数学物理方法习题及解答
数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
【物理】物理数学物理法题20套(带答案)

【物理】物理数学物理法题20套(带答案)一、数学物理法1.如图所示,直角MNQ △为一个玻璃砖的横截面,其中90Q ︒∠=,30N ︒∠=,MQ 边的长度为a ,P 为MN 的中点。
一条光线从P 点射入玻璃砖,入射方向与NP 夹角为45°。
光线恰能从Q 点射出。
(1)求该玻璃的折射率;(2)若与NP 夹角90°的范围内均有上述同频率光线从P 点射入玻璃砖,分析计算光线不能从玻璃砖射出的范围。
【答案】(1)2;(2)312a - 【解析】 【详解】(1)如图甲,由几何关系知P 点的折射角为30°。
则有sin 452sin 30n ==o o(2)如图乙,由折射规律结合几何关系知,各方向的入射光线进入P 点后的折射光线分布在CQB 范围内,设在D 点全反射,则DQ 范围无光线射出。
D 点有1sin n α=解得45α=︒由几何关系知DQ EQ ED =-,12ED EP a ==,32EQ a = 解得312DQ a -=2.如图,在长方体玻璃砖内部有一半球形气泡,球心为O ,半径为R ,其平面部分与玻璃砖表面平行,球面部分与玻璃砖相切于O '点。
有-束单色光垂直玻璃砖下表面入射到气泡上的A 点,发现有一束光线垂直气泡平面从C 点射出,已知OA =32R ,光线进入气泡后第一次反射和折射的光线相互垂直,气泡内近似为真空,真空中光速为c ,求: (i )玻璃的折射率n ;(ii )光线从A 在气泡中多次反射到C 的时间。
【答案】(i )3n =;(ii )3t R c=【解析】 【分析】 【详解】(i )如图,作出光路图根据折射定律可得sin sin n θα=①根据几何知识可得3sin OA R θ==② 90αθ+=︒ ③联立解得3n =④玻璃的折射率为3。
(ii )光从A 经多次反射到C 点的路程322R Rs R R R =+++=⑤ 时间st c=⑥ 得3t R c=光线从A 在气泡中多次反射到C 的时间为3R c。
物理数学物理法专项习题及答案解析及解析

解得:
所以当
R=0.3m
时x最大
xmax=1.2m
7.如图所示,半圆形玻璃砖的半径为R,圆心为O。一束单色光由玻璃砖上的P点垂直于半圆底面射入玻璃砖,其折射光线射向底面的Q点(图中未画出),折射率为 ,测得P点与半圆底面的距离为 。计算确定Q点的位置。
【答案】
【解析】
【详解】
如图所示
上的亮斑刚消失设紫光的临界角为 ,画出光路图
则有
当 时, 面上反射角 ,反射光线垂直射到 面上后入射到 上,则
解得
9.如图所示,木板B放在水平地面上,在木板B上放一重300N的A物体,物体A与木板B间,木板与地间的摩擦因数均为 ,木板B重力为1200N,当水平拉力F将木板B匀速拉出,绳与水平方向成30°时,问绳的拉力T多大?水平拉力多大?
