统计学人教版第五版课后题答案

合集下载

统计学第五版第四章课后习题答案

统计学第五版第四章课后习题答案
如图所示:这家汽车零售店的10名销售人
员5月份销售的汽车数量平均为9.6辆,其中 汽车销量为10的销售员最多,在销量处于 中间位置的也是10,其上四分位数为12, 下四分位数为7.75,证明多数销售员的汽车 销量较高,在7辆以上,只有少数在7以下; 销量的标准差为4.17,则这十名销售员的汽 车销量围绕10辆有所波动,幵且极端值不 10相差较大。
如图所示:
大多网络用户的年龄为19岁,网络用户年
பைடு நூலகம்
龄的中间值为23岁,上四分位数为27岁, 下四分位数为19岁,说明年龄在19-23岁和 23-27岁的网络用户数量差丌多,网络用户 的平均年龄是24岁,证明有个别网络用户 的年龄较大,把整体平均数给拉高了,使整 体分布表现为右偏分布。
(3)、第一种排
答:我选择A组装方法,因为其单位时
间的平均产量比B、C组装方法高出很 多,波动性比B方法略大但比C方法小 很多,幵且A组装方法单位时间产量的 最小值也比B、C两组装方法的最大值 高出很多。可见A生产效率很高,所以 我选择A组装方法。
答: (1)、我认为应用标准差戒者离散系数来反
应投资的风险。 (2)、如图所示,高科技类股票的离散系数 较大,所以风险较大;而商业类股票的离散系 数较小,所以风险相对较小。如果选择风险小 的股票进行投资,应选择商业类股票。 (3)、如果进行股票投资,我希望能够获取 高收益,所以我会选择高科技类股票。
这20家企业利润
额的平均数为 426.67万元,标 准差为116.48, 说明这120家企业 盈利丌等且相差较 大,SK为正值, 所以这120家企业 利润的正离差值较 大,属于右偏分布 倾斜程度丌是很大, 且为扁平分布,数 据的分布较分散。
(1)、答:两位调查人员所得到的样本的平均身

统计学第五版(贾俊平)课后习题答案 (1)

统计学第五版(贾俊平)课后习题答案 (1)

中位数位置
30 1 2
15.5 , M e
272
2
273
272.5 。
(2) QL 位置
30 4
7.5
, QL
258 2
261
259.5 。
QU 位置
3 30 4
22 .5 , QU
284 291 287.5 。 2
(3) s
n
(xi x)2
i 1
n 1
13002.7 21.17 。 30 1
4.2 172.1
0.024 ;
幼儿组身高的离散系数: vs
2.5 71.3
0.035 ;
由于幼儿组身高的离散系数大于成年组身高的离散系数,说明幼儿组身高的离
散程度相对较大。
4,11(1)应该从平均数和标准差两个方面进行评价。在对各种方法的离散程度进
行比较时,应该采用离散系数。
(2)下表给出了用 Excel 计算一些主要描述统计量。
550
18
9900
600 以上
650
11
7150
合计

120
k
x
Mi fi
i 1
51200
426.67 。
n
120
51200
标准差计算过程见下表:
按利润额分组 组中值 M i 企业数 fi (M i x)2 (M i x)2 fi
200~300
250
19
31212.3
593033.5
300~400
2 (25 1)
0.77 。
(5)分析:从众数、中位数和平均数来看,网民年龄在 23~24 岁的人数占多数。 由于标准差较大,说明网民年龄之间有较大差异。从偏态系数来看,年龄分布为右

统计学教材课后习题详细答案

统计学教材课后习题详细答案

统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)整理by__kiss-ahuang第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。

1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。

1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。

1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经验变量和理论变量。

1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。

统计学人教版第五版7,8,10,11,13,14章课后题答案

统计学人教版第五版7,8,10,11,13,14章课后题答案

统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。

估计量也是随机变量。

如样本均值,样本比例、样本方差等。

根据一个具体的样本计算出来的估计量的数值称为估计值。

2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的方差尽可能小。

对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。

(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。

3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。

在公布调查结果时给出被调查人数是负责任的表现。

这样则可以由此推算出置信度(由后面给出的公式),反之亦然。

4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。

也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。

5. 简述样本量与置信水平、总体方差、估计误差的关系。

1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为 其中: 2222α2222)(E z n σα=n z E σα2=▪ 与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪ 与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪ 与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。

统计学第五版课后习题答案(完整版)

统计学第五版课后习题答案(完整版)

