袁卫 曾五一 贾俊平统计学第五版课后习题 答案

合集下载

统计学第五版贾俊平版课后答案

统计学第五版贾俊平版课后答案

统计学第五版贾俊平版课后题答案(部分)第7章抽样与参数估计7.1(1)已知: EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3。

, EMBED Equation.3 , EMBED Equation.3样本均值的抽样标准差 EMBED Equation.3。

(2)估计误差 EMBED Equation.3。

7.2(1)已知: EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3。

, EMBED Equation.3 , EMBED Equation.3。

样本均值的抽样标准差 EMBED Equation.3。

(2)估计误差 EMBED Equation.3(3)由于总体标准差已知,所以总体均值 EMBED Equation.3 的95%的置信区间为:,即(115.8,124.2)。

EMBED Equation.37.3已知: EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3。

, EMBED Equation.3 , EMBED Equation.3由于总体标准差已知,所以总体均值 EMBED Equation.3 的95%的置信区间为:,即(87818.856,121301.144)。

EMBED Equation.37.4(1)已知: EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3。

, EMBED Equation.3 , EMBED Equation.3由于 EMBED Equation.3 为大样本,所以总体均值 EMBED Equation.3 的90%的置信区间为:,即(79.026,82.974)。

EMBED Equation.3。

(2)已知: EMBED Equation.3 , EMBED Equation.3由于 EMBED Equation.3 为大样本,所以总体均值 EMBED Equation.3 的95%的置信区间为:,即(78.648,83.352)。

统计学第五版(贾俊平)课后习题答案 (1)

统计学第五版(贾俊平)课后习题答案 (1)

中位数位置
30 1 2
15.5 , M e
272
2
273
272.5 。
(2) QL 位置
30 4
7.5
, QL
258 2
261
259.5 。
QU 位置
3 30 4
22 .5 , QU
284 291 287.5 。 2
(3) s
n
(xi x)2
i 1
n 1
13002.7 21.17 。 30 1
4.2 172.1
0.024 ;
幼儿组身高的离散系数: vs
2.5 71.3
0.035 ;
由于幼儿组身高的离散系数大于成年组身高的离散系数,说明幼儿组身高的离
散程度相对较大。
4,11(1)应该从平均数和标准差两个方面进行评价。在对各种方法的离散程度进
行比较时,应该采用离散系数。
(2)下表给出了用 Excel 计算一些主要描述统计量。
550
18
9900
600 以上
650
11
7150
合计

120
k
x
Mi fi
i 1
51200
426.67 。
n
120
51200
标准差计算过程见下表:
按利润额分组 组中值 M i 企业数 fi (M i x)2 (M i x)2 fi
200~300
250
19
31212.3
593033.5
300~400
2 (25 1)
0.77 。
(5)分析:从众数、中位数和平均数来看,网民年龄在 23~24 岁的人数占多数。 由于标准差较大,说明网民年龄之间有较大差异。从偏态系数来看,年龄分布为右

统计学第五版课后答案(贾俊平)

统计学第五版课后答案(贾俊平)

第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。

(2)根据定义公式计算四分位数。

(3)计算销售量的标准差。

(4)说明汽车销售量分布的特征。

解:Statistics10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。

Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。

(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。

如需看清楚分布形态,需要进行分组。

1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。

统计学课后题答案(袁卫_庞皓_曾五一_贾俊平_)

统计学课后题答案(袁卫_庞皓_曾五一_贾俊平_)

版权归wagxjysys所有违者必究第1章绪论1.什么是统计学?怎样理解统计学与统计数据的关系?2.试举出日常生活或工作中统计数据及其规律性的例子。

3..一家大型油漆零售商收到了客户关于油漆罐分量不足的许多抱怨。

因此,他们开始检查供货商的集装箱,有问题的将其退回。

最近的一个集装箱装的是2 440加仑的油漆罐。

这家零售商抽查了50罐油漆,每一罐的质量精确到4位小数。

装满的油漆罐应为4.536 kg。

要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)描述推断。

答:(1)总体:最近的一个集装箱内的全部油漆;(2)研究变量:装满的油漆罐的质量;(3)样本:最近的一个集装箱内的50罐油漆;(4)推断:50罐油漆的质量应为4.536×50=226.8 kg。