【答案】(1) ;(2)
【解析】
【详解】
(1)如图甲,由几何关系知P点的折射角为30°。
则有
(2)如图乙,由折射规律结合几何关系知,各方向的入射光线进入P点后的折射光线分布在CQB范围内,设在D点全反射,则DQ范围无光线射出。
D点有
解得
由几何关系知
, ,
解得
4.图示为直角三角形棱镜的截面, , ,AB边长为20cm,D点到A点的距离为7cm,一束细单色光平行AC边从D点射入棱镜中,经AC边反射后从BC边上的F点射出,出射光线与BC边的夹角为 ,求:
(1)棱镜的折射率;
(2)F点到C点的距离。
【答案】(1) ;(2)
【解析】
【详解】
(1)由几何知识可知,光束从 点入射的入射角 ,做出光路图:
设对应折射角为 ,则光束在 边的入射角为
在 边上的入射角
高考物理数学物理法题20套(带答案)及解析

高考物理数学物理法题20套(带答案)及解析一、数学物理法1.如图所示,圆心为O 1、半径4cm R =的圆形边界内有垂直纸面方向的匀强磁场B 1,边界上的P 点有一粒子源,能沿纸面同时向磁场内每个方向均匀发射比荷62.510C/kg qm=⨯、速率5110m/s v =⨯的带负电的粒子,忽略粒子间的相互作用及重力。
其中沿竖直方向PO 1的粒子恰能从圆周上的C 点沿水平方向进入板间的匀强电场(忽略边缘效应)。
两平行板长110cm L =(厚度不计),位于圆形边界最高和最低两点的切线方向上,C 点位于过两板左侧边缘的竖线上,上板接电源正极。
距极板右侧25cm L =处有磁感应强度为21T B =、垂直纸面向里的匀强磁场,EF 、MN 是其左右的竖直边界(上下无边界),两边界间距8cm L =,O 1C 的延长线与两边界的交点分别为A 和O 2,下板板的延长线与边界交于D ,在AD 之间有一收集板,粒子打到板上即被吸收(不影响原有的电场和磁场)。
求:(1)磁感应强度B 1的方向和大小;(2)为使从C 点进入的粒子出电场后经磁场偏转能打到收集板上,两板所加电压U 的范围; (3)当两板所加电压为(2)中最大值时,打在收集板上的粒子数与总粒子数的比值η。
(可用反三解函数表示,如π1arcsin 62=)【答案】(1)11B =T ,方向垂直纸面向里;(2)1280V 2400V U ≤≤;(3)17arcsinarcsin168π+【解析】 【分析】 【详解】 (1)由题可知,粒子在圆形磁场区域内运动半径r R =则21v qvB m R=得11T B =方向垂直纸面向里。
(2)如图所示211()22L qU y mR v=⋅且要出电场04cm y ≤≤在磁场B 2中运动时22v qvB mr=合,cos v v a =合 进入B 2后返回到边界EF 时,进出位置间距2cos y r a ∆=得22mv y qB ∆=代入得8cm y ∆=说明与加速电场大小无关。
高中物理数学物理法题20套(带答案)及解析

高中物理数学物理法题20套(带答案)及解析一、数学物理法1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。
现一带正电的粒子从x 轴上坐标为(-2l ,0)的A 点以速度v 0沿x 轴正方向进入电场,从y 轴上坐标为(0,l )的B 点进入磁场,带电粒子在x >0的区域内运动一段圆弧后,从y 轴上的C 点(未画出)离开磁场。
物理数学物理法练习全集含解析

物理数学物理法练习全集含解析一、数学物理法1.如图所示,空间有场强E =1.0×102V/m 竖直向下的电场,长L =0.8m 不可伸长的轻绳固定于O 点.另一端系一质量m =0.5kg 带电q =+5×10-2C 的小球.拉起小球至绳水平后在A 点无初速度释放,当小球运动至O 点的正下方B 点时绳恰好断裂,小球继续运动并垂直打在同一竖直平面且与水平面成θ=53°、无限大的挡板MN 上的C 点.试求:(1)小球运动到B 点时速度大小及绳子的最大张力; (2)小球运动到C 点时速度大小及A 、C 两点的电势差;(3)当小球运动至C 点时,突然施加一恒力F 作用在小球上,同时把挡板迅速水平向右移至某处,若小球仍能垂直打在档板上,所加恒力F 的最小值。
【答案】(1)30N ; (2)125V ; (3)0~127︒︒ 【解析】 【分析】 【详解】(1)小球到B 点时速度为v ,A 到B 由动能定理21()2mg qE L mv +=2()v F mg qE m L-+=解得42/v m s =F=30N(2)高AC 高度为h AC ,C 点速度为v 1152m/s sin v v θ==211()2AC mg qE h mv +=U =Eh AC解得U =125V(3)加恒力后,小球做匀速直线运动或者匀加速直线运动,设F 与竖直方向夹角为α,当小球匀速直线运动时α=0,当小球匀加速直线运动时,F 的最小值为F 1,F 没有最大值1()sin 8N F mg qE θ=+=F 与竖直方向的最大夹角为180127αθ=︒-=︒ 0127α≤≤︒F ≥8N2.如图所示,在xoy 平面内y 轴右侧有一范围足够大的匀强磁场,磁感应强度大小为B ,磁场方向垂直纸面向外;分成I 和II 两个区域,I 区域的宽度为d ,右侧磁场II 区域还存在平行于xoy 平面的匀强电场,场强大小为E =22B qdm,电场方向沿y 轴正方向。
