数学物理方法试卷答案

合集下载

高中物理数学物理法题20套(带答案)含解析

高中物理数学物理法题20套(带答案)含解析

高中物理数学物理法题20套(带答案)含解析一、数学物理法1.在地面上方某一点分别以和的初速度先后竖直向上抛出两个小球(可视为质点),第二个小球抛出后经过时间与第一个小球相遇,要求相遇地点在抛出点或抛出点以上,改变两球抛出的时间间隔,便可以改变值,试求(1)若,的最大值(2)若,的最大值【答案】(1)(2)22212v vvtg-∆=-【解析】试题分析:(1)若,取最大值时,应该在抛出点处相遇,则最大值(2)若,取最大值时,应该在第一个小球的上抛最高点相遇,解得,分析可知,所以舍去最大值22212v vvtg-∆=考点:考查了匀变速直线运动规律的应用【名师点睛】本题的解题是判断并确定出△t取得最大的条件,也可以运用函数法求极值分析.2.如图所示,长为3l的不可伸长的轻绳,穿过一长为l的竖直轻质细管,两端拴着质量分别为m2m的小球A和小物块B,开始时B先放在细管正下方的水平地面上.手握细管轻轻摇动一段时间后,B对地面的压力恰好为零,A在水平面内做匀速圆周运动.已知重力加速度为g,不计一切阻力.(1)求A做匀速圆周运动时绳与竖直方向夹角θ;(2)求摇动细管过程中手所做的功;(3)轻摇细管可使B在管口下的任意位置处于平衡,当B在某一位置平衡时,管内一触发装置使绳断开,求A做平抛运动的最大水平距离.【答案】(1)θ=45° ;(2)2(1)4mgl -;(3) 2l 。

【解析】 【分析】 【详解】(1)B 对地面刚好无压力,对B 受力分析,得此时绳子的拉力为2T mg =对A 受力分析,如图所示在竖直方向合力为零,故cos T mg θ=解得45θ=o(2)对A 球,根据牛顿第二定律有2sin sin v T ml θθ= 解得22v gl =故摇动细管过程中手所做的功等于小球A 增加的机械能,故有()212cos 124W mv mg l l mgl θ⎛=+-=- ⎝⎭(3)设拉A 的绳长为x (l≤x≤2l ),根据牛顿第二定律有2sin sin v T mx θθ=解得22v gx =A 球做平抛运动下落的时间为t,则有212cos 2l x gt θ-=解得2222l x t g⎛⎫- ⎪⎝⎭=水平位移为()22S vt x l x ==-当2x l =时,位移最大,为2m S l =3.图示为一由直角三角形ABC 和矩形CDEA 组成的玻璃砖截面图。

物理数学物理法题20套(带答案)

物理数学物理法题20套(带答案)
(1)当滑动变阻器R2接入电路的阻值为多大时,电阻R1消耗的功率最大,最大功率是多少。
(2)当滑动变阻器接入电路的阻值为多大时,滑动变阻器消耗的功率最大,最大功率是多少。
(3)当滑动变阻器接入电路的阻值为多大时,电源的输出功率最大,最大功率是多少。
【答案】(1)2 W。(2)2.5 W。(3)3.125 W。
解得
所以第一次速度为零时所处的y轴坐标为0。
6.小华站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动。当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地,如图所示。已知握绳的手离地面高度为d,手与球之间的绳长为 d,重力加速度为g。忽略手的运动半径和空气阻力。
(1)求A沿倾斜轨道下滑的加速度与碰后沿轨道上滑的加速度大小之比;
(2)若倾斜轨道与水平面的夹角为θ,求A与倾斜轨道间的动摩擦因数μ;
(3)已知两物块与轨道间的动摩擦因数均相等,在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B在此碰上。求改变前后动摩擦因数的比值。
【答案】(1) ;(2) ;(3) 或者
【解析】
【详解】
(1)速度为 的粒子沿 轴正向发射,打在薄板的最远处,其在磁场中运动的半径为 ,由牛顿第二定律


