数学物理方法习题

合集下载

数学物理方法习题解答(完整版)

数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。

证明:令Re z u iv =+。

Re z x =,,0u x v ∴==。

1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。

于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。

2、试证()2f z z=仅在原点有导数。

证明:令()f z u iv =+。

()22222,0f z z x y u x y v ==+ ∴ =+=。

2,2u u x y x y ∂∂= =∂∂。

v vx y∂∂ ==0 ∂∂。

所以除原点以外,,u v 不满足C -R 条件。

而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。

()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。

或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。

22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。

【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。

证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。

数学物理方法习题及解答

数学物理方法习题及解答

2. 试解方程:()0,044>=+a a z44424400000,0,1,2,3,,,,i k iiz a a e z aek aez i i ππππωωωωω+=-=====--若令则1.计算:(1)iii i 524321-+-+ (2)y =(3)求复数2⎝⎭的实部u 和虚部v 、模r 与幅角θ(1) 原式=()()()123425310810529162525255i i i i i i +⋅+-⋅+-++=+=-+--(2) 332()102052(0,1,2,3,4)k i e k ππ+==原式(3)2223221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,23i i i e r ππππππθπ⎛⎫==+=+==-+ ⎪⎝⎭⎝⎭=-===+=±±原式所以:,3.试证下列函数在z 平面上解析,并分别求其导数.(1)()()y i y y ie y y y x e x x sin cos sin cos ++-3.()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y ue x y y y e y x ue x y y y y y ve y y x y e y y x ve y y y x y yu v u v x y y x u v z f z u iv z u f z =-=+∂=-+∂∂=---∂∂=++∂∂=-+∂∂∂∂∂==-∂∂∂∂=+∂'=∂证明:所以:。

由于在平面上可微所以在平面上解析。

()()()cos sin cos cos sin sin .x x x x vi e x y y y e y i e y y x y e y x x∂+=-++++∂由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-=解:()()()()()()()222222222212,2,212,2,,,2112,22111,0,1,1,,221112.222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ϕϕϕϕ∂∂==+∴=++∂∂∂∂∂''=+=-=-+∴=-=-+∂∂∂⎛⎫=-+++-+ ⎪⎝⎭=-+==+==⎛⎫=-++-++ ⎪⎝⎭而即所以由知带入上式,则则解析函数2. ()21,3,,.ii i i i i e ++试求()()(((()()()2(2)Ln 144(2)4ln32Ln32ln32ln1222Ln 21cos ln sin ,0,1,2,3cos(ln 3)sin(ln 3),0,1,2,i i k k i ii i k i i k i i k i k i k i ii ii eeeei k e e e e i k i eeeππππππππππππ⎛⎫⎛⎫+ ⎪⎪-+++⎝⎭⎝⎭-++-+-⎛⎫⎛⎫++-+ ⎪⎪⎝⎭⎝⎭+====+=±±====+=±±=== 解:()222,0,1,2,cos1sin1.k i i k e e e e i π⎛⎫ ⎪⎝⎭+=±±=⋅=+3. 计算 2,:122c dzc z z z =++⎰()2222220110,1,1,11,220,022z z z z i z i z c z z z c z z ++=++=+==-+=≤++≠=++解:时,而在内,故在内解析,故原式 1.计算221(1),21c z z dz c z z -+=-⎰: ()2221(2),21cz z dz c z z -+=-⎰:(1)212(21)=4 z i z z i ππ==-+解:原式 (2)2112(21)=2(41)6z z i z z i z i πππ=='=-+-=解:原式. 计算2sin()114,(1):1,(2):1,(3): 2.122c z dz c z c z c z z π+=-==-⎰其中1sin (1)sin 442.112c z z z z i i z z πππ=-⎡⎤-⎢⎥===⎢⎥+-⎢⎥⎣⎦⎰解:(1)原式1sin (1)sin 442.11c z z z z i i z z πππ=⎡⎤+⎢⎥===⎢⎥-+⎢⎥⎣⎦⎰(2)原式 12(3):2,1,11,.c z z z c c ===-以分别以为中心,为半径,做圆1222sinsin44.11c c z zdz dz i i i z z ππ=+=+=--⎰⎰原式 3、将下列函数按()1-z 的幂级数展开,并指明收敛范围。