物理数学方法试题及答案

物理数学方法试题及答案一、选择题(每题2分,共10分)1. 以下哪项不是傅里叶变换的性质?A. 线性B. 可逆性C. 尺度变换D. 能量守恒答案:D2. 拉普拉斯变换的收敛区域是:A. 左半平面B. 右半平面C. 全平面D. 虚轴答案:B3. 以下哪项是线性微分方程的特征?A. 可解性B. 唯一性C. 线性叠加原理D. 非线性答案:C4. 在复数域中,以下哪个表达式表示复数的模?A. |z|B. z^2C. z*zD. z/|z|答案:A5. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B二、填空题(每题3分,共15分)1. 傅里叶级数展开中,周期函数的系数可以通过______计算得到。
答案:傅里叶系数2. 拉普拉斯变换中,s = σ + jω代表的是______。
答案:复频域3. 线性微分方程的解可以表示为______的线性组合。
答案:特解4. 复数z = a + bi的共轭复数是______。
答案:a - bi5. 波动方程的一般解可以表示为______和______的函数。
答案:空间变量;时间变量三、简答题(每题5分,共20分)1. 简述傅里叶变换和拉普拉斯变换的区别。
答案:傅里叶变换主要用于处理周期信号,将时间域信号转换到频域;而拉普拉斯变换适用于非周期信号,将时间域信号转换到复频域。
2. 什么是波动方程?请给出其一般形式。
答案:波动方程是描述波动现象的偏微分方程,一般形式为∂²u/∂t² = c²∂²u/∂x²,其中u是波函数,c是波速。
3. 请解释什么是特征值和特征向量,并给出一个例子。
答案:特征值是线性变换中,使得变换后的向量与原向量方向相同(或相反)的标量。
特征向量则是对应的非零向量。
例如,对于矩阵A,如果存在非零向量v和标量λ,使得Av = λv,则λ是A的特征值,v是对应的特征向量。
数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 试解方程:()0,044>=+a a z44424400000,0,1,2,3,,,,i k iiz a a e z aek aez i i ππππωωωωω+=-=====--若令则1.计算:(1)iii i 524321-+-+ (2)y =(3)求复数2⎝⎭的实部u 和虚部v 、模r 与幅角θ(1) 原式=()()()123425310810529162525255i i i i i i +⋅+-⋅+-++=+=-+--(2) 332()102052(0,1,2,3,4)k i e k ππ+==原式(3)2223221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,23i i i e r ππππππθπ⎛⎫==+=+==-+ ⎪⎝⎭⎝⎭=-===+=±±原式所以:,3.试证下列函数在z 平面上解析,并分别求其导数.(1)()()y i y y ie y y y x e x x sin cos sin cos ++-3.()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y ue x y y y e y x ue x y y y y y ve y y x y e y y x ve y y y x y yu v u v x y y x u v z f z u iv z u f z =-=+∂=-+∂∂=---∂∂=++∂∂=-+∂∂∂∂∂==-∂∂∂∂=+∂'=∂证明:所以:。
由于在平面上可微所以在平面上解析。
()()()cos sin cos cos sin sin .x x x x vi e x y y y e y i e y y x y e y x x∂+=-++++∂由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-=解:()()()()()()()222222222212,2,212,2,,,2112,22111,0,1,1,,221112.222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ϕϕϕϕ∂∂==+∴=++∂∂∂∂∂''=+=-=-+∴=-=-+∂∂∂⎛⎫=-+++-+ ⎪⎝⎭=-+==+==⎛⎫=-++-++ ⎪⎝⎭而即所以由知带入上式,则则解析函数2. ()21,3,,.ii i i i i e ++试求()()(((()()()2(2)Ln 144(2)4ln32Ln32ln32ln1222Ln 21cos ln sin ,0,1,2,3cos(ln 3)sin(ln 3),0,1,2,i i k k i ii i k i i k i i k i k i k i ii ii eeeei k e e e e i k i eeeππππππππππππ⎛⎫⎛⎫+ ⎪⎪-+++⎝⎭⎝⎭-++-+-⎛⎫⎛⎫++-+ ⎪⎪⎝⎭⎝⎭+====+=±±====+=±±=== 解:()222,0,1,2,cos1sin1.k i i k e e e e i π⎛⎫ ⎪⎝⎭+=±±=⋅=+3. 