联立,解得

(2)如图a所示
速度为 的粒子与 轴正向成 角射出,恰好穿过小孔,在磁场中运动时,由牛顿第二定律



粒子沿 轴方向的分速度

联立,解得
由圆周运动向心力公式,有
Fmax-mg=

Fmax= mg
(2)设绳长为l,绳断时球的速度大小为v3,绳承受的最大拉力不变,有

数学物理方法试题(卷)

数学物理方法试题(卷)

数理方法概论试题及参考答案一、简答题(每小题5分,共20分)1. 写出高斯定理⎰⎰⋅∇=⋅SVdV d A S A2. 在斯托克斯定理()⎰⎰⋅⨯∇=⋅SLd A d S l A中, L 是式中那个量的边界线? 3. 定解问题包含那两部分?在数学上,边界条件和初始条件合称为定解条件,数学物理方程本身(不连带定解条件)叫做泛定方程.定解条件提出具体问题,泛定方程提供解决问题的依据,作为一个整体,叫做定解问题. 4. 边界条件有那几类?1) 直接规定边界上的值.这叫做第一类边界条件.()()t ,z ,y ,x f t ,z ,y ,x u S 000=2) 直接规定梯度在边界上的值.这叫做第二类边界条件.()t ,z ,y ,x f nu S000=∂∂3) 规定了边界上的数值与(外)法向导数在边界上的数值之间的一个线性关系.()t ,z ,y ,x f n u H u S 000=⎪⎭⎫ ⎝⎛∂∂+4) 除上述的边界条件外,在求解物理问题时,一般还会遇到所谓的自然边界条件.自然边界条件一般由物理问题本身提出,由于真实的物理量应该是有限的,而在无穷远或坐标原点处的数学的解往往会包含无穷大的解在内,这时从物理上考虑应该舍去这些解,这就构成了上述的自然边界条件.除此之外还有周期性自然边界条件.二、证明题(每小题20分,共40分)1. 证明 ϕϕ2∇≡∇⋅∇ 证: 2222222x y z x y z x y z ϕϕϕϕ⎛⎫⎛⎫∂∂∂∂∂∂∇⋅∇=++⋅++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎛⎫∂∂∂=++≡∇ ⎪∂∂∂⎝⎭xy z x y z e e e e e e 2. 证明不同阶的勒让德多项式在区间()11+-,上正交.()()()l k dx x P x P lk≠=⎰+-011证明:设本征函数k P 和l P 分别满足勒让德方程()()()()01101122=++⎥⎦⎤⎢⎣⎡-=++⎥⎦⎤⎢⎣⎡-l l k k P l l dx dP x dx d P k k dx dP x dx d前一式乘以l P ,后一式乘以k P ,然后相减得()()()()[]0111122=+-++⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-l k l k k lP P l l k k dx dP x dx d P dx dP x dx d P 从1-到1+积分得()()()()11221101111k l l k k l dP dP d d P x P x dx k k l l P Pdx dx dx dx dx ++--⎧⎫⎡⎤⎡⎤=---++-+⎡⎤⎨⎬⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭⎰⎰ ()()()()1122111111k l l k k l dP dP d x P x P dx k k l l P Pdx dx dx dx ++--⎧⎫=---++-+⎡⎤⎨⎬⎣⎦⎩⎭⎰⎰()()()()()()()()222211111111111111k l k l l k l k x x k l k l dP dP dP dP x P x P x P x P dx dx dx dx k k l l P Pdxk k l l P Pdx==-+-+-⎡⎤⎡⎤=-------⎢⎥⎢⎥⎣⎦⎣⎦++-+⎡⎤⎣⎦=+-+⎡⎤⎣⎦⎰⎰当l k ≠时即有:()110k lP Pdx k l +-=≠⎰三、计算题(每小题20分,共40分)1. 