数学物理方法

数学物理方法

《 数学物理方法 》试题(A 卷)说明:本试题共3页四大题,30小题。

1.z 为复数,则( )。

A ln z 没有意义;B ln z 为周期函数;C Ln z 为周期函数;D ln()ln z z -=-。

2.下列积分不为零的是( )。

A 0.51z dz z π=+⎰; B 20.51z dz z π=-⎰; C10.5z dzz π=+⎰; D211z dz z π=-⎰。

3.下列方程是波动方程的是( )。

A 2tt xx u a u f =+; B 2t xx u a u f =+;C 2t xx u a u =; D2tt x u a u =。

4.泛定方程2tt x u a u =要构成定解问题,则应有的初始条件个数为( )。

A 1个;B 2个;C 3个;D 4个。

5.二维拉普拉斯方程的定解问题是( )。

A 哥西问题; B 狄拉克问题; C 混合问题; D 狄里克雷问题。

6.一函数序列的序参量n趋于某值a时有()(,)()()n ax f n x dx x f x dx ϕϕ→−−−→⎰⎰则我们称( )。

A (,)f n x 收敛于()f x ;B (,)f n x 绝对收敛于()f x ;C (,)f n x 弱收敛于()f x ;D (,)f n x 条件收敛于()f x 。

7.傅里叶变换在物理学和信息学中能实现( )。

A 脉冲信号的高斯展宽;B 高斯信号压缩成脉冲信号;C 实空间信号的频谱分析;D 复频信号的单频滤波。

8.用分离变量法求解偏微分方程定解问题的一般步骤是( )。

A 分离变量 解单变量本征值问题 得单变量解得分离变量解; B 分离变量 得单变量解 解单变量本征值问题 得分离变量解; C 解单变量本征值问题 得单变量解 分离变量 得分离变量解; D 解单变量本征值问题 分离变量 得单变量解 得分离变量解。

9.下列表述中不正确的是( )。

A 3sin zz 在0z =处是二阶极点;B 某复变函数在开复平面内有有限个奇点,所有这些奇点的残数之和为零;C 残数定理表明,解析函数的围线积分为复数;D 某复变函数在某处为m 阶极点,则其倒函数在该奇点处为m 阶零点。

数学物理方法题库

数学物理方法题库

z 4 dz ,其中积分路径 C 为: 9, 计算 C z2 1 1 1 , z 1 ; (3) , z 2。 (1) , z 1 ; (2) 2 2
10, 设 f z


C
3 7 1 d ,其中积分路径 C 为圆周 x 2 y 2 3 ,求 f '(1 i ) 。 z
xn (n 1, 2,) 及 yn (n 1, 2,) 分别以 x0 及y 0 为极限。
17,证明:三角形三内角和等于 。
3
第二章
习题 1, 证明下列函数在 z 平面上处处不可导。 (1) z 。 2, 试证 (1) f ( z ) x iy 仅在原点有导数。
3 3
解析函数
2 2 2
(2) cos z cos xchy i sin xshy 。 (4) cos z cos x sh y 。
2 2 2
15, 证明 sin z 与 cos z 是以 2 为周期的函数,而 e , shz , chz 是以 2i 为周期的函数。
x
16, 证明 w 3 z 的三个单值分支在割破的 z 平面上的任一区域上都是解析的。 17, 设 w 3 z 确定在沿负实轴割破了的 z 平面上,并且 w(i ) i ,求 w(i ) 。 18, 试解方程 (1) e 1 i 3 。
2 2
11, 证明 f ( z ) 与 f ( z ) 必同时为解析函数或不是解析函数。 12, 设 w 是 z 的解析函数,证明 13, 定义 shz
x y x y , , ( w u iv, z x iy ) 。 u v v u
e z e z e z e z 和 chz 分别为双曲正弦函数及双曲余弦函数,试证 2 2