计算 2,:122c dzc z z z =++⎰()2222220110,1,1,11,220,022z z z z i z i z c z z z c z z ++=++=+==-+=≤++≠=++解:时,而在内,故在内解析,故原式 1.计算221(1),21c z z dz c z z -+=-⎰: ()2221(2),21cz z dz c z z -+=-⎰:(1)212(21)=4 z i z z i ππ==-+解:原式 (2)2112(21)=2(41)6z z i z z i z i πππ=='=-+-=解:原式. 计算2sin()114,(1):1,(2):1,(3): 2.122c z dz c z c z c z z π+=-==-⎰其中1sin (1)sin 442.112c z z z z i i z z πππ=-⎡⎤-⎢⎥===⎢⎥+-⎢⎥⎣⎦⎰解:(1)原式1sin (1)sin 442.11c z z z z i i z z πππ=⎡⎤+⎢⎥===⎢⎥-+⎢⎥⎣⎦⎰(2)原式 12(3):2,1,11,.c z z z c c ===-以分别以为中心,为半径,做圆1222sinsin44.11c c z zdz dz i i i z z ππ=+=+=--⎰⎰原式 3、将下列函数按()1-z 的幂级数展开,并指明收敛范围。
2z z + ()()()11001211211121121,12233331311,313,3nnn n n n z z z z z z z z ∞∞++==--⎛⎫=-=-⋅⋅=-=+- ⎪-++-⎝⎭---<-<-<-∑∑解:其中,即此为级数的收敛范围。
1. 把()()z z z f -=11展开成在下列区域收敛的罗朗(或泰勒)级数(1) ,11<+z (2) ,211<+<z (3).21>+z (1);,11<+z()()()()().112121211211121111111110100∑∑∑∞=+∞=∞=+⋅⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+++-=+-⋅++--=-+=-=n nn n nn nz z z z z z z z z z f 解:(2);,211<+<z()()()().21112121111121112111111111111010100∑∑∑∑∞=+∞=+∞=∞=+++=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=+-⋅++-⋅+=-+=-=n n n n n n n n n z z z z z z z z z z z z z f 解:(7).21>+z()()()().12111211111112111111111111111010100∑∑∑∑∞=+∞=+∞=∞=+-+=⎪⎭⎫ ⎝⎛+⋅+-+⎪⎭⎫ ⎝⎛++=+-⋅+-++-⋅+=-+=-=n n n n n n nn nz z z z z z z z z z z z z z z f 解:2、计算积分 11sin z dz z z =⎰解:()zz z f sin 1=的奇点为),2,1,0( ±±==n n z π 在01==z z 内只有一个奇点200200020001011sin sin 0()1Re ()limlim ()sin sin sin cos cos cos sin lim lim sin 2sin cos lim 02cos 12Re ()0sin lim lim z z z z z z z z z z zz z z z z f z d d z s f z z dz z z dz z z z z z z z z z z zzz dz i s f z z z π→→→→=→→→==⋅==∴=⎡⎤=⋅=⎢⎥⎣⎦--+=====⎰ 为的二阶极点 =3.