势越高p↓→↑测量范围Pa电离真空计:三种BA型、热阴极、冷阴极A:灯丝发射极F:栅极加速极 G:收集极第二章1.薄膜制备的化学方法以发生一定化学反应为前提,由热效应引起或由离子的电致分离引起;热激活、离子激活2.热氧化生长在充气条件下,通过加热基片的方式可以获得大量的氧化物、氮化物和碳化物薄膜;3.化学气相沉积优缺点:优点记住四条:①成核密度高,均匀平滑的薄膜;②绕射性好,对于形状复杂的表面或工件的深孔、细孔等都能均匀覆膜;③不需要昂贵的真空设备;④残余应力小,附着力好,且膜致密,结晶良好;⑤可在大尺寸基片或多基片上进行;可一制备金属和非金属薄膜,成膜速率快,面积大;缺点:①反应温度太高,而许多基材难以承受这样的高温②反应气体可能与设备发生化学反应;三个过程:反应物输运、化学反应、去除附产物分类:常压式、低压式NPCVD、LPCVD 热壁>500℃、冷壁LTCVD发生的典型化学反应记住四条:分解反应、还原反应、氧化反应、氮化反应、碳化反应按照不同激活方式分类:①激光化学气相沉积LCVD定义:利用激光源产生出来的激光束实现化学气相沉积的一种方法激光加热非常局域化②光化学气相沉积PCVD定义:高能光子有选择性地激发表面吸附分子或气体分子而导致键断裂、产生自由化学粒子形成膜或在相邻的基片上形成化学物③等离子体增强化学气相沉积PECVD定义:在等离子体中电子平均能量足以使大多数气体电离或分解优点:比传统的化学气相沉积低得多的温度下获得单质或化合物薄膜材料缺点:由于等离子体轰击,使沉积膜表面产生缺陷,反应复杂,也使薄膜的质量有所下降;应用:用于沉积各种材料,包括SiO2、Si3N4,非晶Si:H、多晶Si、SiC等介电和半导体膜;分类:射频R-PECED、高压电源PECVD、微波m-PECVD、回旋电子加速微波mECR-PECVD辨析PCVD 、LCVD 、PECVD4.电镀定义:电流通过导电液中的流动而产生化学反应最终在阴极上电解沉积某一物质的过程;5.化学镀定义:不加任何电场、直接通过化学反应而实现薄膜沉积的方法6.阳极沉积反应定义:不需采用外部电流源,在待镀金属盐类的溶液中,靠化学置换的方法在基体上沉积出该金属的方法;依赖阳极反应7.辨析电镀、化学镀、阳极沉积反应:①化学镀、阳极沉积反应不可单独作为镀膜技术,一般作为前驱镀处理衬底或后续镀做保护层;电镀可单独作为镀膜技术;②阳极沉积反应与化学镀的区别在于无需在溶液中加入化学还原剂,因为基体本身就是还原剂;化学镀需添加还原剂;两者都不需要外加电场;技术定义:利用分子活性气体在气液界面上凝结成膜,将该膜逐次叠积在基片上形成分子层;应用:应用这一技术可以生长有序单原子层、高度有序多原子层,其介电强度较高; 过程:第三章与CVD相比优缺点:优点:化学气相沉积对于反应物和生成物的选择,且基片需要处在较高温度下,薄膜制备有一定的局限性;物理气相沉积对沉积材料和基片没有限制;缺点:速率慢、对真空度要求高三个过程:从源材料发射粒子、粒子输运到基片、粒子在基片上凝结、成核、长大、成膜;3.真空蒸发定义:将待成膜的物质置于真空中进行蒸发或升华,使之在工件或基片表面析出的过程;优点相对于其他物理制备:简单便利、操作容易、成膜速度快、效率高、广泛使用;缺点:薄膜与基片结合较差、工艺重复性不好;六种技术:①电阻加热法定义:将支撑加热材料做成适当形状,装上蒸镀材料,让电流通过蒸发源加热蒸镀材料,使其蒸发;②闪烁蒸发定义:把合金做成粉末或微细颗粒,在高温加热器或坩锅蒸发源中,使一个一个的颗粒瞬间完全蒸发;③激光蒸发定义:激光作为热源使蒸镀材料蒸发;④电子束蒸发定义:把被加热的物质放置在水冷坩锅中,利用电子束轰击其中很小一部分,使其熔化蒸发,而其余部分在坩锅的冷却作用下处于很低的温度;⑤电弧蒸发定义:属于物理气相沉积,有等离子体产生;⑥射频蒸发f>定义:通过射频线圈的适当安置,可以使待镀材料蒸发;优缺点:蒸发速度快,成本高,设备复杂;辨析电阻蒸发、电子束蒸发:①电子束蒸发可以直接对蒸发材料加热;可避免材料与容器的反应避免污染和容器材料的蒸发;可蒸发高熔点材料;电阻蒸发难加到高温度,需要蒸发源材料低熔点和高蒸气压;加热时容器如坩埚易产生污染;②电子束蒸发需要靶材导电,装置复杂,只适合于蒸发单质元素;残余气体分子和蒸发材料的蒸气会部分被电子束电离;电阻蒸发装置相对简单;4.溅射定义:溅射是指荷能粒子如正离子轰击靶材,使靶材表面原子或原子团逸出的现象;逸出的原子在工件表面形成与靶材表面成分相同的薄膜;溅射与蒸发的异同点同:在真空中进行异:蒸发制膜是将材料加热汽化溅射制膜是用离子轰击靶材,将其原子打出;优点和缺点参数控制较蒸发困难但不存在分馏,不需加热至高温等直流辉光放电伏安特性曲线:A-B:电流小,主要是游离状态的电子,离子导电;电子-原子碰撞为弹性碰撞;B-C: 增加电压,粒子能量增加,达到电离所需能量;碰撞产生更多的带电粒子;电源的输出阻抗限制电压类似稳压源;C-D: 起辉雪崩;离子轰击产生二次电子,电流迅速增大,极板间压降突然减小极板间电阻减小从而使分压下降;D-E: 