物理数学物理法专项习题及答案解析及解析

物理数学物理法专项习题及答案解析及解析
赛车飞出C后有:
解得:
所以当
R=0.3m
时x最大
xmax=1.2m
7.如图所示,半圆形玻璃砖的半径为R,圆心为O。一束单色光由玻璃砖上的P点垂直于半圆底面射入玻璃砖,其折射光线射向底面的Q点(图中未画出),折射率为 ,测得P点与半圆底面的距离为 。计算确定Q点的位置。
【答案】
【解析】
【详解】
如图所示
上的亮斑刚消失设紫光的临界角为 ,画出光路图
则有
当 时, 面上反射角 ,反射光线垂直射到 面上后入射到 上,则
解得
9.如图所示,木板B放在水平地面上,在木板B上放一重300N的A物体,物体A与木板B间,木板与地间的摩擦因数均为 ,木板B重力为1200N,当水平拉力F将木板B匀速拉出,绳与水平方向成30°时,问绳的拉力T多大?水平拉力多大?
【答案】(1) ;(2)
【解析】
【详解】
(1)如图甲,由几何关系知P点的折射角为30°。
则有
(2)如图乙,由折射规律结合几何关系知,各方向的入射光线进入P点后的折射光线分布在CQB范围内,设在D点全反射,则DQ范围无光线射出。
D点有
解得
由几何关系知
, ,
解得
4.图示为直角三角形棱镜的截面, , ,AB边长为20cm,D点到A点的距离为7cm,一束细单色光平行AC边从D点射入棱镜中,经AC边反射后从BC边上的F点射出,出射光线与BC边的夹角为 ,求:
(1)棱镜的折射率;
(2)F点到C点的距离。
【答案】(1) ;(2)
【解析】
【详解】
(1)由几何知识可知,光束从 点入射的入射角 ,做出光路图:
设对应折射角为 ,则光束在 边的入射角为
在 边上的入射角

数学物理方法习题答案.pdf

数学物理方法习题答案.pdf

电路练习题一、选择题(第1组)1、图示电路,求i 。

A :1/2 A B: 1/3 A C :3/2 A D :2/3 A2、图示电路,求u 。

A :2VB :4VC :6VD :8V3、图示单口网络,其端口VCR 关系为:A: u =5i +3 B: u =-5i +3 C :u =-5i -3 D: u =5i-34、图示电路,求i 。

A :2AB :1.5AC :1AD :3A5、图示电路,求i 。

A :1AB :9/13 AC :1/7 AD :2/11 A6、图示电路,问R L 能获得的最大功率。

A :1/3 W B :2W C :2/9 W D :4W7、图示稳态电路,求i 。

A :2A B :1AC :3AD :1.5Ai 4ΩR L4Ω6Ω 10Ω1H108、图示稳态电路,问电容中的储能。

A :4J B :2JC :8JD :1J9、图示电路,t < 0时处于稳态, t = 0时,开关切到a , 当t = 5s 时,u c (t )是多少?A :6.3VB :5VC :2.4VD :3.16V10、图示电路,t < 0时处于稳态,t = 0时, 开关断开,求t = 1s 时u c (t )是多少? A :1.47V B :2.94V C: 5V D :4V11、图示电路原处于稳态,在t = 0时, 开关断开,求t = 0.1s 时的电流i (t )。

A :1A B :0 C :0.358A D :0.184 A12、图示正弦稳态电路,求i (t ) 。

A :)452cos(2°+t A B :)452cos(2°−t A C :)452cos(2°−t A D :)452cos(2°+t A13、图示正弦稳态电路中,有效值: I 是10A ,I R 是8A 。

问I c 是多少? A :2A B :18A C :6A D :4Ai(t)1H0.5Ω2ΩA2cos 22t u c1A c (t)2A14、图示正弦稳态电路, 求电阻上的平均功率。

数学物理方法期末考试试题

数学物理方法期末考试试题

数学物理方法期末考试试题# 数学物理方法期末考试试题## 第一部分:选择题(每题2分,共20分)1. 以下哪个不是数学物理中的常用方法?A. 傅里叶变换B. 拉普拉斯变换C. 泰勒级数展开D. 牛顿迭代法2. 求解偏微分方程时,分离变量法的基本思想是什么?A. 将偏微分方程转化为常微分方程B. 将偏微分方程分解为几个独立的方程C. 将偏微分方程转化为线性方程D. 将偏微分方程转化为积分方程3. 在数学物理中,格林函数通常用于解决什么问题?A. 线性代数问题B. 非线性偏微分方程C. 边界值问题D. 初始值问题4. 以下哪个是求解波动方程的典型方法?A. 特征线法B. 有限差分法C. 有限元法D. 蒙特卡洛方法5. 拉普拉斯方程在数学物理中通常描述了什么类型的物理现象?A. 波动现象B. 热传导现象C. 流体动力学问题D. 电磁场问题## 第二部分:简答题(每题10分,共30分)6. 简述傅里叶变换在数学物理中的应用。