4.“可乐战”是描述市场上“可口可乐”与“百事可乐”激烈竞争的一个流行术语。

这场战役因影视明星、运动员的参与以及消费者对品尝试验优先权的抱怨而颇具特色。

假定作为百事可乐营销战役的一部分,选择了1000名消费者进行匿名性质的品尝试验(即在品尝试验中,两个品牌不做外观标记),请每一名被测试者说出A品牌或B品牌中哪个口味更好。

要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)一描述推断。

答:(1)总体:市场上的“可口可乐”与“百事可乐”(2)研究变量:更好口味的品牌名称;(3)样本:1000名消费者品尝的两个品牌(4)推断:两个品牌中哪个口味更好。

第2章统计数据的描述——练习题●1.为评价家电行业售后服务的质量,随机抽取了由100家庭构成的一个样本。

服务质量的等级分别表示为:A.好;B.较好;C.一般;D.差;E.较差。

调查结果如下:B EC C AD C B A ED A C B C DE C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E BB EC C AD C B A EB ACDE A B D D CA DBC C A ED C BC B C ED B C C B C(1) 指出上面的数据属于什么类型;(2)用Excel制作一张频数分布表;(3) 绘制一张条形图,反映评价等级的分布。

统计学(第五版)贾俊平 课后思考题和练习题答案(最终完整版)

统计学(第五版)贾俊平 课后思考题和练习题答案(最终完整版)

统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)整理by__kiss-ahuang第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。

1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。

1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。

1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经验变量和理论变量。

1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。

统计学第五版(贾俊平)课后思考题答案(完整版)

统计学第五版(贾俊平)课后思考题答案(完整版)

第8章思考题8.1假设检验和参数估计有什么相同点和不同点?答:参数估计和假设检验是统计推断的两个组成部分,它们都是利用样本对总体进行某种推断,然而推断的角度不同。

参数估计讨论的是用样本统计量估计总体参数的方法,总体参数μ在估计前是未知的。

而在参数假设检验中,则是先对μ的值提出一个假设,然后利用样本信息去检验这个假设是否成立。

8.2什么是假设检验中的显著性水平?统计显著是什么意思?答:显著性水平是一个统计专有名词,在假设检验中,它的含义是当原假设正确时却被拒绝的概率和风险。

统计显著等价拒绝H0,指求出的值落在小概率的区间上,一般是落在0.05或比0.05更小的显著水平上。

8.3什么是假设检验中的两类错误?答:假设检验的结果可能是错误的,所犯的错误有两种类型,一类错误是原假设H0为真却被我们拒绝了,犯这种错误的概率用α表示,所以也称α错误或弃真错误;另一类错误是原假设为伪我们却没有拒绝,犯这种错误的概论用β表示,所以也称β错误或取伪错误。

8.4两类错误之间存在什么样的数量关系?答:在假设检验中,α与β是此消彼长的关系。

如果减小α错误,就会增大犯β错误的机会,若减小β错误,也会增大犯α错误的机会。

8.5解释假设检验中的P值答:P值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。

(它的大小取决于三个因素,一个是样本数据与原假设之间的差异,一个是样本量,再一个是被假设参数的总体分布。

)8.6显著性水平与P值有何区别答:显著性水平是原假设为真时,拒绝原假设的概率,是一个概率值,被称为抽样分布的拒绝域,大小由研究者事先确定,一般为0.05。

而P只是原假设为真时所得到的样本观察结果或更极端结果出现的概率,被称为观察到的(或实测的)显著性水平8.7假设检验依据的基本原理是什么?答:假设检验依据的基本原理是“小概率原理”,即发生概率很小的随机事件在一次试验中是几乎不可能发生的。