研究矩形波(见图1)1(0,)(2,(21))()1(,0)((21),2)m m f x m m ππππππ++⎧=⎨---⎩于以及于以及的频谱.解:根据()01cos sin k k k k x k x f x a a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑及()1cosln ln n a f d l lπξξξδ-=⎰ ()1sin l n l n b f d l lπξξξ-=⎰这里l π=可以求得:x()()000111(1)10222111cos (cos )cos 0n a f d d d a f n d n d n d ππππππππξξξξπππξξξξξξξπππ----==-+===-+=⎰⎰⎰⎰⎰⎰()[][]00122sin sin cos 22cos 1(1)1n nb f n d n d n n n n n ππππξξξξξξππππππ-===-⎡⎤=-+=--+⎣⎦⎰⎰当 220k n kb == 当 21421(21)k n k b k π+=+=+因此得到该函数的展开式为:04sin(21)()21k k xf x k π∞=+=+∑ 需要注意的是:由于所给函数是奇函数,所以展开式中只有sin 项而没有cos .如果所给函数是偶函数,那么展开式中就只有cos 项而没有sin 项.2. 求0=+''y y λ (0=+''ΦλΦ)满足自然周期条件()()x y x y =+π2 [()()φΦπφΦ=+2]的解.解:方程的系数()()λ==x q ,x p 0在指定的展开中心00=x ,单值函数(),x p 00=和()λ=0x q 是有限的,它们必然是有限的,它们必然在00=x 为解析的.因此,点00=x 是方程的常点.可设() +++++=k k x a x a x a a x y 2210从而()() ++++++='+k k x a k x a x a a x y 123211321()()() +++++⋅+⋅+⋅=''+k k x a k k x a x a a x y 2243212342312把以上的级数代入微分方程.至于()()λ==x q ,x p 0都是只有常数项的泰勒级数,无需再作展开.现在把各个幂次的项分别集合如下令上表各个幂次合并后的系数分别为零,得一系列方程01202=+⋅a a λ 02313=+⋅a a λ03424=+⋅a a λ 04534=+⋅a a λ............... ...............()()0122=++++kk a a k k λ最后一个式子是一般的.所有这些式子指出从kx 项的系数k a 可以推算出2+k x 项的系数2+k a ,因而叫做系数的递推公式.按照递推公式具体进行系数的递推.()()()()()()20312242053122120021112!3!434!545!11112!2!21!kk kkkkkkk k a a a a a a a a a a a a a a a k k k λλλλλλλλ++=-=-=-=+=-=+⋅⋅-=-=-=-=+这样,我们得到方程的解()()()()()()()()()()()()⎥⎦⎤⎢⎣⎡++-+-+-+⎥⎦⎤⎢⎣⎡-+-+-=+ 125312420!1211!51!31!211!41!211k k k kxk x x x a x k x x a x y λλλλλλλλ还需要确定这个级数的收敛半径.其实,上面两个[ ]正是cos θ和sin θ,其收敛半径为无穷大.于是()0y x a =既然1a 是任意常数,λ1a 当然还是任意常数,将λ1a 写成B ,0a 写成A ,则有()y x A B =+这个常微分方程和它的解实际早已知道,这里用级数方法只是为了了解级数解法的步骤.考虑到要满足自然周期条件()()x y x y =+π2则m =λ, 3210,,,m =.所以有解()cos sin y x A mx B mx =+。