求解定解问题2(0,0)(0,)0,(,)0(0)(,0)sin ,(,0)sin(0)tt xx t u a u x l t u t u l t t x xu x u x x l l lππ-<<>==≥==≤≤=0 解:122221222211(,)()sin()()sin 0()()0()cos sin (,)cos sin sin (,0)sin sin 1,0n n n n n n n n n nn n n n n n x u x t T t ln a n x T t T t l l n a n at n atT t T t T t A B l l l n at n at n x u x t A B l l l n x xu x A A A l l πππππππππππ∞=∞=∞==⎛⎫''+= ⎪⎝⎭''+==+⎡⎤=+⎢⎥⎣⎦=⋅=⇒==∑∑∑ 1111(1)(,0)sin sin 1,0(1)(,)(cos sin )sinn t n n n n n a n x x a lu x B B B B n l l l l a at l at xu x t l a l lπππππππππ∞=∞=≠=⋅=⇒=⇒==≠∴=+∑∑ 1.试用分离变量法求解定解问题(0,0)(0,),(,)0(0)(,0)0,(,0)0(0)tt xx t u u x l t u t E u l t t u x u x x l -<<>==≥==≤≤=0 其中E 为已知常数。
解(,)(,)(,)(,)(1)(0,)(0,)(0,)(0,)0(1,)(1,)(1,)0(1,)0(,0)(,0)(,0)0(,0)(1)(,0)(,0)(,0tt tt tt tt xx xx xx xxt t t v x t u x t w x t w x t x E v u w u v u w u v t u t w t E u t v t u t w t u t v x u x w x u x x E v x u x w x =+=-=+==+==+=⇒==+=⇒==+=⇒=--=+ , (0)()0(1)()0)0(,0)0(0,)0,(1,)0(,0)(1)(,0)0(,)()()(,)()()(,)()()0102t tt xxt xx tt X T t X T t u x u u u t u t u x x E u x u x t X x T t u x t X x T t u x t X x T t T X T X X T T XX X T T X λλλ===⇒=====-=''''===''''''''='''' ==-+= ()+= (){12121212(0)0,(1)0310()(0)00 X(1)000()02)0()X X x C c e X C C C C e C C X x X x Ax Bλλ===+=⇒=⇒+====+ ())< += = =0B A B =+= 0)(X 0B A =⇒x ==222220()sin (0)0(1)0()0,0sin 0(1,2,3,)()sin 0()cos sin (,)(cos sin )sin 1,2,3,n n n n n n n X x A B X A X B X x B n n n X x B xT a n T T t C n at D n atu x t C n at D n at n x n λπλππππππππ>=+====≠≠====''+==+=+= = ()11(,)(cos sin )sin (,0)sin 00n n n t n n n u x t C n at D n at n xu x n aD n x D πππππ∞=∞==+==⇒=∑∑ 1(,0)sin (1)n n u x C n x x E π∞===-∑1101100102222(1)sin (1)cos 22(1)cos cos 222sin n E C x E n xdx x d n x n E E x n n xdxn n E E E n x n n n πππππππππππ=-=--=--+=-+=-⎰⎰⎰112(,)()cos sin 2(,)()cos sin (1)n n Eu x t n at n x n Ev x t n at n x x En ππππππ∞=∞==-=-+-∑∑ 2.求解定解问题20(0,0)(0,)0,(,)0(0)(,0)(0)t xx u a u x l t u t u l t t u xu x x l l=<<>==≥=≤≤ 解:22212(,)()()(,)()()(,)()()0(1)0(2)(0,)(0)()0(0)0,()0(3)(,)()()01)0,()(0xx t u x t X x T t u x t X x T t u x t X x T t T X T X a X T a T XX X T a T u t X T t X X l u l t X l T t X x C C e X λλλλ'''===''''''===-''='+===⎧==⎨==⎩<=+ + 12121212112121212222)00()000()02)0()0()003)0()sin (0)0,()0()0,0,sin 0(1,2,3,)C C X l C C e C C X