学校学生出行方式统计表.doc

合集下载

交通od调查

交通od调查
4.划分的主要原则
1、按照用地性质将调查区域划分为住宿区、学习区、餐饮区、教职工工作区以及休闲娱乐活动区五个主要区域。
2、按照校园内主要道路及其它自然屏障将以上区域进行了进一步细分。
3、避免分区太细和太粗所造成的分析难度加大,抽样精度的降低。
5.表格设计样表
周内
出发地
时间
目的地
时间
出行方式
出行目的

指导教师:韩荣良
实习时间:2014.12.2-2014.12.9
校园出行OD调查
一目的
1.通过出行调查,了解同学们的日常出行情况,为校园交通规划提出建议。
2.将课堂理论用于实践,指导实践,锻炼解决问题的能力,为将来的工作打下坚实的基础。
3.通过数据分析,弄清楚交通流和交通源之间的关系以及交通源、流的发生规律,获取校内道路网上交通流的构成、流量、流向等数据。
7.实施步骤
1、小组人员进行任务的分区分工,确定主要负责人
2、分析校园布局(包括调查区域内的居住点、土地利用现状、道路情况、主要出行地点等)3 Nhomakorabea绘制调查表
4、调查表的发放与回收
5、统计调查数据
6、对数据进行分析和处理
7、总结与反思
2
3
4
5
6

8
9
周末
出发地
时间
目的地
时间
出行方式
出行目的
1

3
4
5


6.人员与分工
我们组共五人,组长张志强,组员分别是李洋、杨慎成、王锦鹏、牙森江·克伊木。具体分工是这样的:组长张志强负责安排任务以及最后的数据分析和处理;李洋和王锦鹏负责调查数据,整理数据,以及协助杨慎成和牙森江·克伊木录入数据,最后数据分析处理是全组员完成的。

大学生休闲娱乐状况调查

大学生休闲娱乐状况调查

导言随着经济的不断发展和人们生活水平的提高,休闲娱乐活动日益成为人们日常生活的重要组成部分,一个初具规模的休闲消费市场正日渐成熟。

大学生作为特殊的社会群体,日益受到休闲娱乐产业商家的青睐。

大学生的课余时间比高中和初中的时候多了很多而且比以前课余娱乐也要丰富很多,大学生们有了更多的课余时间可以利用,并且不在父母的管辖下,自己有更多的自由空间,自主安排课余休闲活动也成为了素质教育关注的重要领域。

为了深入了解和更好的分析当代大学生的课余娱乐,让大学生的课余娱乐更丰富,我们共同组成一个团队以“大学生课余休闲娱乐”为主旨进行调查力求有针对性的提出更切实的大学生娱乐方式,给大学生提供一些科学合理的休闲娱乐方式,让大学生有更多的休闲娱乐方式,不再像以前那么没有意义或者是无聊,让学生更好地学习和娱乐。

二、研究方法本报告以高等院校在校学生消费状况为对象,2011 年5 月22 日至5 月25 日在天津农学院进行了不记名问卷调查。

包括四部分,一是关于大学生休闲娱乐的基本情况,主要是娱乐的方式及目的。

二是对于当今大学生的主要休闲娱乐方式“上网”进行的比较客观的调查分析。

三是关于大学生休闲娱乐的消费情况,研究大学生用于休闲娱乐的主要支出方向。

四是休闲娱乐对于大学生学习生活的主要影响及改善方向。

共发放问卷105 份,回收问卷104 份,回馈率99% ,其中有效问卷100 份,占回收总数的96% 。

本报告以100 份有效问卷作为主要数据来源,通过调查问卷、观察、数量分析及实证分析,得出如下结论。

三、调查结果与分析(一)大学生休闲娱乐基本情况众所周知,人们的生活不能离开休闲娱乐,可以说是我们生活的一部分。

但同时,娱乐也需要金钱,我们首先对大学生的月生活支出做了调查(如图1)。

调查显示17%的人月生活费在500 元以下;52%的人月生活费在501—800 元以内;20%的人月生活费在801 —1000 元以内;有10%的人月生活费在1001 —1500 元之内;仅有1%的人月生活费在1500 元以上。

(完整版)交通od调查

(完整版)交通od调查

校园出行 OD调查张志强 (37), 李洋( 38)王锦鹏( 40),杨慎成( 42),牙森江·克依木(44)专业 : 交通工程班级: 2012210501实习地点:长安大学渭水校区指导教师:韩荣良实习时间: 2014.12.2-2014.12.9校园出行 OD调查一目的1.通过出行调查,了解同学们的日常出行情况,为校园交通规划提出建议。

2.将课堂理论用于实践,指导实践,锻炼解决问题的能力,为将来的工作打下坚实的基础。

3.通过数据分析,弄清楚交通流和交通源之间的关系以及交通源、流的发生规律,获取校内道路网上交通流的构成、流量、流向等数据。

二过程1.调查内容长安大学渭水校区同学的日常出行情况,主要包括出行目的地以及出行方式,分别从出行性别、年级、出行次数、方式、 OD 点等方面进行了调查。

2.调查方法采用问卷法和简单随机抽样的调查方法3.调查小区的划分校园分区1.长大西街2.西区篮球场3.鸿远教学楼4.一二三号宿舍楼5.水房,澡堂,西区滋兰苑餐厅6.四五六号宿舍楼7.修远教学楼8.修远湖9.明远教学楼 10. 图书馆 11.图书馆东侧12.行政楼13.行政楼东侧14.水与环境试验场15.七八九十号宿舍楼16.树蕙园东区餐厅 17.十一十二十三号宿舍楼 18.汽车试验场地19.十六号楼,东区澡堂,水房 20.北门,东区体育场,网球场地 21.十四十五号宿舍楼 22.水利试验楼及其周围 23.交通馆及其周围 24.教师公寓,长安大学医院 25.学校南门4.划分的主要原则1、按照用地性质将调查区域划分为住宿区、学习区、餐饮区、教职工工作区以及休闲娱乐活动区五个主要区域。