高考物理数学物理法题20套(带答案)

高考物理数学物理法题20套(带答案)

高考物理数学物理法题20套(带答案)一、数学物理法1.如图所示,圆心为O 1、半径4cm R =的圆形边界内有垂直纸面方向的匀强磁场B 1,边界上的P 点有一粒子源,能沿纸面同时向磁场内每个方向均匀发射比荷62.510C/kg qm=⨯、速率5110m/s v =⨯的带负电的粒子,忽略粒子间的相互作用及重力。

其中沿竖直方向PO 1的粒子恰能从圆周上的C 点沿水平方向进入板间的匀强电场(忽略边缘效应)。

两平行板长110cm L =(厚度不计),位于圆形边界最高和最低两点的切线方向上,C 点位于过两板左侧边缘的竖线上,上板接电源正极。

距极板右侧25cm L =处有磁感应强度为21T B =、垂直纸面向里的匀强磁场,EF 、MN 是其左右的竖直边界(上下无边界),两边界间距8cm L =,O 1C 的延长线与两边界的交点分别为A 和O 2,下板板的延长线与边界交于D ,在AD 之间有一收集板,粒子打到板上即被吸收(不影响原有的电场和磁场)。

求:(1)磁感应强度B 1的方向和大小;(2)为使从C 点进入的粒子出电场后经磁场偏转能打到收集板上,两板所加电压U 的范围; (3)当两板所加电压为(2)中最大值时,打在收集板上的粒子数与总粒子数的比值η。

(可用反三解函数表示,如π1arcsin 62=)【答案】(1)11B =T ,方向垂直纸面向里;(2)1280V 2400V U ≤≤;(3)17arcsinarcsin168π+【解析】 【分析】 【详解】 (1)由题可知,粒子在圆形磁场区域内运动半径r R =则21v qvB m R=得11T B =方向垂直纸面向里。

(2)如图所示211()22L qU y mR v=⋅且要出电场04cm y ≤≤在磁场B 2中运动时22v qvB mr=合,cos v v a =合 进入B 2后返回到边界EF 时,进出位置间距2cos y r a ∆=得22mv y qB ∆=代入得8cm y ∆=说明与加速电场大小无关。

【物理】物理数学物理法题20套(带答案)

【物理】物理数学物理法题20套(带答案)

【物理】物理数学物理法题20套(带答案)一、数学物理法1.如图所示,直角MNQ △为一个玻璃砖的横截面,其中90Q ︒∠=,30N ︒∠=,MQ 边的长度为a ,P 为MN 的中点。

一条光线从P 点射入玻璃砖,入射方向与NP 夹角为45°。

光线恰能从Q 点射出。

(1)求该玻璃的折射率;(2)若与NP 夹角90°的范围内均有上述同频率光线从P 点射入玻璃砖,分析计算光线不能从玻璃砖射出的范围。

【答案】(1)2;(2)312a - 【解析】 【详解】(1)如图甲,由几何关系知P 点的折射角为30°。

则有sin 452sin 30n ==o o(2)如图乙,由折射规律结合几何关系知,各方向的入射光线进入P 点后的折射光线分布在CQB 范围内,设在D 点全反射,则DQ 范围无光线射出。

D 点有1sin n α=解得45α=︒由几何关系知DQ EQ ED =-,12ED EP a ==,32EQ a = 解得312DQ a -=2.如图,在长方体玻璃砖内部有一半球形气泡,球心为O ,半径为R ,其平面部分与玻璃砖表面平行,球面部分与玻璃砖相切于O '点。

有-束单色光垂直玻璃砖下表面入射到气泡上的A 点,发现有一束光线垂直气泡平面从C 点射出,已知OA =32R ,光线进入气泡后第一次反射和折射的光线相互垂直,气泡内近似为真空,真空中光速为c ,求: (i )玻璃的折射率n ;(ii )光线从A 在气泡中多次反射到C 的时间。

【答案】(i )3n =;(ii )3t R c=【解析】 【分析】 【详解】(i )如图,作出光路图根据折射定律可得sin sin n θα=①根据几何知识可得3sin OA R θ==② 90αθ+=︒ ③联立解得3n =④玻璃的折射率为3。

(ii )光从A 经多次反射到C 点的路程322R Rs R R R =+++=⑤ 时间st c=⑥ 得3t R c=光线从A 在气泡中多次反射到C 的时间为3R c。

高考物理数学物理法题20套(带答案)

高考物理数学物理法题20套(带答案)

高考物理数学物理法题20套(带答案)一、数学物理法1.两块平行正对的水平金属板AB ,极板长0.2m L =,板间距离0.2m d =,在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场,磁感应强度3510T B -=⨯,方向垂直纸面向里。

两极板间电势差U AB 随时间变化规律如右图所示。

现有带正电的粒子流以5010m/s v =的速度沿水平中线OO '连续射入电场中,粒子的比荷810C/kg qm=,重力忽略不计,在每个粒子通过电场的极短时间内,电场视为匀强电场(两板外无电场)。

求: (1)要使带电粒子射出水平金属板,两金属板间电势差U AB 取值范围;(2)若粒子在距O '点下方0.05m 处射入磁场,从MN 上某点射出磁场,此过程出射点与入射点间的距离y ∆;(3)所有粒子在磁场中运动的最长时间t 。