根据这一原理,可以作出是否拒绝原假设的决定。

袁卫 曾五一 贾俊平统计学第五版课后习题 答案

各章练习题答案第2章统计数据的描述2.1 (1)属于顺序数据。

(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)频率%A1414B2121C3232D1818E1515合计100100(3)条形图(略)2.2 (1)频数分布表如下:(2)某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40 100.0 2.3 频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)25~30 30~35 35~40 40~45 45~5046159610.015.037.522.515.0合计40 100.0 直方图(略)。

2.4 (1)排序略。

(2)频数分布表如下:100只灯泡使用寿命非频数分布按使用寿命分组(小时)灯泡个数(只)频率(%)650~660 2 2660~670 5 5670~680 6 6680~690 14 14690~700 26 26700~710 18 18710~720 13 13720~730 10 10730~740 3 3740~750 3 3合计100 100 直方图(略)。

2.5 (1)属于数值型数据。

(2)分组结果如下:分组天数(天)-25~-20 6-20~-15 8-15~-10 10-10~-5 13-5~0 120~5 45~10 7合计60(3)直方图(略)。

2.6 (1)直方图(略)。

(2)自学考试人员年龄的分布为右偏。

2.7 (1)茎叶图如下:(2)A 班考试成绩的分布比较集中,且平均分数较高;B 班考试成绩的分布比A 班分散,且平均成绩较A 班低。

2.8 箱线图如下:(特征请读者自己分析)2.9 (1)x =274.1(万元);Me=272.5 ;Q L =260.25;Q U =291.25。

(2)17.21=s (万元)。

统计学贾俊平-课后思考题和练习题答案

统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。

解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。

统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

解释分类数据,顺序数据和数值型数据答案同举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。

变量的分类变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经验变量和理论变量。

举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。

统计学(第五版)贾俊平等著—课后习题答案

4.2(1)众数:19;23中位数:23 平均数:24(2)四分位数:Q L 位置=425=6.25.所以Q L =19+0.25^0=19 Q U 位置=475=18.75,所以Q U =25+2^0.75=26.5(3)标准差:6.65 (4)峰度0.77,偏度1.08 4.3(1)茎叶图Frequency Stem & Leaf 1.00 5. 5 3.00 6. 678 5.00 7. 13488 (2) 平均数:7,标准差0.71 (3)第一种方式的离散系数x s v s ==2.797.1=0.28 第二种方式的离散系数xs v s ==771.0=0.10 所以,第二种排队方式等待时间更集中。

(4)选择第二种,因为平均等待的时间短,而且等待时间的集中程度高 4.5.甲企业总平均成本nf Mx ki ii∑==1=3406600=19.41(元) 乙企业总平均成本nf Mx ki ii∑==1=(元)29.183426255=所以甲企业的总平均成本比乙企业的高,原因是甲企业高成本的产品B 生产的产量比乙企业多,所以把总平均成本提高了。

4.6计算数据如表:利润总额的平均数nf Mx ki ii∑==1=(万元)67.42612051200= 利润总额标准差()nx x f *2∑-=σ= (万元)99.1151201614666==σ 峰态系数6479.03352.23)99.115(120851087441643)(4414—=-=-⨯=--=∑=ns f x MK ki ii偏态系数313)(ns f x MSK ki ii∑=-==2057.0)99.115(120)67.426(3513=⨯-∑=i iif M4.8对于不同的总体的差异程度的比较采用标准差系数,计算如下:%3.8605===x s v s 男; %10505===x s v s 女 (1)女生的体重差异大,因为离散系数大;(2)以磅为单位,男生的平均体重为132.6磅,标准差为11.05磅;女生的平均体重为110.5磅,标准差为11.05磅%33.86.13205.11===x s v s 男%105.11005.11===x s v s 女 (3)156065=-=-=s x x z i i ,所以大约有68%的人体重在55kg~65kg 之间;(4)255040=-=-=s x x z i i ,所以大约有95%的女生体重在40kg~60kg 之间。