2、按照校园内主要道路及其它自然屏障将以上区域进行了进一步细分。

3、避免分区太细和太粗所造成的分析难度加大,抽样精度的降低。

5.表格设计样表周内出发地时间目的地时间出行方式出行目的123456789周末出发地时间目的地时间出行方式出行目的12345676.人员与分工我们组共五人,组长张志强,组员分别是李洋、杨慎成、王锦鹏、牙森江·克伊木。

山东省莱芜市2023-2024学年四上数学第七单元《条形统计图》部编版基础掌握过关卷

山东省莱芜市2023-2024学年四上数学第七单元《条形统计图》部编版基础掌握过关卷

山东省莱芜市2023-2024学年四上数学第七单元《条形统计图》部编版基础掌握过关卷学校:_______ 班级:__________姓名:_______ 考号:__________(满分:100分时间:45分钟)总分栏题号一二三四五六七总分得分评卷人得分一、认真审题,填一填。

(除标注外,每空1分)1.下面是某停车场各种机动车数量统计表.车型小汽车面包车大客车运货车辆数120804020(1)把上面的数据在条形图(图1)中表示出来.某停车场各种车型数量统计图图1(2)图1每格代表( )辆车,每格还可以代表( )辆,试着将上面的数据在图2中表示出来.某停车场各种车型数量统计图图2(3)你认为哪个图表示这里的数据比较合适?为什么?2.根据统计图完成下面各题。

(1)请把动车的运行时间在统计图中补充完整。

(2)张叔叔从上海到北京出差,去时乘高铁,回来时乘特快列车,购票一共需要元。

3.如图:是沙海湾小学四年级捐款情况统计图:(1)( )班捐款最多,是( )元;( )班捐款最少,是( )元。

(2)三个班一共捐款( )元。

(3)四(2)班比四(1班)少捐( )元。

4.如图是四(3)同学睡眠时间情况统计图。

(1)1格表示( )人。

(2)睡眠时间在( )的人数最多,睡眠时间在( )的人数最少。

(3)专家建议:小学生的睡眠时间每天应不少于10小时,四(3)有( )人睡眠不足。

5.下面是光明小学四(2)班为手拉手学校的学生捐赠图书情况统计图,请根据统计图提供的信息回答问题:(1)每格代表( )本书。

(2)( )的本数最多;( )的本数最少。

(3)( )与( )的本数同样多。

(4)四(2)班同学共为手拉手学校的学生捐赠了( )本书。

6.下面是三(1)班全体同学最喜欢的图书情况(每人限选一种)。

童话书科技书漫画书男生2115女生1338(1)男生喜欢( )的人数最多,女生喜欢( )的人数最多。

(2)喜欢童话书的一共有( )人。

2020-2021学年江苏中考数学一模二模考试试题分类(苏州专版)(8)——概率和统计(解析版)

2020-2021学年江苏中考数学一模二模考试试题分类(苏州专版)(8)——概率和统计(解析版)