电流与极板形状、面积、气体种类相关,与电压无关;随电流增大,离子轰击区域增大;极板间电压几乎不变;可在较低电压下维持放电;E-F: 异常辉光放电区;电流随电压增大而增大;电压与电流、气体压强相关可控制区域,溅射区域;F-G: 弧光放电过渡区;击穿或短路放电;比较DE、EF区正常辉光放电和异常辉光放电①辉光放电:真空度为10-1~10-2 Torr,两电极间加高压,产生辉光放电;电流电压之间不是线性关系,不服从欧姆定律;②DE段:电流增大电压不变;EF段:电压增大电流增大③DE段不可控,EF段可控辉光放电时明暗场分布:阿斯顿暗区:慢电子区域;阴极辉光:激发态气体发光;克鲁克斯暗区:气体原子电离区,电子离子浓度高;负辉光:电离;电子-离子复合;正离子浓度高阴极位降区基片所在位置;法拉第暗区:慢电子区域,压降低,电子不易加速;溅射六种装置:①辉光放电直流溅射②三级溅射③射频溅射:射频溅射是利用射频放电等离子体中的正离子轰击靶材、溅射出靶材原子从而沉积在接地的基板表面的技术;④磁控溅射⑤离子束溅射⑥交流溅射速度:射频>磁控>交流>三级>直流>离子束还有几种:对靶溅射反应溅射热溅射校准溅射磁控溅射:磁力线延伸到衬底,对衬底进行适当溅射,通过在靶表面引入磁场,利用磁场对带电粒子的约束来提高密度以增加率;优点:可在较低工作压强下得到较高的沉积率,可在较低基片温度下获得高质量薄膜;缺点:①靶材利用率低,表面不均匀溅射、非均匀腐蚀及内应力②不适用于强磁体磁控热反应溅射:加热衬底;到达衬底前靶材粒子与反应气体发生化学反应形成化合物;先解释溅射,再解释磁控溅射,再解释热反应溅射非平衡磁控溅射:①靶材非平衡使用②磁线外延到靶材时,少量外延到衬底,可以对衬底进行预清洗;靶材中毒:判断依据:溅射速率急速下降枪内真空度下降原因:化学反应没有发生在衬底上,发生在靶材上,使靶材钝化,产额下降;辨析直流、交流、三极溅射直流溅射:施加直流电压,使真空室内中性气体辉光放电,正离子打击靶材,使靶材表面中性原子溢出;交流溅射:施加交流电压;三极溅射:采用直流电源,将一个独立的电子源热阴极中的电子注入到放电系统中,而不是从靶阴极获得电子;5.离子镀定义:真空条件下,利用气体放电使气体或被蒸发物部分离化,产生离子轰击效应,最终将蒸发物或反应物沉积在基片上;优点:结合蒸发与溅射两种薄膜沉积技术;膜与基片结合好,离子镀的粒子绕射性,沉积率高,对环境无污染;6.离子束沉积IBD在离子束溅射沉积过程中,高能离子束直接打向靶材,将后者溅射并沉积到相邻的基片上;离子助沉积IAD7.外延生长①分子束外延MBE定义:在超高真空条件下精确控制原材料的中性分子束强度,并使其在加热的基片上进行外延生长的一种技术;优点:超高真空、可以实现低温过程、原位监控、严格控制薄膜成分及掺杂浓度②液相外延生长LPE定义:从液相中生长膜,溶有待镀材料的溶剂是液相外延生长所必需的;③热壁外延生长HWE定义:一种真空沉积技术,在这一技术中外延膜几乎在接近热平衡条件下生长,通过加热源材料与基片材料间的容器壁实现的;④有机金属化学气相沉积MOCVD定义:采用加热方式将化合物分解而进行外延生长半导体化合物的方法;原料含有化合物半导体组分;特点:可对多种化合物半导体进行外延生长;优点相对于其他几种外延生长:①反应装置较为简单,生长温度较宽②可对化合物的组分进行精确控制,膜的均匀性和膜的电化学性质重复性好③原料气体不会对生长膜产生刻蚀作用;④只通过改变原材料即可以生长出各种成分的化合物缺点:所用的有机金属原料一般具有自燃性;原料气体具有剧毒;比较MBE、LPE、MOCVD温度/生长速率/膜纯度:液相外延生长LPE>有机金属化学气相沉积MOPVD>分子束外延MBE辨析溅射、蒸发、离子镀第四章1.薄膜形成:凝结过程、核形成与生长过程、岛形成与结合生长过程2.凝聚过程前提是形成原子对吸附原子结合成原子对及其以后的过程;必要条件是吸附原子在基体表面的扩散运动;吸附-扩散-凝结吸附过程:入射到基体表面的气象原子被固体表面的悬挂键吸引住的现象称为吸附①物理吸附:范德华力低温吸附高温解析②化学吸附:化学键选择性高温吸附3.辨析成核理论---毛细理论热力学界面能理论和原子理论:①相同之处:所依据的基本概念相同,所得到的成核速率公式形式也基本相同;②不同之处:两个使用的能量不同,所用模型不同;热力学界面能理论适合描述大尺寸临界核;因此,对于凝聚自由能较小的材料或者过饱和度较小情况下进行沉积的情况比较适合;原子理论适合小尺寸临界核;对于小尺寸临界核,这时必须过饱和度很高才能发生凝聚成核;③由于这两种理论所用模型的本质差别,热力学界面能理论所给出的有关公式预示,随着过饱和度的变化,临界核尺寸和成核速率连续变化;相反,原子理论则预示着它们不作连续变化;4.临界核形成:方程推导当原子或分子从气相中沉积到衬底的表面凝聚,成球状核或冠状核时总自由能和临界核尺寸的数学表达式分析温度、过饱和度、沉积速率对r 和ΔG 的影响;答:球状凝聚核总自由能数学表达式: 3243()4?v CV G r r G r ππσ∆=-∆+ 临界核尺寸数学表达式:22*ln(/)cvcvve VG kT P P r σσ∆==冠状凝聚核总自由能表达式:23103()4?)