统计学贾俊平课后思考题和练习题

统计学(第五版)贾俊平课后思虑题和练习题答案(最后完好版)第一部分思虑题第一章思虑题什么是统计学统计学是对于数据的一门学科,它采集,办理,剖析,解说来自各个领域的数据并从中得出结论。

解说描绘统计和推测统计描绘统计;它研究的是数据采集,办理,汇总,图表描绘,归纳与剖析等统计方法。

推测统计;它是研究如何利用样本数据来推测整体特色的统计方法。

统计学的种类和不一样种类的特色统计数据;按所采纳的计量尺度不一样分;(定性数据)分类数据:只好归于某一类其余非数字型数据,它是对事物进行分类的结果,数据表现为类型,用文字来表述;(定性数据)次序数据:只好归于某一有序类其余非数字型数据。

它也是有类其余,但这些类型是有序的。

(定量数据)数值型数据:按数字尺度丈量的察看值,其结果表现为详细的数值。

统计数据;按统计数据都采集方法分;观察数据:是经过检查或观察而采集到的数据,这种数据是在没有对事物人为控制的条件下获取的。

实验数据:在实验中控制实验对象而采集到的数据。

统计数据;按被描绘的现象与实践的关系分;截面数据:在相同或相像的时间点采集到的数据,也叫静态数据。

时间序列数据:准时间次序采集到的,用于描绘现象随时间变化的状况,也叫动向数据。

解说分类数据,次序数据和数值型数据答案同举例说明整体,样本,参数,统计量,变量这几个看法对一千灯泡进行寿命测试,那么这千个灯泡就是整体,从中抽取一百个进行检测,这一百个灯泡的会合就是样本,这一千个灯泡的寿命的均匀值和标准差还有合格率等描绘特色的数值就是参数,这一百个灯泡的寿命的均匀值和标准差还有合格率等描绘特色的数值就是统计量,变量就是说明现象某种特色的看法,比方说灯泡的寿命。

变量的分类变量能够分为分类变量,次序变量,数值型变量。

变量也能够分为随机变量和非随机变量。

经验变量和理论变量。

举例说明失散型变量和连续性变量失散型变量,只好取有限个值,取值以整数位断开,比方“公司数”连续型变量,取之连续不停,不可以一一列举,比方“温度”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各章练习题答案第2章统计数据的描述2.1 (1)属于顺序数据。

(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)频率%A1414B2121C3232D1818E1515合计100100(3)条形图(略)2.2 (1)频数分布表如下:(2)某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40 100.0 2.3 频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)25~30 30~35 35~40 40~45 45~5046159610.015.037.522.515.0合计40 100.0 直方图(略)。

2.4 (1)排序略。

(2)频数分布表如下:100只灯泡使用寿命非频数分布按使用寿命分组(小时)灯泡个数(只)频率(%)650~660 2 2660~670 5 5670~680 6 6680~690 14 14690~700 26 26700~710 18 18710~720 13 13720~730 10 10730~740 3 3740~750 3 3合计100 100 直方图(略)。

2.5 (1)属于数值型数据。

(2)分组结果如下:分组天数(天)-25~-20 6-20~-15 8-15~-10 10-10~-5 13-5~0 120~5 45~10 7合计60(3)直方图(略)。

2.6 (1)直方图(略)。

(2)自学考试人员年龄的分布为右偏。

2.7 (1)茎叶图如下:(2)A 班考试成绩的分布比较集中,且平均分数较高;B 班考试成绩的分布比A 班分散,且平均成绩较A 班低。

2.8 箱线图如下:(特征请读者自己分析)2.9 (1)x =274.1(万元);Me=272.5 ;Q L =260.25;Q U =291.25。

(2)17.21=s (万元)。

2.10 (1)甲企业平均成本=19.41(元),乙企业平均成本=18.29(元);原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。