【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为m U ,此时粒子在电场中做类平抛运动,加速大小为a ,时间为t 1。

水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知,要使带电粒子射出水平金属板,两板间电势差100V 100V AB U -≤≤(2)如图所示从O '点下方0.05m 处射入磁场的粒子速度大小为v ,速度水平分量大小为0v ,竖直分量大小为y v ,速度偏向角为θ。

粒子在磁场中圆周运动的轨道半径为R ,则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。

如图所示粒子进入磁场速度大小为v 1,速度水平分量大小为01v ,竖直分量大小为v y 1,速度偏向角为α,则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为R',则211mvqv BR='⑨1mvRqB'=⑩带电粒子在磁场中圆周运动的周期为T12π2πR mTv qB'==⑪在磁场中运动时间2π(π2)2πt Tα--=⑫联立⑪⑫得663π10s9.4210st--=⨯=⨯2.如右图所示,一位重600N的演员,悬挂在绳上.若AO绳与水平方向的夹角为37︒,BO绳水平,则AO、BO两绳受到的力各为多大?若B点位置往上移动,则BO绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin︒=,4cos375︒=,3374tan︒=,4373cot︒=)【答案】AO绳的拉力为1000N ,BO绳的拉力为800N,OB绳的拉力先减小后增大.【解析】试题分析:把人的拉力F沿AO方向和BO方向分解成两个分力,AO绳上受到的拉力等于沿着AO绳方向的分力,BO绳上受到的拉力等于沿着BO绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F沿AO方向和BO方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N ===oBO 绳上受到的拉力为1cot 37800OB F F G N ===o若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.3.人在A 点拉着绳通过一个定滑轮匀速吊起质量50kg m =的物体,如图所示,开始时绳与水平方向成60o 角,当人拉着绳由A 点沿水平方向运动2m s =而到达B 点时,绳与水平方向成30o 角,求人对绳的拉力做了多少功?(不计摩擦,g 取210m/s )【答案】732J 【解析】 【分析】 【详解】人对绳的拉力所做的功与绳对物体的拉力所做的功相等,设人手到定滑轮的竖直距离为h ,物体上升的高度等于滑轮右侧绳子增加的长度,即sin 30sin 60h hh ∆=-o o又tan 30tan 60h hs =-o o所以人对绳的拉力做的功(31)732JW mg h mg s =∆=⋅-≈4.如图所示,在xOy 平面的第一、第四象限有方向垂直于纸面向里的匀强磁场;在第二象限有一匀强电场,电场强度的方向沿y 轴负方向。

物理数学方法试题及答案

物理数学方法试题及答案

物理数学方法试题及答案一、选择题(每题2分,共10分)1. 以下哪项不是傅里叶变换的性质?A. 线性B. 可逆性C. 尺度变换D. 能量守恒答案:D2. 拉普拉斯变换的收敛区域是:A. 左半平面B. 右半平面C. 全平面D. 虚轴答案:B3. 以下哪项是线性微分方程的特征?A. 可解性B. 唯一性C. 线性叠加原理D. 非线性答案:C4. 在复数域中,以下哪个表达式表示复数的模?A. |z|B. z^2C. z*zD. z/|z|答案:A5. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B二、填空题(每题3分,共15分)1. 傅里叶级数展开中,周期函数的系数可以通过______计算得到。

答案:傅里叶系数2. 拉普拉斯变换中,s = σ + jω代表的是______。

答案:复频域3. 线性微分方程的解可以表示为______的线性组合。

答案:特解4. 复数z = a + bi的共轭复数是______。

答案:a - bi5. 波动方程的一般解可以表示为______和______的函数。

答案:空间变量;时间变量三、简答题(每题5分,共20分)1. 简述傅里叶变换和拉普拉斯变换的区别。

答案:傅里叶变换主要用于处理周期信号,将时间域信号转换到频域;而拉普拉斯变换适用于非周期信号,将时间域信号转换到复频域。

2. 什么是波动方程?请给出其一般形式。

答案:波动方程是描述波动现象的偏微分方程,一般形式为∂²u/∂t² = c²∂²u/∂x²,其中u是波函数,c是波速。

3. 请解释什么是特征值和特征向量,并给出一个例子。

答案:特征值是线性变换中,使得变换后的向量与原向量方向相同(或相反)的标量。

特征向量则是对应的非零向量。

例如,对于矩阵A,如果存在非零向量v和标量λ,使得Av = λv,则λ是A的特征值,v是对应的特征向量。

高中物理数学物理法题20套(带答案)及解析(1)