2020年江苏中考数学一模二模考试试题分类(苏州专版)(8)——概率和统计一.选择题(共22小题)1.(2020•吴中区二模)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表,若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()抛掷次数100 200 300 400 500正面朝上的频数53 98 156 202 244A.200 B.300 C.500 D.8002.(2020•高新区二模)学校为了丰富学生课余活动开展了一次“爱我学校,唱我学校”的歌咏比赛,共有18名同学入围,他们的决赛成绩如表,则入围同学决赛成绩的中位数和众数分别是()成绩(分)9.40 9.50 9.60 9.70 9.80 9.90 人数 2 3 5 4 3 1 A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.603.(2020•昆山市二模)如图所示3×3的正方形网格,若向该网格中进行随机投掷飞镖试验,则飞镖扎在阴影区域(顶点均在格点上)的概率为()A.B.C.D.4.(2020•昆山市二模)一组数据:1,2,3,3,5,5,5,6的众数是()A.3 B.4 C.5 D.65.(2020•吴江区二模)九年级(1)班25名女同学进行排球垫球,每人只测一次,测试结果统计如表:8 12 20 23 24 26 32 36排球垫球(次)人数 1 1 2 4 7 6 3 1 这25名女同学排球垫1球次数的众数和中位数分别是()A.24,26 B.36,23.5 C.24,23.5 D.24,246.(2020•吴江区一模)在新年晚会的投飞镖游戏环节中,7名同学投掷的成绩(单位:环)分别是7,9,9,4,9,8,8,则这组数据的中位数是()A.4 B.7 C.8 D.97.(2020•昆山市一模)长沙某抗战纪念馆馆长联系某中学,选择18名青少年志愿者在同日参与活动,年龄如表所示:这18名志愿者年龄的众数和中位数分别是()年龄(单位:岁)12 13 14 15人数 3 5 6 4A.13,14 B.14,14 C.14,13 D.14,158.(2020•相城区校级二模)如图,飞镖游戏中的每一块正方形除颜色外都相同,若某人向游戏板投据飞镖一次(假设飞镖在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.9.(2020•工业园区校级二模)某中学初三(1)班的8名同学在一次排球垫球测试中的成绩如下:(单位:个)35,38,42,44,40,47,45,45则这组数据的中位数是()A.44 B.43 C.42 D.4010.(2020•姑苏区校级二模)有一组数据:1,3,3,6,7,8,这组数据的中位数是()A.3 B.3.5 C.4 D.4.511.(2020•姑苏区校级二模)如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,若向正方形网格中投针,落在△ABC内部的概率是()A.B.C.D.12.(2020•常熟市二模)在2019年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、平均数依次是()A.48,48,48 B.48,47.5,47.5C.48,48,48.5 D.48,47.5,48.513.(2020•苏州二模)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()A.B.C.D.14.(2020•昆山市二模)一组数据:2,4,6,4,8的中位数和众数分别是()A.6,4 B.4,4 C.6,8 D.4,615.(2020•常熟市二模)在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为()A.10 B.15 C.20 D.2416.(2020•苏州一模)某校为了了解学生到校的方式,随机抽取了部分学生进行问卷调查,并将调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,则扇形统计图中“步行”对应的圆心角的度数为()A.54°B.60°C.72°D.108°17.(2020•工业园区一模)如图所示的飞镖游戏板是顺次连接正六边形的三个不相邻的顶点后得到的,若某人向该游戏板投掷镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.1 B.C.D.18.(2020•高新区模拟)五张完全相同的卡片上,分别画有圆、平行四边形、等边三角形、角、线段,现从中随机抽取一张,恰好抽到轴对称图形的概率是()A.B.C.D.19.(2020•相城区一模)如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,若向正方形网格中投针,落在△ABC内部的概率是()A.B.C.D.20.(2020•高新区一模)下列事件是必然事件的是()A.打开电视机,正在播放动画片B.在一只装有5个红球的袋中摸出1球,一定是红球C.某彩票中奖率是1%,买100张一定会中奖D.2018年世界杯德国队一定能夺得冠军21.(2020•姑苏区校级模拟)下列说法错误的是()A.必然发生的事件发生的概率为1B.不可能发生的事件发生的概率为0C.随机事件发生的概率大于0且小于1D.概率很小的事件不可能发生22.(2020•常熟市二模)如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,随机在大正方形及其内部区域投针,若针孔扎到小正方形(阴影部分)的概率是,则大、小两个正方形的边长之比是()A.4:1 B.2:1 C.1:4 D.1:2二.填空题(共6小题)23.(2020•姑苏区校级二模)如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为.24.(2020•昆山市二模)在校园“阅读节”活动中,对某班每一位同学在一周内平均阅读书籍的本数作了调查,并将收集到的数据绘制成了“一周阅读书籍数量”统计表,如表所示,则该班级全体同学一周平均阅读书籍数量是本.4 3 2 1 0阅读书籍数量(本)人数 6 15 13 5 1 25.(2020•姑苏区一模)转动如图所示被等分为8份的转盘一次,指针指向阴影部分的概率为.26.(2020•工业园区一模)某工程队有10名员工,他们的工种及相应每人每月工资如表:工种人数每人每月工资/元电工 2 6000木工 3 5000瓦工 5 4000现该工程队对工资进行了调整:每人每月工资增加300元.与调整前相比,该工程队员工每月工资的方差.(填“变小”、“不变”或“变大”)27.(2020•高新区二模)如图,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域的概率为.28.(2020•吴江区三模)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,一次就能打开锁的概率是.三.解答题(共12小题)29.(2020•吴中区二模)今年6月1日起苏州市全面实行垃圾分类,为了解同学们对垃圾分类知识的知晓情况,我区某校环保社团的同学们进行了抽样调查,对收集的信息进行整理,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的数据,解答下列问题:图中A表示“很了解”,B表示“了解”,C表示“一般”,D表示“不了解”.(1)被调查的总人数是人,扇形统计图中C部分所对应的扇形圆心角的度数为;(2)若该校共有学生1800人,请根据上述调查结果,估计该校学生中B类有多少人.30.(2020•吴中区二模)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和1个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小明只有一次摸球机会,那么小明获得奖品的概率为.(2)如果小明有两次摸球机会(摸出后不放回),求小明获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)31.(2020•昆山市二模)某学校为了了解九年级学生上学期间平均每天的睡眠情况,现从全校600名九年级学生中随机抽取了部分学生,调查了这些同学上学期间平均每天的睡眠时间t(单位:小时),并根据调查结果列出统计表,绘制成扇形统计图,如图所示.请你根据图表提供的信息解答下列问题:平均每天睡眠时间分组统计表组别序号睡眠时间t(小时)人数(频数)1组t<6 m2组6≤t<7 213组7≤t<8 n4组t≥8 4(1)m=,n=,a=(a为百分号前的数字);(2)随机抽取的这部分学生平均每天睡眠时间的中位数落在组(填组别序号);(3)估计全校600名九年级学生中平均每天睡眠时间不低于7小时的学生有名;(4)若所抽查的睡眠时间t≥8(小时)的4名学生,其中2名男生和2名女生,现从这4名学生中随机选取2名学生参加个别访谈,请用列表或画树状图的方法求选取的2名学生恰为1男1女的概率.32.