7. 解释什么是边界层理论,并说明它在流体力学中的重要性。

8. 描述格林函数在求解偏微分方程中的作用。

## 第三部分:计算题(每题25分,共50分)9. 给定函数 \( f(x) = x^2 - 4x + 3 \),使用泰勒级数展开在\( x = 1 \) 处展开 \( f(x) \) 并求出展开式。

10. 考虑一个无限长直导体,在 \( x \) 轴上,导体的电势 \( V(x) \) 满足泊松方程 \( \nabla^2 V = -\rho/\varepsilon_0 \),其中\( \rho \) 是电荷密度,\( \varepsilon_0 \) 是真空电容率。

假设\( \rho \) 是常数,求解 \( V(x) \)。

## 第四部分:论述题(共30分)11. 论述数学物理方法在解决实际物理问题中的应用,并给出至少两个具体的例子。

请注意,以上内容仅为示例,实际的数学物理方法期末考试试题可能会包含不同的问题和要求。

数学物理方法试卷

数学物理方法试卷

数学物理方法试卷数学物理方法是一门重要的学科,它将数学和物理学相结合,以求解物理问题为目标。

本文档旨在提供一份针对数学物理方法的试卷,帮助学生加深对该学科的理解和应用能力。

一、选择题(共10题,每题2分)1. 下列哪个是四位数?A. 123B. 12345C. 123456D. 12342. 如何计算三角形的面积?A. 底乘高除以2B. 长乘宽C. 半径的平方乘以πD. 无法计算3. 下列哪个是速度的单位?A. 米/秒B. 千克C. 焦耳D. 牛顿4. 什么是牛顿第三定律?A. 物体的加速度和作用力成正比B. 物体的质量和加速度成正比C. 在力的作用下,物体会产生加速度D. 任何作用力都有一个相等且方向相反的反作用力5. 单位矩阵是什么?A. 所有元素都为1的矩阵B. 所有元素都为0的矩阵C. 对角线上元素都为1,其他元素为0的矩阵D. 所有元素都相等的矩阵6. 下列哪个是圆的面积公式?A. πr^2B. 2πrC. πd^2D. 0.5πr^27. 加速度的单位是什么?A. 米/秒^2B. 米/秒C. 十米/秒^2D. 千米/小时8. 下列哪个公式用于计算动能?A. F = maB. W = FdC. E = mc^2D. KE = 1/2mv^29. 如何计算两个向量的点积?A. 向量相乘再求和B. 向量相除C. 向量相减D. 无法计算10. 下列哪个没被广义相对论所解释?A. 引力B. 黑洞C. 宇宙膨胀D. 电磁力二、解答题(共3题,每题10分)1. 请用泰勒级数展开sin(x),并计算在x=π/6时的近似值。

2. 请用微分方程求解y'' + 4y = 0,并给出其特解。

3. 请解释质心是什么,并说明为什么在某些问题中质心坐标系非常有用。

本试卷针对数学物理方法的知识进行了全面的考察。

选择题部分测试了学生的基础知识和概念理解能力,而解答题则要求学生能够运用所学的数学物理方法进行实际问题的求解和解释。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题十一 1、一长为 l 的均匀杆,两端受压,从而长度缩为 l (1 2 ) ,求解放手后杆的振动情况。 2、长为 l 的均匀杆,一端固定,另一端受拉力 F0 的作用而伸长,稳定后突然放手让其 振动。求解该杆的纵振动. 3、长为 l 的均匀杆,上端固定在电梯的天花板上,杆身竖直,下端自由。电梯匀速下 降,速度为 v0 ,在 t=0 时刻电梯突然停住.求解其后的杆的振动情况. (提示:杆身竖直, 杆上各点处于新的平衡位置.取此新的平衡位置为纵向位移 v 的坐标原点,则 v 的振动方程 是齐次的.由于是匀速下降,此时
相关文档
最新文档