高中物理数学物理法题20套(带答案)及解析(1)

高中物理数学物理法题20套(带答案)及解析(1)一、数学物理法1.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。

现一带正电的粒子从x 轴上坐标为(-2l ,0)的A 点以速度v 0沿x 轴正方向进入电场,从y 轴上坐标为(0,l )的B 点进入磁场,带电粒子在x >0的区域内运动一段圆弧后,从y 轴上的C 点(未画出)离开磁场。

已知磁场的磁感应强度大小为,不计带电粒子的重力。

求: (1)带电粒子的比荷; (2)C 点的坐标。

【答案】(1)202v qm lE=;(2)(0,-3t )【解析】 【详解】(1)带电粒子在电场中做类平抛运动,x 轴方向02l v t =y 轴方向212qE l t m=联立解得202v qm lE=(2)设带电粒子经过B 点时的速度方向与水平方向成θ角00tan 1yqE t v m v v θ===解得45θ=︒则带电粒子经过B 点时的速度02v v =由洛伦兹力提供向心力得2mv qvB r= 解得22mvr l qB== 带电粒子在磁场中的运动轨迹如图所示根据几何知识可知弦BC 的长度24L r l ==43l l l -=故C 点的坐标为(0,-3t )。

2.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端拴着质量分别为m 、2m 的小球A 和小物块B ,开始时B 先放在细管正下方的水平地面上.手握细管轻轻摇动一段时间后,B 对地面的压力恰好为零,A 在水平面内做匀速圆周运动.已知重力加速度为g ,不计一切阻力.(1)求A 做匀速圆周运动时绳与竖直方向夹角θ; (2)求摇动细管过程中手所做的功;(3)轻摇细管可使B 在管口下的任意位置处于平衡,当B 在某一位置平衡时,管内一触发装置使绳断开,求A 做平抛运动的最大水平距离.【答案】(1)θ=45° ;(2)2(14mgl -;2l 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学物理方法》试卷答案一、选择题(每题4分,共20分) 1.柯西问题指的是( B )A .微分方程和边界条件. B. 微分方程和初始条件. C .微分方程和初始边界条件. D. 以上都不正确. 2.定解问题的适定性指定解问题的解具有( D )A .存在性和唯一性. B. 唯一性和稳定性. C. 存在性和稳定性. D. 存在性、唯一性和稳定性.3.牛曼内问题 ⎪⎩⎪⎨⎧=∂∂=∇Γf n u u ,02 有解的必要条件是( C )A .0=f .B .0=Γu .C .0=⎰ΓdS f . D .0=⎰ΓdS u .4.用分离变量法求解偏微分方程中,特征值问题⎩⎨⎧==<<=+0)()0(0 ,0)()(''l X X lx x X x X λ的解是( B )A .) cos , (2x l n l n ππ⎪⎭⎫ ⎝⎛.B .) sin, (2x l n l n ππ⎪⎭⎫⎝⎛. C .) 2)12(cos ,2)12( (2x l n l n ππ-⎪⎭⎫ ⎝⎛-. D .) 2)12(sin,2)12( (2x l n l n ππ-⎪⎭⎫⎝⎛-. 5.指出下列微分方程哪个是双曲型的( D ) A .0254=++++y x yy xy xx u u u u u . B .044=+-yy xy xx u u u .C .02222=++++y x yy xy xx u y xyu u y xyu u x .D .023=+-yy xy xx u u u .二、填空题(每题4分,共20分)1.求定解问题⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤==>-==><<=∂∂-∂∂====πππx 0 ,cos 2 ,00 t ,sin 2 ,sin 20 ,0 ,00002222x u u t u t u t x x ut u t t t x x 的解是(x t cos sin 2).2.对于如下的二阶线性偏微分方程0),(),(2),(=++++-fu eu du u y x c u y x b u y x a y x yy xy xx其特征方程为( 0))(,(),(2))(,(22=++dx y x c dxdy y x b dy y x a ). 3.二阶常微分方程0)()4341()(1)(2'''=-++x y xx y x x y 的任一特解=y ( )21(23x J 或0).4.二维拉普拉斯方程的基本解为( r1ln),三维拉普拉斯方程的基本解为( r 1).5.已知x x x J x x x J cos 2)( ,sin 2)(2121ππ==-,利用Bessel 函数递推公式求=)(23x J ()sin )(1(2)cos sin 1(223xxdx d x x x x x x ππ-=- ).三、(15分)用分离变量法求解如下定解问题22222000, 0, 00, 0, t 0, 0, 0x .x x l t t t u ua x l t t x uu x x u x ul ====⎧∂∂-=<<>⎪∂∂⎪∂∂⎪==>⎨∂∂⎪⎪==≤≤⎪⎩解:第一步:分离变量 (4分) 设)()(),(t T x X t x u =,代入方程可得)()()()()()()()(2''''''2''x T a x T x X x X t T x X a t T x X =⇒= 此式中,左端是关于x 的函数,右端是关于t 的函数。