?)v G r r r G πφθσ∆=+∆临界核尺寸表达式:02*v G r σ∆=-;凝聚核总自由能由两部分构成,即体自由能与界面自由能,体自由能随着核心尺寸的增加而减小,界面自由能随着核心尺寸的增大而增大,所以总自由能随着核心尺寸的增加先增大后减小,存在一个临界核心尺寸和形核势垒温度影响:温度T ↑,过冷度T ∆↓,临界核半径*r 和形核势垒*G ∆都将↑,则新相核心形成困难;过饱和度影响:过饱和度S ↑,临界核半径*r 和形核势垒*G ∆都↓,所需克服的形核势垒也较低,新相核心较易形成;沉积速度影响:沉积速率R ↑时,临界核半径*r 和形核势垒*G ∆都↓,新相核心较易形成;5.根据毛细理论,简述形核率 dN/dt 的主要影响因素,并解释说明吸附气体原子的脱附激活能、扩散激活能和临界形核势垒对其影响规律和内在机制;答:形核率 dN/dt 的主要影响因素:温度,过饱和度和沉积速度;规律:吸附气体原子的脱附激活能越高,扩散激活能越低,形核率越大,临界形核势垒越低,形核率越大;内在机制:高的脱附激活能和低的扩散激活能都有利于气相原子在基体表面停留和运动,因而会提高形核率;临界形核势垒越低,新相核心越容易形成,形核率也就越大;6.根据毛细理论,简要说明为什么高温低速沉积往往获得粗大或单晶结构薄膜,而低温高速沉积则有利于获得细小多晶、微晶乃至非晶薄膜答:根据毛细理论知,在高温低速沉积速度条件下,临界核半径和形核势垒都较大,新相核心较大且不易形成,形核率低,形成薄膜组织往往粗大或者单晶薄膜;在低温高速沉积条件下,临界核半径和形核势垒都较小,新相核心较小且容易形成,形核率高,形成薄膜组织细密连续,则有利于获得细小多晶、微晶乃至非晶薄膜;7.在稳定核形成以后,岛状薄膜的形成过程一般分为几个阶段各阶段的主要现象如何答:稳定核形成之后,岛状薄膜的形成过程分为四个阶段,小岛阶段,结合阶段,沟道阶段,连续膜;小岛阶段:出现大小一致的核2-3nm,核进一步长大变成小岛,形状将又冠球形变成圆形最后变成多面体小岛;结合阶段:两个小岛将相互结合,结合后增大了高度,减小了在基片的所占的总表面积;结合时类液体特性导致新出现的基片面积上将会发生二次形核,结合后的复合岛若有足够时间,可形成晶体结构;沟道阶段:当岛的分布达到临界状态时便相互聚结成网状结构,种结构中不规则分布着宽度为50~200A 的沟渠,随着沉积继续,沟渠很快消失,薄膜变成小孔洞的连续状结构,在小孔洞处将发生二次成核或三次成核,整个薄膜连成一片;连续薄膜:随着沉积继续进行,在沟渠和孔洞消除,再入射到基体表面的气相原子便直接吸附在薄膜上,通过联并作用而形成不同结构的薄膜;8.利用烧结过程解释核心吞并机制及其驱动力;答:机制:当两个岛相互接触时,在接触点形成半径为R的瓶颈,将产生一驱动力2б/R,使岛的沉积原子通过体扩散和表面扩散迁移到瓶颈中,且表面扩散通量大于体扩散通量;驱动力由曲率半径R决定,为2б/R;9.简述薄膜的主要生长模式,及每类生长模式各自出现的条件及特点;答:岛状生长型,层生长型,层岛生长型;岛状生长型:特点:到达衬底上的沉积原子首先凝聚成核,后续飞来的沉积原子不断聚集在核附近,使核在三维方向上不断长大而最终形成薄膜;条件:在衬底晶格和沉积膜晶格不相匹配非共格时或当核与吸附原子间的结合能大于吸附原子与基体的吸附能时,大部分薄膜形成过程属于这种类型;层状生长型:特点:沉积原子在衬底的表面以单原子层的形式均匀地覆盖一层,然后再在三维方向上生长第二层、第三层······条件:一般在衬底原子与沉积原子之间的键能大于沉积原子相互之间键能的情况下共格发生这种生长方式的生长;层岛生长型:特点:生长机制介于岛生长型和层生长型的中间状态;条件:当衬底原子与沉积原子之间的键能大于沉积原子相互之间键能、随后出现干扰层状生长结合能特性单调减少因数的情况下准共格多发生这种生长方式的生长;第五章1.组分表征2.结构表征3.原子化学键合表征能量损失谱EELS:主峰---元素种类主峰化学位移---配位结构精细结构---键合情况扩展X射线吸收精细结构EXAFS:吸收线---元素种类精细结构---键合情况辨析红外吸收光谱与拉曼光谱①红外吸收光谱:构成薄膜样品分子振动的频率一般从红外延展到远红外,用红外线照射薄膜样品时,与样品分子振动频率相同的红外线就会被分子共振吸收;每个分子都有确定的振动频率,因此可用红外光谱标识薄膜中所含分子并确立分子间的键合特征;拉曼光谱:可见光或紫外线照射在样品上时,出来的散射光频率会有稍许改变,这种改变乃是由分子振动引起的;因此可用拉曼光谱测定这种频率的改变,从而分析和鉴别薄膜样品中的化学组成和化学键合;②都是测定薄膜样品中分子振动的;③对于具有对称中心的分子振动,红外不敏感,拉曼敏感;对于反对称中心的分子振动,则红外敏感拉曼不敏感;对于对称性高的分子,拉曼敏感;辨析红外吸收光谱与傅里叶变换红外光谱FTIR①二者原理一致②传统的红外吸收光谱依赖于红外光束通过格栅色散到单色元件中进行扫描; FTIR依赖于相干干涉仪。