(2020•姑苏区一模)新学期复学后,学校为了保障学生的出行安全,随机调查了部分学生的上学方式(每位学生从乘私家车、坐公交、骑车和步行4种方式中限选1项),根据调查数据制作了如图所示的不完整的统计表和扇形统计图.上学方式统计表上学方式人数乘私家车42坐公交54骑车a步行b(1)本次学校共调查了名学生,a=,m=;(2)求扇形统计图中“步行”对应扇形的圆心角;(3)甲、乙两位同学住在同一小区,且都坐公交车上学,有A、B、C三路公交车途径该小区和学校,假设甲、乙两位同学坐这三路公交车是等可能的,请用列表或画树状图的方法求某日甲、乙两位同学坐同一路公交车到学校的概率.33.(2020•吴江区二模)初三(1)班针对“垃圾分类”知晓情况对全班学生进行专题调查活动,对“垃圾分类”的知晓情况分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,每名学生可根据自己的情况任选其中一类,班长根据调查结果进行了统计,并绘制成了不完整的条形统计图和扇形统计图.根据以上信息解决下列问题:(1)初三(1)班参加这次调查的学生有人,扇形统计图中类别C所对应扇形的圆心角度数为°;(2)求出类别B的学生数,并补全条形统计图;(3)类别A的4名学生中有2名男生和2名女生,现从这4名学生中随机选取2名学生参加学校“垃圾分类”知识竞赛,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.34.(2020•工业园区一模)学校随机抽取部分学生就“你是否喜欢网课”进行问卷调查,并将调查结果进行统计后,绘制成如下统计表和扇形统计图.调查结果统计表态度非常喜欢喜欢一般不知道频数90 b30 10频率a0.35 0.20(1)在统计表中,a=,b=;(2)求出扇形统计图中“喜欢”网课所对应扇形的圆心角度数;(3)已知该校共有2000名学生,试估计该校“非常喜欢”网课的学生有多少人?35.(2020•吴江区一模)苏州市某初中学校对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业时间不超过1.5小时.该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图的一部分.时间(小时)频数(人数)频率0≤t<0.5 4 0.10.5≤t<1 a0.31≤t<1.5 10 0.251.5≤t<2 8 b2≤t<2.5 6 0.15合计 1(1)a=,b=;(2)补全频数分布直方图;(3)请估计该校1500名初中学生中,约有多少学生在1.5小时以内完成家庭作业.36.(2020•吴江区一模)小张用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩余的3支签中任意抽出1支签.(1)小张第一次抽到的是乙签的概率是;(2)求抽出的两支签中,1支为甲签、1支为丙签的概率(用画树状图或列表法求解).37.(2020•常熟市校级模拟)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生1500人,试估计该校选择文明宣传的学生人数.38.(2020•姑苏区一模)某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图).(1)该班学生人数有人;(2)将条形统计图补充完整;(3)若该校共有学生3500名,请估计有多少人选修足球?(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.39.(2020•高新区一模)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)若由甲挑一名选手打第一场比赛,选中乙的概率是多少?(直接写出答案)(2)任选两名同学打第一场,请用树状图或列表法求恰好选中甲、乙两位同学的概率.40.(2020•昆山市一模)某市教育行政部门为了解初中学生参加综合实践活动的情况,随机抽取了本市初一、初二、初三年级各500名学生进行了调查.调查结果如图所示,请你根据图中的信息回答问题.(其中社区服务占14%,社会调查占16%)(1)在被调查的学生中,参加综合实践活动的有多少人?参加科技活动的有多少人?(2)如果本市有3万名初中学生,请你估计参加科技活动的学生约有多少名?2020年江苏中考数学一模二模考试试题分类(苏州专版)(8)——概率和统计参考答案与试题解析一.选择题(共22小题)1.(2020•吴中区二模)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表,若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()抛掷次数100 200 300 400 500正面朝上的频数53 98 156 202 244A.200 B.300 C.500 D.800【答案】C【解答】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以当抛掷硬币的次数为1000时,“正面朝上”的频数最接近1000×0.5=500次,故选:C.2.(2020•高新区二模)学校为了丰富学生课余活动开展了一次“爱我学校,唱我学校”的歌咏比赛,共有18名同学入围,他们的决赛成绩如表,则入围同学决赛成绩的中位数和众数分别是()成绩(分)9.40 9.50 9.60 9.70 9.80 9.90 人数 2 3 5 4 3 1 A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60【答案】B【解答】解:在这一组数据中9.60是出现次数最多的,故众数是9.60,而这组数据处于中间位置的那两个数都是9.60和9.6,由中位数的定义可知,这组数据的中位数是9.60.故选:B.3.(2020•昆山市二模)如图所示3×3的正方形网格,若向该网格中进行随机投掷飞镖试验,则飞镖扎在阴影区域(顶点均在格点上)的概率为()A.B.C.D.【答案】A【解答】解:∵大正方形的面积=3×3=9,阴影部分的面积=大正方形的面积﹣4个小直角三角形的面积=9﹣4××2×1=9﹣4=5,∴阴影部分的面积占总面积的,∴飞镖落在阴影区域(顶点都在格点上)的概率为.故选:A.4.(2020•昆山市二模)一组数据:1,2,3,3,5,5,5,6的众数是()A.3 B.4 C.5 D.6【答案】C【解答】解:在这一组数据中5是出现次数最多的,故众数是5.故选:C.5.(2020•吴江区二模)九年级(1)班25名女同学进行排球垫球,每人只测一次,测试结果统计如表:8 12 20 23 24 26 32 36排球垫球(次)人数 1 1 2 4 7 6 3 1 这25名女同学排球垫1球次数的众数和中位数分别是()A.24,26 B.36,23.5 C.24,23.5 D.24,24【答案】D【解答】解:由表可知,24出现次数最多,所以众数为24;由于一共测了25人,所以中位数为排序后的第13人,即24.故选:D.6.(2020•吴江区一模)在新年晚会的投飞镖游戏环节中,7名同学投掷的成绩(单位:环)分别是7,9,9,4,9,8,8,则这组数据的中位数是()A.4 B.7 C.8 D.9【答案】C【解答】解:按从小到大的顺序排列为4,7,8,8,9,9,9,最中间的数是8,故这组数据的中位数是8.故选:C.7.(2020•昆山市一模)长沙某抗战纪念馆馆长联系某中学,选择18名青少年志愿者在同日参与活动,年龄如表所示:这18名志愿者年龄的众数和中位数分别是()年龄(单位:岁)12 13 14 15人数 3 5 6 4A.13,14 B.14,14 C.14,13 D.14,15【答案】B【解答】解:观察图表可知:年龄是14的人数有6人,出现次数最多,故众数为14;由图可知参加社区服务志愿者的共有18人,所以中位数为(14+14)÷2=14,故中位数是14;故选:B.8.(2020•相城区校级二模)如图,飞镖游戏中的每一块正方形除颜色外都相同,若某人向游戏板投据飞镖一次(假设飞镖在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.【答案】B【解答】解:∵总面积为4×4=16,其中阴影部分面积为4×3﹣×(1×2+2×3+2×4)=4,∴飞镖落在阴影部分的概率是=,故选:B.9.(2020•工业园区校级二模)某中学初三(1)班的8名同学在一次排球垫球测试中的成绩如下:(单位:个)35,38,42,44,40,47,45,45则这组数据的中位数是()A.44 B.43 C.42 D.40【答案】B【解答】解:将这组数据从小到大重新排列为35、38、40、42、44、45、45、47,所以这组数据的中位数为=43,故选:B.10.(2020•姑苏区校级二模)有一组数据:1,3,3,6,7,8,这组数据的中位数是()A.3 B.3.5 C.4 D.4.5【答案】D【解答】解:将题目中的数据按照从小到大排列是:1,3,3,6,7,8,故这组数据的中位数是:=4.5,故选:D.11.