因此,左端和右端相等,就必须等于一个与t x ,无关的常数。

设为λ-,则有⎪⎩⎪⎨⎧=+=+⇒-==.0)()(,0)()()()()()( ''2''2''''x X x X t T a t T x T a x T x X x X λλλ将),(t x u 代入边界条件得,0)()()()0(''==t T l X t T X从而可得特征值问题,0)()0(0)()(''''===+l X X x X x X λ第二步:求解特征值问题 (4分)1) 若0<λ,方程的通解形式为xxBe Aex X λλ---+=)(由定解条件知0,0==B A ,从而0)(≡x X ,不符合要求。

2) 若0=λ,方程的通解形式为B Ax x X +=)(由边界条件知,0=A ,从而B x X ≡)(。

3) 若0>λ,方程的通解形式为x B x A x X λλsin cos )(+=代入边界条件得⎪⎩⎪⎨⎧===⇒⎩⎨⎧==,...3,2,1 ,)(,00sin ,02n l n B l A B πλλ 从而得特征值问题的一系列特征值及相应的特征函数⎪⎪⎩⎪⎪⎨⎧====,...3,2,1 ,cos )(,...3,2,1,0 ,)(2n x l n A x X n ln n n n ππλ第三步:求特解,并叠加出一般解 (3分) 求解了特征值问题后,将每特征值n λ代入函数)(t T 满足的方程可得出相应的解,...3,2,1 ,sin cos )()('''0'00=+=+=n at ln D at l n C t T tD C t T n nn ππ 因此,也就得到满足偏微分方程和边界条件的一般解,cos )sin cos(),(100∑∞=+++=n n n x ln at l n D at l n C t D C t x u πππ 第四步:确定叠加系数 (4分)由初始条件可知0cos cos1010=+=+∑∑∞=∞=n nn n x ln l a n D D x x ln C C πππ可得,2,1,0,03,2,1],1)1[(22220===--==n D n n lC lC n n n π故原方程的解为.)12(cos )12(cos )12(42 cos cos ]1)1[(22),(022122∑∑∞=∞=+++-=--+=n n n x ln l at n n l l xln l at n n l l t x u ππππππ四、(10分)用行波法求解下列问题⎪⎪⎩⎪⎪⎨⎧+∞<<∞-=∂∂=+∞<<∞->=∂∂-∂∂∂+∂∂==.,0 ,3 , ,0 ,03202022222x y u x u x y y uy x u xu y y 解:其特征方程为0)(32)(22=--dx dxdy dy (2分)由此可得特征线方程为dy x cy x =+=-3 (2分)因此作变换⎩⎨⎧+=-=y x y x μξ,3 (2分) 从而可得ηξ∂∂∂u2=0 从而有)()3(),(y x G y x F y x u ++-=由初始条件可得)()3(3)()3(''2=+-=+x G x F x x G x F所以有C x G x F =-)(3)3(,从而可得Cxx G Cx x F +=-=43)(49)3(22(2分) 故而可知223)()3(),(y x y x G y x F y x u +=++-=。