2.11 x =426.67(万元);48.116=s (万元)。

2.12 (1)女生的体重差异大,因为女生其中的离散系数为0.1大于男生体重的离散系数0.08。

(2) 男生:x =27.27(磅),27.2=s (磅); 女生:x =22.73(磅),27.2=s (磅); (3)68%;(4)95%。

2.13 (1)离散系数,因为它消除了不同组数据水平高低的影响。

(2)成年组身高的离散系数:024.01.1722.4==s v ; 幼儿组身高的离散系数:032.03.713.2==s v ; 由于幼儿组身高的离散系数大于成年组身高的离散系数,说明幼儿组身高的离散程度相对较大。

2.142.15 (1)方差或标准差;(2)商业类股票;(3)(略)。

第3章 概率与概率分布3.2设A =女性,B =工程师,AB =女工程师,A+B =女性或工程师 (1)P(A)=4/12=1/3 (2)P(B)=4/12=1/3 (3)P(AB)=2/12=1/6(4)P(A+B)=P(A)+P(B)-P(AB)=1/3+1/3-1/6=1/23.4 设A =第1发命中。

B =命中碟靶。

求命中概率是一个全概率的计算问题。

再利用对立事件的概率即可求得脱靶的概率。

)|()()|()()(A B P A P A B P A P B P += =0.8×1+0.2×0.5=0.9 脱靶的概率=1-0.9=0.1或(解法二):P (脱靶)=P (第1次脱靶)×P(第2次脱靶)=0.2×0.5=0.1 3.8 设A =活到55岁,B =活到70岁。

所求概率为:()()0.63(|)0.75()()0.84P AB P B P B A P A P A ==== 3.9这是一个计算后验概率的问题。

设A =优质率达95%,A =优质率为80%,B =试验所生产的5件全部优质。

P(A)=0.4,P (A )=0.6,P (B|A )=0.955, P(B |A )=0.85,所求概率为:6115.050612.030951.0)|()()|()()|()()|(===A B P A P A B P A P A B P A P B A P +决策者会倾向于采用新的生产管理流程。

3.10令A 1、A 2、A 3分别代表从甲、乙、丙企业采购产品,B 表示次品。

由题意得:P (A 1)=0.25,P (A 2)=0.30, P (A 3)=0.45;P (B |A 1)=0.04,P (B |A 2)=0.05,P (B |A 3)=0.03;因此,所求概率分别为:(1))|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++= =0.25×0.04+0.30×0.05+0.45×0.03=0.0385(2)3506.00385.00135.00.030.450.050.300.040.2503.045.0)|(3==++=⨯⨯⨯⨯B A P3.11据题意,在每个路口遇到红灯的概率是p =24/(24+36)=0.4。

设途中遇到红灯的次数=X ,因此,X ~B(3,0.4)。

其概率分布如下表:3.12 设被保险人死亡数=X ,X ~B (20000,0.0005)。

(1)收入=20000×50(元)=100万元。

要获利至少50万元,则赔付保险金额应该不超过50万元,等价于被保险人死亡数不超过10人。

所求概率为:P(X ≤10)=0.58304。

(2)当被保险人死亡数超过20人时,保险公司就要亏本。

所求概率为: P(X >20)=1-P(X ≤20)=1-0.99842=0.00158 (3)支付保险金额的均值=50000×E (X ) =50000×20000×0.0005(元)=50(万元) 支付保险金额的标准差=50000×σ(X )=50000×(20000×0.0005×0.9995)1/2=158074(元)3.13 (1)可以。