(2020•姑苏区校级二模)如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,若向正方形网格中投针,落在△ABC内部的概率是()A.B.C.D.【答案】C【解答】解:∵正方形的面积=2×2=4,三角形ABC的面积=4﹣﹣1×2×﹣1×2×=,则落在△ABC内部的概率是=;故选:C.12.(2020•常熟市二模)在2019年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、平均数依次是()A.48,48,48 B.48,47.5,47.5C.48,48,48.5 D.48,47.5,48.5【答案】A【解答】解:这组数据48出现的次数最多,出现了3次,则这组数据的众数是48;把这组数据从小到大排列,最中间两个数的平均数是(48+48)÷2=48,则中位数是48;这组数据的平均数是:(47×2+48×3+50)÷6=48,故选:A.13.(2020•苏州二模)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()A.B.C.D.【答案】A【解答】解:因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)==.故选:A.14.(2020•昆山市二模)一组数据:2,4,6,4,8的中位数和众数分别是()A.6,4 B.4,4 C.6,8 D.4,6【答案】B【解答】解:将数据按从小到大排列:2,4,4,6,8其中数据4出现了2次,出现的次数最多,为众数;4处在第3位,4为中位数.所以这组数据的众数是4,中位数是4.故选:B.15.(2020•常熟市二模)在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为()A.10 B.15 C.20 D.24【答案】D【解答】解:根据题意得=0.25,解得:a=24,经检验:a=24是分式方程的解,故选:D.16.(2020•苏州一模)某校为了了解学生到校的方式,随机抽取了部分学生进行问卷调查,并将调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,则扇形统计图中“步行”对应的圆心角的度数为()A.54°B.60°C.72°D.108°【答案】C【解答】解:由图可得,本次抽查的学生有:15÷30%=50(人),扇形统计图中“步行”对应的圆心角的度数为:360°×=72°,故选:C.17.(2020•工业园区一模)如图所示的飞镖游戏板是顺次连接正六边形的三个不相邻的顶点后得到的,若某人向该游戏板投掷镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.1 B.C.D.【答案】B【解答】解:设正六边形的边长为a,则总面积为a2×6=a2,其中阴影部分面积为×(a)2=a2,∴飞镖落在阴影部分的概率是=,故选:B.18.(2020•高新区模拟)五张完全相同的卡片上,分别画有圆、平行四边形、等边三角形、角、线段,现从中随机抽取一张,恰好抽到轴对称图形的概率是()A.B.C.D.【答案】D【解答】解:卡片中,轴对称图形有圆、等边三角形、角、线段,根据概率公式,P(轴对称图形)=.故选:D.19.(2020•相城区一模)如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,若向正方形网格中投针,落在△ABC内部的概率是()A.B.C.D.【答案】C【解答】解:∵阴影部分的面积为××2=5,总面积为16,∴向正方形网格中投针,落在△ABC内部的概率是,故选:C.20.(2020•高新区一模)下列事件是必然事件的是()A.打开电视机,正在播放动画片B.在一只装有5个红球的袋中摸出1球,一定是红球C.某彩票中奖率是1%,买100张一定会中奖D.2018年世界杯德国队一定能夺得冠军【答案】B【解答】解:A.打开电视机,正在播放动画片是随机事件;B.在一只装有5个红球的袋中摸出1球,一定是红球是必然事件;C.某彩票中奖率是1%,买100张一定会中奖是随机事件;D.2018年世界杯德国队一定能夺得冠军是随机事件;故选:B.21.(2020•姑苏区校级模拟)下列说法错误的是()A.必然发生的事件发生的概率为1B.不可能发生的事件发生的概率为0C.随机事件发生的概率大于0且小于1D.概率很小的事件不可能发生【答案】D【解答】解:A、必然发生的事件发生的概率为1,正确;B、不可能发生的事件发生的概率为0,正确;C、随机事件发生的概率大于0且小于1,正确;D、概率很小的事件也有可能发生,故错误,故选:D.22.(2020•常熟市二模)如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,随机在大正方形及其内部区域投针,若针孔扎到小正方形(阴影部分)的概率是,则大、小两个正方形的边长之比是()A.4:1 B.2:1 C.1:4 D.1:2【答案】B【解答】解:∵针扎到小正方形(阴影部分)的概率是,∴=,∴大、小两个正方形的边长之比是2:1;故选:B.二.填空题(共6小题)23.(2020•姑苏区校级二模)如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为.【答案】.【解答】解:设正方形的边长为2a,则正方形的内切圆的半径为a,所以针尖落在黑色区域内的概率==.故答案为.24.(2020•昆山市二模)在校园“阅读节”活动中,对某班每一位同学在一周内平均阅读书籍的本数作了调查,并将收集到的数据绘制成了“一周阅读书籍数量”统计表,如表所示,则该班级全体同学一周平均阅读书籍数量是 2.5本.4 3 2 1 0阅读书籍数量(本)人数 6 15 13 5 1 【答案】见试题解答内容【解答】解:(4×6+3×15+2×13+1×5+0×1)÷(6+15+13+5+1)=100÷40=2.5(本).答:该班级全体同学一周平均阅读书籍数量是2.5本.故答案为:2.5.25.(2020•姑苏区一模)转动如图所示被等分为8份的转盘一次,指针指向阴影部分的概率为.【答案】见试题解答内容【解答】解:转动如图所示的转盘一次,指针指向阴影部分的概率为=,故答案为:.26.(2020•工业园区一模)某工程队有10名员工,他们的工种及相应每人每月工资如表:工种人数每人每月工资/元电工 2 6000木工 3 5000瓦工 5 4000现该工程队对工资进行了调整:每人每月工资增加300元.与调整前相比,该工程队员工每月工资的方差不变.(填“变小”、“不变”或“变大”)【答案】见试题解答内容【解答】解:∵每人每月工资增加300元,∴平均每人工资都增加300元,∴该工程队员工每月工资的方差不变.故答案为:不变.27.(2020•高新区二模)如图,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域的概率为.【答案】见试题解答内容【解答】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,∴针头扎在阴影区域内的概率为;故答案为:.28.(2020•吴江区三模)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,一次就能打开锁的概率是.【答案】见试题解答内容【解答】解:列表如下:(其中1,2,3,4分别表示四把钥匙,a,b表示四把锁,1能开启a,2能开启b),1 2 3 4a(1,a)(2,a)(3,a)(4,a)b(1,b)(2,b)(3,b)(4,b)所有等可能的情况有8种,任意取出一把钥匙去开任意一把锁,一次就能打开锁的情况有2种,(1,a),(2,b),则P==.故答案为:三.解答题(共12小题)29.(2020•吴中区二模)今年6月1日起苏州市全面实行垃圾分类,为了解同学们对垃圾分类知识的知晓情况,我区某校环保社团的同学们进行了抽样调查,对收集的信息进行整理,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的数据,解答下列问题:图中A表示“很了解”,B表示“了解”,C表示“一般”,D表示“不了解”.(1)被调查的总人数是50人,扇形统计图中C部分所对应的扇形圆心角的度数为216°;(2)若该校共有学生1800人,请根据上述调查结果,估计该校学生中B类有多少人.【答案】见试题解答内容【解答】解:(1)5÷10%=50(人),360°×=216°,故答案案为:50,216°;(2)1800×=360(人),答:该校1800名学生中B类有360人.30.(2020•吴中区二模)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和1个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小明只有一次摸球机会,那么小明获得奖品的概率为.(2)如果小明有两次摸球机会(摸出后不放回),求小明获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)【答案】见试题解答内容【解答】解:(1)如果小明只有一次摸球机会,那么小明获得奖品的概率为,故答案为:;(2)列表如下:。