(2分)五、(10分)用Laplace 变换法求解定解问题:⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=>==><<∂∂=∂∂===.20 ,sin ,0 ,0,0 ,20 ,02022x x u t u u t x x ut u t x x π 解:由题意知,需关于时间t 作拉普拉斯变换,记)},({),(t x u L s x U =,对方程做拉氏变换可得⎪⎩⎪⎨⎧==-=-==,,sin 2022x x U Ux sU dxUd π (4分) 用系数待定法很容易解求上常微分方程的一特解20sin ππ+=s xU (2分) 又上常微分方程相应的齐次问题的通解为xs xs Be AeU -+=1所以,上常微分方程的通解为2sin ππ+++=-s xBe AeU xs xs , (2分) 再由定解条件可得A =B =0,从而2sin ππ+=s xU 故而,原定解问题的解.sin }sin {}{),(2211x e s x L U L t x u tππππ---=+==。

(2分)六、(15分)用格林函数法求解下定解问题222200, y 0,() , .y u ux y u f x x =⎧∂∂+=<⎪∂∂⎨⎪=-∞<<+∞⎩ 解:设),(000y x M 为下半平面中任意一点。

已知二维调和函数的积分表达式为dS n ur r n M u M u MM MM )1ln )1(ln )((21)(000∂∂-∂∂-=⎰Γπ (2分) 设v 为调和函数,则由第二格林公式知0)()(22=∂∂-∂∂=∇-∇⎰⎰⎰ΓΩdS nuv n v u d u v v u σ (2) (1)+(2)可得dS n u v r dS r n n v M u M u MM MM ])1ln 21(])1(ln 21)(([)(000⎰⎰ΓΓ∂∂-+∂∂-∂∂=ππ (2分) 若能求得v 满足⎪⎪⎩⎪⎪⎨⎧=<=∇==00201ln 210,0y MM y rv y v π (3)则定义格林函数v r M M G MM -=1ln 21),(0π,则有 dS nGM u M u ⎰Γ∂∂-=)()(0 (2分) 由电象法可知,),(001y x M -为),(000y x M 的象点,故可取11ln21MM r v π=(2分) 显然其满足(3)。

从而可得格林函数))()()()()()((21)1ln 1(ln 211ln 211ln 21),(202002020001010y y x x y y y y x x y y r r y y G n G r r M M G MM MM MM MM ++-+-+-+---=-∂∂=∂∂=∂∂-=ππππ(5分) 故而ξξξπd f y x y dS n G M u M u ⎰⎰+∞∞-Γ+--=∂∂-=)()(1)()(202000 (2分)七、(10分)将函数()f x x =在区间[0,1]上展成Bessel 函数系(1)11{()}m m J x μ∞=的级数,其中(1)m μ为Bessel 函数1()J x 的正零点,1,2,m =.解:设()f x x =有如下级数形式∑∞==1)1(1)()(i i i x J A x f μ (1分)下面利用Bessel 函数的正交性确定系数i A易知,对上等式两边同时乘以)()1(1x xJ i μ并关于x 在[0,1]内积分可得⎰=10)1(12)1(22)()(2dx x J x J A i i i μμ (2分) 再由递推公式)()]([1222x J x x J x dxd =,可得 dx x J x x J x d i ii )(])([)1(12)1()1(22μμμ= (2分)故而)(2)(2)()(2)()(2)1(0)1()1(2)1(1)1()1(22)1(2210)1(12)1(22i i i i i i i i i i J J x J x J dx x J x J A μμμμμμμμμ-====⎰ (3分) 这里用到递推公式)(2)()(11x J xnx J x J n n n =++-。

相关文档
最新文档