统计学(第五版)课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。

1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。

1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。

1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经验变量和理论变量。

1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。

统计学第五版第八章课后习题答案

统计学第五版第八章课后习题答案

由Excel制表得:
由图可知:
已知:α= 0、05,n1 = n2=12
=31、75 =28、67 =10、20 =6、06 t=1、72 t∈(-1、72,1、72)接受,否则拒绝。 t=(31 、75-28、67)/(8、08* 0、41)=0、93 0、 93∈(-1、72,1、72)
决策:在α= 0、05得水平上接受 。
已知包重服从正态分布,试检验该日打包机工作就是否正常 ( α
=0、) 。 解:
如图所示:
本题采用单样本t检验。
:μ=100 :μ≠100基
本统计量:
α=0、05,N=9, =99、978,
S=1、2122, =0、4041 检验结果: t=-0、005,自由度f=8, 双侧检验P=0、996,单侧检验P=0、498
:μ≥700
:μ<700
∵α=0、05∴
=-1、645
计算检验统计量: =(680-700)/(60/6)=-2
决策: ∵Z值落入拒绝域,
∴在α=0、05得显著水平上拒绝 ,接受 。
结论: 有证据表明这批灯泡得使用寿命低于700小时,为不合格产品。
8、3 某地区小麦得一般生产水平为亩产250公斤,其标准差为30 公斤。现用一种化肥进行试验,从25个小区抽样,平均产量为270
决策:在 α= 0、05得水平上拒绝 。
结论: 服用阿司匹林可以降低心脏病发生率。
8、14 某工厂制造螺栓,规定螺栓口径为7、0cm,方差为0、03cm。 今从一批螺栓中抽取80个测量其口径,得平均值为6、97cm,方差为 0、0375cm。假定螺栓口径为正态分布,问这批螺栓就是否达到规 定得要求 (a=0、05)?
双侧检验

统计学第五版课后题答案李金昌

统计学第五版课后题答案李金昌

统计学第五版课后题答案李金昌第1章绪论 1 .试述数据、数据库、数据库系统、数据库管理系统的概念。

答:( l )数据( Data ) :叙述事物的符号记录称作数据。

数据的种类存有数字、文字、图形、图像、声音、正文等。

数据与其语义就是不可分的。

解析在现代计算机系统中数据的概念就是广义的。

早期的计算机系统主要用作科学计算,处置的数据就是整数、实数、浮点数等传统数学中的数据。

现代计算机能够存储和处置的对象十分广为,则表示这些对象的数据也越来越繁杂。

数据与其语义就是不可分的。

500 这个数字可以表示一件物品的价格是 500 元,也可以表示一个学术会议参加的人数有 500 人,还可以表示一袋奶粉重 500 克。

( 2 )数据库( DataBase ,缩写 DB ) :数据库就是长期储存在计算机内的、存有非政府的、可以共享资源的数据子集。

数据库中的数据按一定的数据模型非政府、叙述和储存,具备较小的冗余度、较低的数据独立性和易扩展性,并可向各种用户共享资源。

( 3 )数据库系统( DataBas 。

Sytem ,缩写 DBS ) :数据库系统就是所指在计算机系统中导入数据库后的系统形成,通常由数据库、数据库管理系统(及其开发工具)、应用领域系统、数据库管理员形成。

解析数据库系统和数据库就是两个概念。

数据库系统就是一个人一机系统,数据库就是数据库系统的一个组成部分。

但是在日常工作中人们常常把数据库系统缩写为数据库。

期望读者能从人们讲话或文章的上下文中区分“数据库系统”和“数据库”,不要引发混为一谈。

( 4 )数据库管理系统( DataBase Management sytem ,简称 DBMs ) :数据库管理系统是位于用户与操作系统之间的一层数据管理软件,用于科学地组织和存储数据、高效地获取和维护数据。

DBMS 的主要功能包含数据定义功能、数据压低功能、数据库的运转管理功能、数据库的创建和保护功能。

解析 DBMS 就是一个大型的繁杂的软件系统,就是计算机中的基础软件。

统计学(第五版)课后答案

统计学(第五版)课后答案

4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。

(2)根据定义公式计算四分位数。

(3)计算销售量的标准差。

(4)说明汽车销售量分布的特征。

解:Statistics汽车销售数量N Valid 10Missing 0 Mean 9.60 Median 10.00 Mode 10 Std. Deviation 4.169 Percentiles 25 6.2550 10.0075 12.504.2 随机抽取25个网络用户,得到他们的年龄数据如下:19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:1、排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄从频数看出,众数Mo 有两个:19、23;从累计频数看,中位数Me=23。

(2)根据定义公式计算四分位数。

Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25 和27都只有一个,因此Q3也可等于25+0.75×2=26.5。

(3)计算平均数和标准差; Mean=24.00;Std. Deviation=6.652 (4)计算偏态系数和峰态系数: Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。