幼儿园出行方式调查统计表:家长出行方式的调查与分析

幼儿园出行方式调查统计表:家长出行方式的调查与分析

根据你提供的主题,我将首先对家长的出行方式进行调查和统计分析。

接下来,我将深入探讨不同出行方式的利弊以及对幼儿园生活的影响。

我将共享我的观点和理解,以及对这个主题的个人见解。

幼儿园出行方式调查统计表1. 家长的出行方式统计1.1 通过私家车接送1.2 步行或骑行1.3 公共汽车或地铁1.4 托管班或校车接送2. 家长出行方式的调查与分析2.1 通过私家车接送通过私家车接送孩子上幼儿园的家长比例和原因分析,包括便利性、安全性和时间成本等方面的考量。

2.2 步行或骑行步行或骑行接送孩子上幼儿园的家长比例和健康、环保等方面的优点分析。

2.3 公共汽车或地铁选择公共交通工具接送孩子上幼儿园的家长比例和对环境、交通压力等方面的影响分析。

2.4 托管班或校车接送家长选择托管班或校车接送孩子上幼儿园的原因和对孩子独立性、安全感等方面的影响分析。

3. 我的观点和理解3.1 对于私家车接送的家长,可以在文中提出一些建议来减少交通拥堵和环境污染。

3.2 对于步行或骑行的家长,可以与相关机构合作,倡导低碳生活,提倡健康出行。

3.3 对于选择公共交通工具的家长,可以探讨公共交通发展的现状和未来,提出改善建议。

3.4 对于选择托管班或校车的家长,可以提出关于学校安全和服务质量等方面的建议。

通过以上深度分析和个人观点,文章将从不同角度对幼儿园出行方式进行调查和统计,并探讨家长在出行方式选择上的考量和影响,最终帮助读者对这一话题有更全面、深刻的理解。

幼儿园出行方式对孩子成长的影响随着都市化的加速和城市交通的不断拥堵,家长在选择幼儿园出行方式时面临着各种考量和挑战。

家长的出行方式不仅关系到孩子的安全与舒适度,同时也对孩子的独立性、环保意识以及身心健康产生着深远的影响。

在幼儿园及校园接送这一日常活动中,家长们的选择不仅关乎孩子的教育理念和生活品质,更涉及到城市交通和社会环境的持续改善。

考量不同出行方式的利弊及对幼儿园生活的影响,对于提升家长和孩子的出行体验和社会氛围具有重要意义。

出行方式调查统计小学教案

出行方式调查统计小学教案

出行方式调查统计小学教案学生的出行方式调查统计是一门科学、技术性较强、比较综合性的学科,是教师设计课堂教学的一个重要环节。

它能充分发挥学生的主体性和创造性,培养创新精神和实践能力。

因此在教学中不能拘泥于单一枯燥的教与学的模式而要根据学生学情灵活机动地进行教学实践活动。

通过观察、调查等方法调查学生出行方式时学生在课堂上能否主动地投入到课堂教学中来?这对学生来说是否具有挑战性?对于教师来说是否具有创造性地进行作业设计及课堂评价?如果学生能够自主地进行相关作业设计与评价就能达到良好的教学效果吗?在本节课中,作为一个以统计为主要手段学科课堂活动形式之一的出行方式调查统计对于学生了解我国各城市道路系统状况有着重要意义。

为让学生对公交系统有一个更加全面、直观了解我国目前公共交通发展状况以及在公共交通运行过程中遇到的问题等进行有益探究与实践活动,我们对一年级新来学生以小组为单位共同参与本课研究以激发其参与积极性.采用“学生说”方式教学,通过小组讨论和总结交流解决问题,使他们在活动中感受社会大家庭成员之间相互关心和相互帮助。

一、重点1.通过交通方式调查,了解我国各城市道路系统状况;点1.学生思考:通过观察发现我国各城市道路系统的情况。

2.讨论交流:针对不同城市的情况,通过对不同人群采取不同方式进行调查,探究调查统计方法,了解不同人群采取何种方式出行,从而初步建立解决实际问题的方法和观念点2.小组讨论:针对本小组不同情况,进行相应问卷调查。