当n 很大而p 很小时,二项分布可以利用泊松分布来近似计算。

本例中,λ= np =20000×0.0005=10,即有X ~P (10)。

计算结果与二项分布所得结果几乎完全一致。

(2)也可以。

尽管p 很小,但由于n 非常大,np 和np(1-p)都大于5,二项分布也可以利用正态分布来近似计算。

本例中,np=20000×0.0005=10,np(1-p)=20000×0.0005×(1-0.0005)=9.995, 即有X ~N (10,9.995)。

相应的概率为: P (X ≤10.5)=0.51995,P(X ≤20.5)=0.853262。

可见误差比较大(这是由于P 太小,二项分布偏斜太严重)。

【注】由于二项分布是离散型分布,而正态分布是连续性分布,所以,用正态分布来近似计算二项分布的概率时,通常在二项分布的变量值基础上加减0.5作为正态分布对应的区间点,这就是所谓的“连续性校正”。

(3)由于p =0.0005,假如n =5000,则np =2.5<5,二项分布呈明显的偏态,用正态分布来计算就会出现非常大的误差。

此时宜用泊松分布去近似。

3.16(1))6667.1()30200150()150(-<-<=<Z P Z P X P ==0.04779 合格率为1-0.04779=0.95221或95.221%。

(2) 设所求值为K ,满足电池寿命在200±K 小时范围内的概率不小于0.9,即有:|200|(|200|){||}0.93030X KP X K P Z --<=<≥=即:{}0.9530KP Z <≥,K /30≥1.64485,故K ≥49.3456。

3.18 (1) 20, 2 (2). 近似正态 (3)—2.25 (4) 1.503.19 (1) 0.0228 (2) 0.0668 (3). 0.0062 (4). 0.8185 (5). 0.0013 3.20 (1) 0.8944 (2). 0.0228 (3) 0.1292 (4) 0.96993.21 (1) 101, 99 (2) 1 (3)不必 3.22 趋向正态3.23 (1) 正态分布, 213,4.5918 (2)0.5, 0.031, 0.9383.24 (1). 406, 1.68, 正态分布 (2). 0.001 (3)是,因为小概率出现了 3.25 (1) 正态 (2). 约等于0 (3). 不正常 (4) 正态, 0.06 3.26 (1). 0.015 (2). 0.0026 (3). 0.1587 3.27. (1). (0.012, 0.028) (2). 0.6553, 0.7278第4章 参数估计4.1 (1)79.0=x σ (2)E =1.554.2 (1)14.2=x σ (2)E =4.2 (3)(115.8,124.2)4.3 (2.88,3.76);(2.80,3.84);(2.63,4.01) 4.4 (7.1,12.9) 4.5 (7.18,11.57)4.6 (18.11%,27.89%);(17.17%,22.835) 4.7 (1)(51.37%,76.63%);(2)36 4.8 (1.86,17.74);(0.19,19.41)4.9 (1)2±1.176;(2)2±3.986;(3)2±3.986;(4)2±3.587;(5)2±3.364 4.10 (1)75.1=d ,63.2=d s ;(2)1.75±4.27 4.11 (1)10%±6.98%;(2)10%±8.32% 4.12 (4.06,14.35) 4.13 48 4.14 139 4.15 57 4.16 769第5章 假设检验5.1 研究者想要寻找证据予以支持的假设是“新型弦线的平均抗拉强度相对于以前提高了”,所以原假设与备择假设应为:1035:0≤μH ,1035:1>μH 。

5.2 65:0=μH ,65:1≠μH 。

5.3 (1)第一类错误是该供应商提供的这批炸土豆片的平均重量的确大于等于60克,但检验结果却提供证据支持店方倾向于认为其重量少于60克;(2)第二类错误是该供应商提供的这批炸土豆片的平均重量其实少于60克,但检验结果却没有提供足够的证据支持店方发现这一点,从而接收这批产品; (3)连锁店的顾客们自然看重第二类错误,而供应商更看重第一类错误。

相关文档
最新文档