光学薄膜技术复习提纲讲解

光学薄膜技术复习提纲讲解

光学薄膜技术复习提纲、典型膜系减反射膜(增透膜)1、减反射膜的主要功能是什么?是减少或消除透镜、棱镜、平面镜等光学表面的反射光,从而增加这些元件的透光量,减少或消除系统的杂散光。

★ 2、单层减反射膜的最低反射率公式并计算厂 宀 >2llo —111 /11;#-1R= ------------<山+爲沁+/★ 3、掌握常见的多层膜系表达,例如 G| H L | A 代表什么? G| 2 H L | A ? ★ 4、什么是规整膜系?非规整膜系?把全部由入0/4整数倍厚度组成的膜系称为规整膜系,反之为非规整膜系。

★ 5、单层减反射膜只能对某个波长和它附近的较窄波段内的光波起增透作用。

为了在较宽的光谱范围达到更有效的增透效果,常采用双层、三层甚至更多层数的减反射膜。

★ 6 V 形膜、W 形膜的膜系结构以及它们的特征曲线。

P16-17㈡高反射膜★ 1、镀制金属反射膜常用的材料有铝(AI )、银(Ag )、金(Au )、铬等。

★ 2、金属反射膜四点特性。

P29① 高反射波段非常宽阔,可以覆盖几乎全部光谱范围,当然,就每一种具体的金属而言,它都有自己最佳的反射波段。

V --G I HL|A/M |=!!膜/ fix一上 —\><WG | 2HL | A 0400 450500 550600650 700VUavelsnqth (rm )432<L>yuf5o2lpu家②各种金属膜层与基底的附着能力有较大差距。

如Al、Cr、Ni (镍)与玻璃附着牢固;而Au、Ag与玻璃附着能力很差。

③金属膜层的化学稳定性较差,易被环境气体腐蚀。

④膜层软,易划伤。

㈢分光膜1什么是分光膜?中性分束镜能够在一定波段内把一束光按比例分成光谱成分相同的两束光,也即它在一定的波长区域内,如可见区内,对各波长具有相同的透射率和反射率之比值一一透反比。