点3.总结交流:分析调查统计结果,总结出解决问题的合理方法及初步观念。

点4.总结:小组发言后同学们自由讨论分析情况、发现解决方法等问题,并撰写总结报告。

点5.巩固分析结果:通过对调查统计表资料的归纳与整理能够巩固对分析结果的认识和掌握基本概念的意义。

点6.教师总结:本节课中所采取的调查统计方式是一种简便而有效的方法,能够有效地帮助学生全面、准确地掌握所学知识,并且能够更好地指导实际工作,同时也能够充分调动同学们的积极性。

【暑假分层作业】第14练 数据的收集、整理与描述-2022年七年级数学(人教版)(原卷)

【暑假分层作业】第14练 数据的收集、整理与描述-2022年七年级数学(人教版)(原卷)

第14练数据的收集、整理与描述知识点一、全面调查和抽样调查(1)统计调查的方法有全面调查(即普查)和抽样调查.(2)(2)全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.(3)知识点二、总体、个体、样本、样本容量:①总体:我们把所要考察的对象的全体叫做总体;②个体:把组成总体的每一个考察对象叫做个体;③样本:从总体中取出的一部分个体叫做这个总体的一个样本;④样本容量:一个样本包括的个体数量叫做样本容量.知识点三、用样本估计总体用样本的频率分布估计总体分布:从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.知识点四、统计图的选用:(1)扇形统计图:扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.(2)条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.(3)折线统计图:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.知识点五、频数和频率:(1)频数是指每个对象出现的次数.(2)频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.频率反映了各组频数的大小在总数中所占的分量.知识点六、频数分布表在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表.知识点七、频数分布直方图:(1)计算极差,即计算最大值与最小值的差.(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).(3)确定分点,将数据分组.(4)列频率分布表.(5)绘制频率分布直方图.一、单选题1.为了解某小区2000户居民新冠疫苗的接种情况,工作人员随机对小区300户居民进行了调查关于此次调查,下列叙述正确的是()A.所采用的调查方法是普查B.总体是2000户居民C.样本是300户居民新冠疫苗的接种情况的全体 D.样本容量是20002.某校为了了解线上教育对孩子视力的影响情况对该校1200名学生中抽取了120名学生进行了视力下降情况的抽样调查,下列说法正确的是()A.1200名学生是总体B.样本容量是120名学生的视力下降情况C.个体是每名同学的视力下降情况D.此次调查属于普查3.某数学学习小组为了解本校同学日常“垃圾分类”投放情况,随机从本校同学中抽取部分同学进行调查,并将调查到的数据绘制成如图所示的扇形统计图,其中A:每次分类投放,B:经常分类投放,C:有时分类投放,D:从不分类投放,则下列说法中错误的是()A.此次共随机调查了200名同学B.选择“每次分类投放”垃圾的同学有55人C.选择“有时分类投放”垃圾所在扇形圆心角的度数为46.8︒D.选择“从不分类投放”垃圾的同学占比2%4.某面粉厂准备确定面粉包装袋的规格,市场调查员小李随机选择三家超市进行调查,收集三家超市一周的面粉销售情况,并整理数据、做出如图所示的统计图,则该面粉厂应选择面粉包装袋的规格为()A.2kg/包B.3kg/包C.4kg/包D.5kg/包5.为响应国家“双减”政策,增强学生体质,某枚定期开展跑步、体操、球类等课外体育活动.为了了解学生对这些项目的喜爱情况,在全校范围内随机抽取了若干名学生,对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据统计后,绘制出两幅不完整的统计图,其中A-跑步,B-体操,C-球类,D-其他,则下列说法错误的是()A.样本容量为400 B.类型B的人数为120人C.类型C所占百分比为30% D.类型D所对应的扇形的圆心角为36︒6.为了解九年级学生“绿色出行”方式的情况,某校以问卷调查的形式对九年级部分学生进行了调查,绘制出如下的条形统计图和扇形统计图.由图可知,下列结论正确的是()A.本次调查的学生人数有100人∠=85°B.αC.选择步行的人数有24人D.选择乘坐出租车的人数是选择乘坐私家车的人数的2倍二、填空题7.一组数据共50个,分别落在5个小组内,第一、二、三、五组的频数分别为2,8,15,5,则第四小组的频数以及所占的百分比分别为____________.8.甲、乙、丙三人进行乒乓球单打训练,每局两人进行比赛,第三个人做裁判,每一局都要分出胜负,胜方和原来的裁判进行新一局的比赛,输方转做裁判,依次进行.半天训练结束时,发现甲共当裁判4局,乙、丙分别打了9局、14局比赛,在这半天的训练中,甲、乙、丙三人共打了________局比赛.9.为了解晋州市文苑社区20~60岁居民最常用的支付方式,嘉嘉和淇淇对该社区相应年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成两幅不完整的统计图.请根据图中信息回答,在参与调查的居民中,处于41-60岁且最常用微信支付的人数为___________人.10.如图是某厂2018~2021年生产总值和年增长率的统计图.该厂年生产总值净增量最多的是___年,生产总值年增长率最大的是_____年.11.近期苏州因疫情开展网上在线学习,为了解学生对网上在线学习效果的满意度,我校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如下统计图(不完整).请根据图中信息解答下列问题:(1)样本容量为________;(2)扇形统计图中表示“基本满意”的扇形的圆心角的度数是________ ;(3)我校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“满意”的学生有________人.12.餐厅在客人用餐完毕后收拾餐桌分以下几个步骤:①回收餐具与剩菜、清洁桌面;②清洁椅面与地面;③摆放新餐具.前两个步骤顺序可以互换,但摆放新餐具必须在前两个步骤都完成之后才可进行,针对桌子的大小,每个步骤所花费时间如下表所示:回收餐具与剩菜、清洁桌面清洁椅面与地面摆放新餐具大桌 5 3 2小桌 3 2 1现有三名餐厅工作人员分别负责三个步骤,但每张桌子同一时刻只允许一名工作人员进行工作,如果此时恰有两张小桌和一张大桌需要清理,那么将三张桌子收拾完毕最短需要_______分钟. 