如需看清楚分布形态,需要进行分组。

为分组情况下的直方图:为分组情况下的概率密度曲线:分组:1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K=+=+=+=,取k=62、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄(Binned)分组后的均值与方差:分组后的直方图:4.6 在某地区抽取120家企业,按利润额进行分组,结果如下:要求:(1)计算120家企业利润额的平均数和标准差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
127
104
105
119
114
115
87
103
118
142
135
125
117
108
105
110
107
137
120
136
117
108
97
88
123
115
119
138
112
146
113
126
要求:
(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。
1、确定组数:
,取k=6
2、确定组距:
<= 25
1
2.5
1
2.5
26 - 30
5
12.5
6
15.0
31 - 35
6
15.0
12
30.0
36 - 40
14
35.0
26
65.0
41 - 45
10
25.0
36
90.0
46+
4
10.0
40
100.0
总和
40
100.0
3.4利用下面的数据构建茎叶图和箱线图。
57
29
29
36
31
23
47
23
28
28
3.00 4 . 667
3.00 5 . 012
1.00 5 . 7
Stem width: 10
Each leaf: 1 case(s)
3.6一种袋装食品用生产线自动装填,每袋重量大约为50g,但由于某些原因,每袋重量不会恰好是50g。下面是随机抽取的100袋食品,测得的重量数据如下:
单位:g
57
46
B
C
E
D
B
C
C
B
C
D
A
C
B
C
D
E
C
E
B
B
E
C
C
A
D
C
B
A
E
B
A
C
E
E
A
B
D
D
C
A
D
B
C
C
A
E
D
C
B
C
B
C
E
D
B
C
C
B
C
要求:
(1)指出上面的数据属于什么类型。
顺序数据
(2)用Excel制作一张频数分布表。
用数据分析——直方图制作:
接收
频率
E
16
D
17
C
32
B
21
A
14
(3)绘制一张条形图,反映评价等级的分布。
用数据分析——直方图制作:
(4)绘制评价等级的帕累托图。
逆序排序后,制作累计频数分布表:
接收
频数
频率(%)
累计频率(%)
C
ቤተ መጻሕፍቲ ባይዱ32
32
32
B
21
21
53
D
17
17
70
E
16
16
86
A
14
14
100
3.2某行业管理局所属40个企业2002年的产品销售收入数据如下:
152
124
129
116
100
103
92
95
24
24.0
36
36.0
49.00 - 51.00
19
19.0
55
55.0
52.00 - 54.00
24
24.0
79
79.0
55.00 - 57.00
14
14.0
93
93.0
58.00+
7
7.0
100
100.0
合计
100
100.0
直方图:
组距4,上限为小于等于
频数
百分比
累计频数
累积百分比
有效
<= 40.00
47
49
50
54
47
48
44
57
47
53
58
52
48
55
53
57
49
56
56
57
53
41
48
要求:
(1)构建这些数据的频数分布表。
(2)绘制频数分布的直方图。
(3)说明数据分布的特征。
解:(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。
1、确定组数:
,取k=6或7
2、确定组距:
100.0
统计学
第五版贾俊平版课后题答案(部分)
第三章数据的图表展示
3.1为评价家电行业售后服务的质量,随机抽取了由100个家庭构成的一个样本。服务质量的等级分别表示为:A.好;B.较好;C一般;D.较差;E.差。调查结果如下:
B
E
C
C
A
D
C
B
A
E
D
A
C
B
C
D
E
C
E
E
A
D
B
C
C
A
E
D
C
B
B
A
C
D
E
A
B
D
D
C
C
组距=(最大值-最小值)÷组数=(61-40)÷6=3.5,取3或者4、5
组距=(最大值-最小值)÷组数=(61-40)÷7=3,
3、分组频数表
组距3,上限为小于
频数
百分比
累计频数
累积百分比
有效
40.00 - 42.00
3
3.0
3
3.0
43.00 - 45.00
9
9.0
12
12.0
46.00 - 48.00
组距=(最大值-最小值)÷组数=(152-87)÷6=10.83,取10
3、分组频数表
销售收入
频数
频率%
累计频数
累计频率%
80.00 - 89.00
2
5.0
2
5.0
90.00 - 99.00
3
7.5
5
12.5
100.00 - 109.00
9
22.5
14
35.0
110.00 - 119.00
12
30.0
1
1.0
1
1.0
41.00 - 44.00
7
7.0
8
8.0
45.00 - 48.00
28
28.0
36
36.0
49.00 - 52.00
28
28.0
64
64.0
53.00 - 56.00
22
22.0
86
86.0
57.00 - 60.00
13
13.0
99
99.0
61.00+
1
1.0
100
100.0
合计
100
49
54
55
58
49
61
51
49
51
60
52
54
51
55
60
56
47
47
53
51
48
53
50
52
40
45
57
53
52
51
46
48
47
53
47
53
44
47
50
52
53
47
45
48
54
52
48
46
49
52
59
53
50
43
53
46
57
49
49
44
57
52
42
49
43
47
46
48
51
59
45
45
46
52
55
26
65.0
120.00 - 129.00
7
17.5
33
82.5
130.00 - 139.00
4
10.0
37
92.5
140.00 - 149.00
2
5.0
39
97.5
150.00+
1
2.5
40
100.0
总和
40
100.0
(2)按规定,销售收入在125万元以上为先进企业,115~125万元为良好企业,105~115万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。
35
51
39
18
46
18
26
50
29
33
21
46
41
52
28
21
43
19
42
20
data Stem-and-Leaf Plot
Frequency Stem & Leaf
3.00 1 . 889
5.00 2 . 01133
7.00 2 . 6888999
2.00 3 . 13
3.00 3 . 569
3.00 4 . 123
44
35
28
46
34
30
37
相关文档
最新文档