因而反射光和透射光不带有颜色,呈色中性。

★2、归纳金属、介质分束镜的优缺点:金属分束镜p32优点:中性好,光谱范围宽,偏振效应小,制作简单缺点:吸收大,分光效率低。

薄膜复习资料

薄膜复习资料

1.真空系统的排气公式及检漏答:(1) 抽速及流导 流导C :在真空系统内,真空管路中气体的通过能力。

12Q C P P =-,式中,p1和p2为部件两端的气体压力;Q为单位时间内通过该真空部件的气体体积。

真空泵的抽速 S=Q/P ,式中,P 为真空泵入口处的气体压力;Q 为单位时间内通过的真空泵入口的气体体积。

真空泵的实际抽速S 永远小于理论抽速S p 。

用一台抽速为S p 的泵,通过流导C 抽真空容器中的气体。

设真空容器的压力为P ,泵入口处的压力为P r (注:即图中的P p ),由于流量各处相等,即: Q=S p ·P r =S ·P=C(P -P r )→S=(2)真空泵的极限真空度实际的抽真空过程中总存在着漏气,如从真空系统外渗入到真空腔中(Q pe ),从真空材料内往真空腔体内扩散(Q d )等。

设总漏气量为Q L 则有:L Q PS Q =- ,其中, Q L =Q des +Q d +Q pe +Q leak 令Q=0,得极限真空度P m 为L m Q P S=(注:要求P m 和S 会互推算)。

(3) 抽气公式由于气体通量Q 可以表达为气体体积V 与压力p 的乘积对时间的导数,即()d P V dP Q Vdtdt=-=-,得抽气公式:LdP PS VQ dt=-+积分得,t()+/S V L P t P eQ S ⨯-=(注:此处稍微做了简化)。

其中P 0为真空系统在t=0时的真空度,它将随着时间的延长而趋于P m 。

(4)检漏右图为抽真空过程中不同漏气方式对真空度的影响。

只能检查比较明显的漏气,可以通过对比抽气泵的极限真空和实际得到的真空来判断漏气的大小漏气的判断:(1)直线a:压力保持不变(2)曲线b:压力开始时曲线上升较快,然后上升速度渐缓并逐渐趋于水平恒定状态,这是放气造成的,因为不论是蒸汽源的放气或材料的放气,在达到一定的压力后都会呈现出饱和状态的趋势。

《薄膜材料与技术》复习资料总结

《薄膜材料与技术》复习资料总结

《薄膜材料与技术》复习资料总结【讲义总结】1.真空区域的划分:①粗真空(1x105~1x102Pa)。

在粗真空下,气态空间近似为大气状态,分子以热运动为主,分子间碰撞十分频繁;②低真空(1x102~1x10-1)。

低真空时气体分子的流动逐渐从黏滞流状态向分子流状态过度,此时气体分子间碰撞次数与分子跟器壁间碰撞次数差不多;③高真空(1x10-1~1x10-6)。

当达到高真空时,气体分子的流动已经成为分子流状态,以气体分子与容器壁间的碰撞为主,且碰撞次数大大减小,蒸发材料的粒子沿直线飞行;④超高真空(<1x10-6)。

达到超高真空时,气体分子数目更少,几乎不存在分子间碰撞,分子与器壁的碰撞机会更少。

2.获得真空的主要设备:旋片式机械真空泵,油扩散泵,复合分子泵,分子筛吸附泵,钛生化泵,溅射离子泵和低温泵等,其中前三种属于气体传输泵,后四种属于气体捕获泵,全为无油类真空泵。

3.输运式真空泵分为机械式气体输运泵和气流式气体输运泵。

4.极限压强:指使用标准容器做负载时,真空泵按规定的条件正常工作一段时间后,真空度不再变化而趋于稳定时的最低压强。

5.凡是利用机械运动来获得真空的泵称为机械泵,属于有油类真空泵。

6.旋片式真空泵泵体主要由锭子、转子、旋片、进气管和排气管等组成。

7.真空测量:指用特定的仪器和装置,对某一特定空间内的真空度进行测定。

这种仪器或装置称为真空计。

按测量原理分为绝对真空计和相对真空计。

8.物理气相沉积:是利用某种物理过程实现物质原子从源物质到薄膜的可控转移过程。

特点:①需要使用固态或熔融态的物质作为沉积过程的源物质;②源物质通过物理过程转变为气相,且在气相中与衬底表面不发生化学反应;③需要相对较低的气体压力环境,这样其他气体分子对于气相分子的散射作用较小,气相分子的运动路径近似直线;④气相分子在衬底上的沉积几率接近100%。