三、解答题13.在信息快速发展的社会,“信息消费”已成为人们生活的重要部分.泰州市的一个社区随机抽取了部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图.已知A 、B 两组户数直方图的高度比为1:5,请结合图中相关数据回答下列问题. 月消费额分组统计表组别 消费金额A 10100x ≤<B 100200x ≤<C 200300x ≤<D 300400x ≤< E400x ≥(1)A 组的频数是 ,本次调查样本的容量是 ; (2)补全直方图(需标明各组频数);(3)若该社区有3000户住户,请估计月信息消费额不少于200元的户数是多少?14.为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩;在扇形统计图中,表示“优秀”的扇形圆心角的度数为______;(2)将条形统计图补充完整;(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?15.为弘扬中华传统文化,草根一中准备开展“传统手工技艺”学习实践活动.校学生会在全校范围内随机地对本校一些学生进行了“我最想学习的传统手工技艺”问卷调查(问卷共设有五个选项:“A一剪纸”、“B一木版画雕刻”、“C一陶艺创作”、“D一皮影制作”、“E一其他手工技艺”,参加问卷调查的这些学生,每人都只选了其中的一个选项),将所有的调查结果绘制成如下两幅不完整的统计图:请你根据以上信息,回答下列问题:(1)补全上面的条形统计图;(2)求扇形E的圆心角度数;(3)该校共有3600名学生,请你估计该校学生“最想学习的传统手工技艺”为“A一剪纸”的人数.16.为了解某校九年级中考一模数学考试情况,在九年级随机抽取了一部分学生的一模数学成绩为样本,分为A(135~150分),B(120~134.9分),C(105~119.9分),D(0~104.9分)四个等级进行统计,并将统计结果绘制成统计图(学生的中考一模数学成绩均为整数,如135~150指不超过150,不低于135),请你根据统计图解答以下问题:(1)这次随机抽取的学生共有几人?(2)求B,D等级人数,并补全条形统计图;(3)扇形统计图中扇形B的圆心角的度数是多少?(4)这个学校九年级共有学生800人,若分数为120分(含120分)以上为优秀.请估计这次九年级一模数学考试成绩为优秀的学生人数是多少人?17.新冠疫情期间,某学校为加强学生的疫情防控意识,组织七年级学生参加疫情防控知识竞赛,从中抽取了部分学生的成绩x(满分为100分)进行统计,绘制成了如下不完整的频数分布表和频数分布直方图:成绩x(分)频数百分比60<x≤70 270<x≤80 8 40%80<x≤90 30%90<x≤100(1)这次抽取了多少名学生的竞赛成绩?成绩在“8090x <≤”、“90100x <≤”的频数分别是多少?(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生疫情防控意识不强,有待进一步加强防控意识教育,则抽取的学生中防控意识不强的占总抽取学生的百分比是多少?18.某学校环保志者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI )数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题: AQI 指数 质量等级 天数(天)0-50 优 m51-100 良 44 101-150 轻度污染 n151-200 中度污染 4 201-300 重度污染 2 300以上 严重污染2(1)统计表中m =______,n =______.扇形统计图中,空气质量等级为“良”的天数占_____%; (2)补全直方图,并通过计算估计该市城区的空气质量等级为“中度污染”和“重度污染”的天数共多少天?(结果保留整数)1.在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,下列说法不正确...的是()A.第四小组有10人B.本次抽样调查的样本容量为50C.该校“一分钟跳绳”成绩优秀的人数约为480人D.第五小组对应圆心角的度数为45 2.下表是某校七年级各班某月课外兴趣小组活动时间的统计表,其中各班同一兴趣小组每次活动时间相同.体育小组活动次数科技小组活动次数文艺小组活动次数课外兴趣小组活动总时间单位:1班 4 6 5 11.5 2班 4 6 4 11 3班 4 7 4 12 4班 6 13 说明:活动次数为正整数科技小组每次活动时间为______h,该年级4班这个月体育小组活动次数最多可能是______次.3.某校八年级数学老师们在全年级开展教学创新对比试验,所有班级都被设为实验班或对比班,一学期后对全年级同学进行了数学水平测试,观察实验效果.从实验班和对比班中各随机抽取20名学生的测试成绩(满分100)进行整理和分析(成绩共分成五组:A.50≤x<60,B.60≤x<70,C.70≤x<80,D.80≤x<90,E.90≤x≤100),绘制了如下不完整的统计图表:一、收集、整理数据:实验班20名学生的数学成绩分别为:50,65,68,76,77,78,87,88,88,88,89,89,89,89,93,95,97,97,98,99,对比班学生数学成绩在C组和D 组的分别为:73,74,74,74,74,76,83,88,89.二、分析数据:两组样本数据的平均数、中位数和众数如表所示:成绩平均数中位数众数实验班85 88.5 b对比班81.8 a 74三、描述数据:请根据以上信息,回答下列问题:(1)①补全频数分布直方图;②填空:a=,b=;(2)根据以上数据,你认为实验班的数学成绩更好还是对比班的数学成绩更好?判断并说明理由(两条理由即可);(3)如果我校八年级实验班共有学生900名,对比班共有学生600名,请估计全年级本次数学成绩不低于80分的学生人数.4.弘扬鹭岛新风,文明有你有我.某校初中部组织学生开展志愿服务活动,活动设有“义务讲解”、“交通督导”、“图书义卖”、“社区服务”、“探望老人”等五个项目,要求每名同学至少选择其中一个项目参加.该校初中部共有800名学生,现随机抽取该校初中三个年级的部分学生,对其参加活动项目的情况进行调查,并制作了统计图表,如表、图1、图2.被抽样学生参加的活动项目频数分布表:被抽样学生参加的活动项目数量人数所占比例参加一项活动57 0.38参加两项活动 a 0.30参加三项活动30 0.20参加四项活动12 0.08参加五项活动 6 0.04(1)求a的值;(2)估计该校初中部800名学生中参加三项以上(含三项)活动的人数;(3)被抽样学生中,参加社区服务活动的初二年级人数占参加该项目的总人数的比例达到52%,小刚结合图2判断:相比图书义卖,社区服务更受该校初二年级的学生欢迎.你认为小刚的判断正确吗?请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档