x X x C x C C C C X x C C X x C C X C X l C X x C n n n λλππλ=⇒+==⇒+=≡==+=⎫⇒=≡⎬+=⎭>=+====≠≠==== == , 222222222222211()sin ()()0()(,)sin(,0)sin n a tl n n n nn a tl n n n n ln xX x C ln a T t T t T t A e l n xu x t A el u n x u x A xl l ππππππ-∞-=∞=='+=====∑∑ 22220020000001100002210122sin cos 22cos cos 222(1)sin (1)2(,)(1)sinl l n l l n l n n a tn l n u u n x l n xA x dx xd l l l l n l u u n x n x x dx n l l n l lu u u n x n n l n un x u x t en lππππππππππππππ++∞-+===-⋅=-+=-+=-=-⎰⎰⎰∑3.有一两端无界的枢轴,其初始温度为1(1)(,0)0(1)x u x x ⎧<⎪=⎨≥⎪⎩ 试求在枢轴上的温度分布为222sin (,)(cos )a t u x t x e d μμμμπμ∞-=⎰解:定解问题为21(1)(,0)()0(1)t xx u a u x u x x x ϕ=⎧<⎪==⎨≥⎪⎩ 设 (,)()i x u x t T t e d μμμ∞-∞=⎰2222222211()()()()0()(,)C()1(1)(,0)()0(1)11()(,0)22112()i xa t a t i x i i i i T t a T t e T t a T t T t Ce u x t e e d x u x x x C u x e d e d e e i μμμμμμμμμμξμξμμμμμμϕμξξπππμ∞-∞-∞--∞∞---∞--'⎡⎤+⎣⎦'+==∴=⎧<⎪==⎨≥⎪⎩==⎡=⋅-⎣-⎰⎰⎰⎰ 利用初始条件 得 222201sin 1sin 2sin (,)(cos )a t i x a t u x t e e d x e d μμμμπμμμμμμπμπμ∞∞---∞⎤=⋅⎦∴==⎰⎰4. 复数231i -的三角形式为3,3sin 3cos πππi e i --,其指数形式为5.复数5co s 5s i n ππi +的三角形式为103,103sin 103cos πππi e i +,其指数形式为6. 复数的实部u =,虚部v =,模r =,幅角θ=.1,22u v ==,1,2(0,1,2,)3r k k πθπ==+=±±7. 复数22i +-的实部=u ,虚部=v ,模=r ,幅角=θ . 2,2=-=v u , ),2,1,0(243,2 ±±=+==k k r ππθ8. 014=--i z 的解为)3,2,1,0(,24284==+k ez k ik ππ9、已知解析函数f z u x y iv x y ()(,)(,)=+的虚部为v x y e x y (,)cos =,求此解析函数c x ie x e z f y y ++=cos sin )(10.试证下列函数在z 平面上解析,并分别求其导数. y ie y e z f x x cos sin )(-=证明: y e y x u x s i n ),(=, y e y x v x c o s ),(-=y e yuy e xux x cos ,sin =∂∂=∂∂, y e yvy e xvx x sin ,cos =∂∂-=∂∂ 平面上解析在平面上可微在平面上连续在z z f z y x v y x u z yvx v y u x u x v y u y v x u )(),(),,(,,,,∴∴∂∂∂∂∂∂∂∂∂∂-=∂∂∂∂=∂∂∴z x x x ie y y i ie y ie y e xvi x u z f -=+-=-=∂∂+∂∂=')cos sin (cos sin )(4.积分dzz z cos ==⎰1积分6. 积分⎰==13cos z zdz z7. 积分=⎰b a dz z z 2cos )sin (sin 2122a b - 积分=⎰1sin zdz z 9.积分=⎰22sin πdz z z10.计算232|2:|,1=-+⎰i z c dz z e c izπe14. 幂级数n n n z ∑∞=121的收敛半径为.5. 幂级数∑∞=-1)1(n nn z 的收敛半径为幂级数121nz n n=∞∑的收敛半径为幂级数nn n z ∑∞=131的收敛半径为8. 函数zz f -=11)(在2|1|<+z 上展成)1(+z 的泰勒级数为 nn n z )1(211∑∞=++9.把f z z z ()()()=--123展为展为z 的泰勒级数,并给出收敛半径。