在物理气相沉积技术中最基本的两种方法是蒸发法和溅射法。

9.蒸发沉积薄膜纯度取决于:①蒸发源物质的纯度;②加热装置、坩埚等可能造成的污染;③真空系统中的残留气体。

薄膜复习题

薄膜复习题

绪论1.薄膜制备方法到底有哪些,它们是如何分类的,试列出它们的树形结构(第一级按干法与湿法分;第二级(干法的分类):PVD、CVD各包含哪些;第三级:蒸发、溅射、离子镀中各包含哪些)答:PVD:真空蒸发、溅射、离子镀CVD:常压CVD、低压CVD金属有机物CVD等离子体CVD光CVD、热丝CVD2.各种镀膜方法的英文简称答:PVD:物理气相沉积CVD:化学气相沉积、MBE:分子束外延、sol-gel:溶胶凝胶法、LPCVD:低压CVD、APCVD:常压CVD、PECVD:等离子体增强CVD、MOCVD:金属有机物CVD、、脉冲激光溅射沉积(PLD)、离子束辅助沉积(IBAD)MOD:金属有机物热分解3.试举例说明薄膜的应用(机械、微电子、光电子、元器件、光学、信息技术、装饰、能源等)答:一、集成电路:P-N结、绝缘层、导线,并由此构成二极管、三极管、电阻、电容等电子元件。

二、信息存储薄膜:磁盘、光盘三、集成光电子学:四、信息显示薄膜:薄膜晶体管液晶平板显示器、OLED五、薄膜太阳能电池六、硬质涂层七、其他:电子元件:表声波器件;传感器:特点高灵敏,低成本;光学:反射膜,增透膜;装饰、包装:镀金,锡箔纸,镀膜玻璃;第一章真空基础1.掌握真空、分子平均自由程、饱和蒸汽压、蒸发温度的概念答:真空:指低于一个大气压的气体状态。

分子平均自由程:定义:每个分子在连续两次碰撞之间所运动的平均路程。

饱和蒸气压的定义:在一定温度下,气、固或气、液两相平衡时,蒸气的压力称为该物质的饱和蒸气压。

仅仅是温度的函数。

应用例子:湿度蒸发温度:定义:饱和蒸气压为10-2托左右(唐教材0.1Pa)时的温度。

2.掌握真空的单位及其换算答:通常用“真空度”及“压强”两个参量来衡量真空的程度常用单位:帕斯卡(Pascal)=1牛/米2,国际单位制托(Torr)=1/760atm=133.322Pa,旧单位此外,mmHg、atm、bar、mbar等,换算关系,1bar=105Pa1mmHg=1.000000014Torr1atm=1.01×105Pa所以:1atm>1bar,1mmHg≈1Torr3.理解气体的两种流动状态答:分子流:气体分子之间几乎不发生碰撞黏滞流:气体分子之间碰撞频繁4.掌握真空镀膜系统的构成(原理图),抽真空的过程答:典型的真空系统包括:真空室,真空泵,真空计5.理解机械泵、扩散泵、分子泵、溅射离子泵等的工作原理及其使用范围答:真空泵:输运式真空泵、捕获式真空泵。

膜分离复习题答案

膜分离复习题答案

一.什么是膜分离,膜材料为什么具有选择透过性?膜分离:借助膜的选择渗透作用,对混合物中的溶质和溶剂进行分离,分级,提纯和富集的方法。

膜材料具有选择透过性的原因:1.膜中分布有微细孔穴,不同孔穴有选择渗透性。

2.膜中存在固定基团电荷,电荷的吸附,排斥产生选择渗透性。

3.被分离物在膜中的溶解,扩散作用产生选择渗透性。

二.膜分离设备的主要类型,其主要结构和优缺点。

膜分离设备类型主要结构优缺点板框式由导流板、膜和多孔支撑板交替重叠组成。

优点:膜的组装方便、清洗更换容易,不易堵塞。

缺点:对密封要求高、结构不紧凑。

卷式膜器将膜,支撑材料,膜间隔材料依次叠好,围绕一中心管卷紧即成一个膜组优点:结构紧凑、单位体积膜面积很大、透水量大、设备,费用低;缺点:浓差极化不易控制,易堵塞,不易清洗,换膜困难。

管式膜器由管式膜组装而成,膜器与列管式换热器结构类似。

根据膜的位置分为内压式和外压式,外压式需耐高压的外壳,应用较少。

优点:能有效地控制浓差极化,流动状态好,能大范围的调节料液的流速。

膜生成污垢后容易清洗,对料液预处理的要求不高并可处理含悬浮固体的料液。

缺点:投资与运营费用较高,单位体积内膜的面积较低。

中空纤维膜器由数百上万根中空纤维膜固定在圆形容器内形成优点:设备紧凑、单位体积的膜表面积大,不需要支撑材料缺点:中空纤维内径小,阻力大,易堵塞,对料液的预处理要求高。

三.电渗析工作原理。

在直流电场作用下,溶液中的离子选择性地通过离子交换膜的过程。

利用直流电场的作用使溶液中阴阳离子定向迁移以及阴阳离子交换膜对溶液中离子的选择透过性(即阳膜具有选择透过阴离子而阻挡阳离子),使原水在通过电渗析器时,一部分水被淡化,另一部分则被浓缩,从而达到分离溶质、溶剂的目的。

四.膜污染产生的原因,减小膜污染控制方法以及膜的清洗。

膜污染产生的原因:1.膜表面的沉积,膜孔内的阻塞,这与膜孔结构、膜表面的粗糙度、溶质的尺寸和形状等有关。

2.膜表面和膜孔内的吸附,这与膜表面的电荷性、亲水性、吸附活性点及溶质的荷电性、亲水性、溶解度等有关。

薄膜材料与技术复习题

薄膜材料与技术复习题

一、选择题:1、所谓真空, 是指:()A.一定的空间内没有任何物质存在;B.一定空间内气压小于1个大气压时, 气体所处的物理状态;C、一定空间内气压小于1 MPa时, 气体所处的物理状态;D.以上都不对2.以下关于CVD特点的描述, 不正确的是: ()A.与溅射沉积相比, CVD具有更高的沉积速率;B、与PVD相比, CVD沉积绕射性较差, 不适于在深孔等不规则表面镀膜;C.CVD的沉积温度一般高于PVD方法;D.CVD沉积获得的薄膜致密、结晶完整、表面平滑、内部残余应力低3.关于气体分子的平均自由程, 下列说法不正确的是: ()A.气压越高, 气体分子的平均自由程越小;B.真空度越高, 气体分子的平均自由程越长;C.温度越高, 气体分子的平均自由程越长;D.气体分子的平均自由程与温度、压力无关, 取决于气体种类4、下列PECVD装置中, 因具有放电电极而存在离子轰击、弧光放电所致的电极损坏潜在风险和电极材料溅射污染薄膜问题的是:()A.电容耦合型;B.电感耦合型;C.微波谐振型;D.以上都不对5、按真空区域的工程划分, P = 10-4 Pa时, 属于()区域, 此时气体分子的运动以()为主。

A.粗真空;B.低真空;C.高真空;D.超高真空;E、粘滞流;F、分子流;G、粘滞-分子流H、Poiseuille流6、下列真空计中, ()属于绝对真空计。

A.热偶真空计;B.电离真空计;C.Pirani真空计;D.薄膜真空计7、CVD沉积薄膜时, 更容易获得微晶组织薄膜的方法是:()A.低温CVD;B.中温CVD;C.高温CVD;D.以上都不对8、下列真空泵中, ()属于气体输运泵。

A.旋片式机械泵;B、油扩散泵;C、涡轮分子泵;D、低温泵9、低温CVD装置一般指沉积温度<()的CVD装置。

A.1000℃;B.500℃;C.900℃;D.650℃10、下列关于镍磷镀技术的说法中, 正确的是: ()A.所获得的镀层含有25wt%左右的P而非纯Ni, 所以也称NiP镀;B、低P含量的镍磷镀镀层致密, 硬度可达到与电镀硬Cr相当的水平;C.高P含量的镍磷镀镀层无磁性;D.可直接在不具有导电性的基体上镀膜11.关于LPCVD方法, 以下说法中正确的是: ()A、低压造成沉积界面层厚度增加, 因此薄膜沉积速率比常压CVD更低;B.低压造成反应气体的扩散系数增大;C.低压导致反应气体的迁移运动速度增大;D.薄膜的污染几率比常压CVD更低12.气相沉积固态薄膜时, 根据热力学分析以下说法中不正确的是: ()A.气相过饱和度越大, 固态新相形核能垒越低;B.气相过饱和度越大, 固态新相形核能垒越高;C、气相过饱和度越大, 固态新相临界晶核尺寸越大;D.固态新相的形核能垒和临界晶核尺寸只取决于沉积温度(过冷度)13、溅射获得的气相沉积原子是高能离子轰击靶材后, 二者通过级联碰撞交换能量的结果, 因此入射离子能量()时更容易发生溅射现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释:
1、薄膜材料:一层厚度为几纳米(单层)到几微米的材料。

2、平均自由程:一个分子连续两次碰撞所经过的自由路程的平均值。

3、化学气相沉积:是指通过化学反应的方式,利用加热、等离子激励或光辐射等各种能源,在反应器内使气态或蒸汽状态的化学物质在气相或气固界面经化学反应形成固态沉积物的技术。

4、物理气相沉积:利用某种物理过程,如物质的热蒸发或在受到粒子轰击时,物质表面原子的溅射等现象,实现物质原子从源物质到薄膜的可控转移过程
5、临界核:比最小稳定核再小点,或者说在小一个原子,原子团就变成不稳定的。

这种原子团为临界核
6、稳定核:要在基片上形成稳定的薄膜,在沉积过程中必须不断产生这样的小原子团,即一旦形成就不分解。

7、平均弛豫时间:一个吸附原子与基片到达热平衡所需要的平均时间
8、平均停留时间:一个吸附原子从吸附于表面开始到脱附表面为止的平均时间
9、化学键:是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。

使离子相结合或原子相结合的作用力通称为化学键。

10、外延生长:在基片上生长具有相同或相近的晶体学取向的薄膜单晶的过程。

11、纳米材料:指在三维空间中至少有一维处于纳米尺寸(0.1-100 nm)或由它们作为基本单元构成的材料。

12、溅射阈值:将靶材原子溅射出来所需的入射离子最小能量值。

13、溅射率:一个正离子轰击到靶子后溅射下来的原子数,用s表示。

14、蒸发温度:规定物质在饱和蒸气压为10-2Torr时的温度为该物质的蒸发温度。

1、简述平均自由程在薄膜材料制备过程中的重要性,
2、请画出PVD的简易示意图,并说明其基本工作原理。

PVD的工作原理: 从源材料中发射出粒子,粒子运输到基片,粒子在基片上凝结、成核、长大、成膜。

图:
3.真空室发装置般包括哪三个部分?何者为最关键的部分,为什么?其主要的作用是什么?
答:(1)真空室(2)蒸发源和蒸发加热装置(3)放置基片及给基片加热装置关键部分:蒸发源作用: 是支撑或盛装待蒸发物,同时提供蒸热使蒸发物达到足够高的温度,以产生所需的蒸汽压。

4、在实际的溅射沉积中,辉光放电有哪四个明暗光区会出现?基片应该置于哪-区?为什么?
四个暗光区:阿斯顿暗区、阴极辉光区、克鲁克斯暗区、负辉光曲。

基片置于:负辉光区
原因:在负辉光区正离子质量较大,向阴极运动速度较慢,形成高浓度的正离子,是该区域电位升高,且负辉光区电势趋于0。

5、根据毛吸成核理论,简要说明为什么高温低速沉积往往获得粗大或单品结构薄膜,而低温高速沉积则有利于获得细小名晶、微晶乃至非品薄膜?
答: 在高温低速层及速度条件下,临界核半径和形核势垒都较大,新相核心较大且不易形成,形核率低,形成薄膜组织往往粗大或者单晶薄膜。

在低温高速层级条件下,临界核半径和形核势垒都较小,新相核心较小且容易形成,形核率高,形成薄膜组织细密连续,则有利于获得细小多晶、微晶乃至非晶薄膜。

6.请解释说明普通XRD不适用于薄膜结构检测的原因。

答: 普通XRD的入射角=20-120度,穿透深度10到100微米
①而薄膜厚度为几微米,所以不适用
②穿透深度大以致衍射信息主要来自于基体,所以也不适用。

7、现有一个在Si (100) 基片上制备的厚度为50nm的TIO2薄膜样品,为了更好的了解该薄膜的制备情况,需要对其进行哪些方面的表征?每类表征方法至少列举一种。

答: ①厚度:气相密度测量法②组分(元素):RBS ③结构:TEM
④XPS检价态⑤XRD检测基片
8、简速化学气相沉积的三个必要条件。

答①在沉积温度下,反应物具有足够的蒸汽压,并以合适的速度引入反应室。

②形成固态薄膜需有挥发性。

③沉积薄膜和基体材料必须具有足够低的蒸汽压。

9、薄膜形成的三个阶段。

①凝结过程②核形成与生长过程③岛形成与结合生长
小原子团形成是凝结的开始,小原子团生长形成晶核,晶核继续生长形成不连续的膜,薄膜厚度达到一定值时,就形成连续膜。

10.简述薄膜生长的三种模式以及影响其生长模式的两大影响因素。

答:生长模式:①岛状生长模式②单层生长模式③层岛复合生长模式因素:晶格失配度和基片表面(或者基片湿润性或浸润性)
11、根据构成薄膜的元素和化学键合,超硬薄膜材料可以分为哪三类?
12、为什么合金和化合物蒸发被膜时不易得到原成分的化学计量比?为了得到与原组分相同的化学成分,可以采用什么方法?
答:①由于各成分的饱和蒸气压不同,使得其蒸发速率也不同,会发生分解和分馏从而引起薄膜成分的偏离。

②可采用瞬间蒸发法和双源蒸发法。

(合金)
瞬间蒸发法:将细小的合金颗粒,逐次送到非常炽热的蒸发器或坩埚中,使一个一个颗粒实现瞬间完全蒸发。

双源或多源蒸发法:将形成合金的部分,分别装入各自的蒸发源中,然后独立的控制各蒸发源的蒸发速率,使达到基板的各种原子与所需合金薄膜的组成相对应。

③化合物:可采用反应蒸发法、电阻加热法、双源或多源蒸发法。

13、简述CVD制备薄膜的过程,并写出主要的步骤。

①反应气体向基片表面扩散②反应气体吸附于基片表面③在基片表面发生化学反应④在基片表面产生的气相副产物脱离表面⑤基片表面留下不挥发的固相反应产物-薄膜。

14、简述薄膜的主要生长过程
15、画出直流辉光放电的伏安特性曲线,并解释溅射镀膜的工作区城的选择以及理由。

答①AB-无光放电区:随着电源功率增大,电压升高,带电离子和电子能量增加,与气体分子碰撞电离的概率也增大。

②BC-汤森放电区:到达B点以后,极间电压维持不变,电流平稳增加。

③CD-过渡区:气体开始起辉,两极电流增大,电压迅速下。

④DE-正常辉光放电区:电流平稳增加,电压维持不变。

⑤EF-异常辉光放电区:电源功率增加,电流随着电压的升高而增大。

⑥FG-弧光放电区:极间电压下降,电流激增产生低压大电流的弧光放电。

相关文档
最新文档