浙江大学2020-2021学年秋冬学期期末模拟考试《高等代数》试卷及答案解析
2021-2022学年浙江大学附中玉泉校区高一上学期期末考试数学试卷带讲解

于是得 ,解得 ,
所以 .
故答案为:1;2
12.已知函数 ,则 ________.
4
【分析】利用给定的分段函数,依次计算作答.
【详解】函数 ,则 ,所以 .
故答案 :4
13.已知A为三角形内角且 ,则 ________.
##0.6
【分析】根据正切值的正负确定A为锐角,再根据同角三角函数关系求出正弦.
当 ,令 ,即 ,解得 ,或 (舍去).
结合图象可得,若 在区间 上的值域为 ,则实数 的取值范围是 .
答案: ]
点睛:本题将函数的性质、函数的图象结合在一起考查.根据奇偶性可得函数在 时的解析式,从而可画出函数的图象,为解题增加了直观性,结合图象可得参数所要满足的条件.用数形结合的思想方法进行解题,是数学中常用的方法,需要好好的掌握.15.已知 是在定义域 上的单调函数,且对任意 都满足: ,则满足不等式 的 的取值范围是________.
A. B. C. D. B
【分析】用三角函数值的定义去求.
【详解】已知点 ,则 ,则 .
故选:B
4.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数图象的特征,如函数 的大致图象是()
B
【分析】求出不等式 的等价条件,结合充分条件必要条件的定义即可.
【详解】由 得 ,
因为若 ,则 ,反之不成立,
故“ ”是“ ”的必要不充分条件,
即“ ”是“ ”的必要不充分条件.
故选:B
6.已知函数 ( )的图像的相邻的两个对称中心之间的距离为 ,则 的值是()
2020-2021某大学《高等代数》期末课程考试试卷合集(含答案)

【解】
(1) 方法一:数学归纳法证明 Dn = (n +1)an . k = 1时, D1 = 2a ,
假设 k n −1时, Dk = (n +1)ak .则当 k = n 时,
Dn = 2aDn−1 − a2Dn−2 = 2anan−1 − a2 (n −1)an−2 = (n +1)an.
方法二:递推法.
5、在
中,
是 的维数 则 在基
下的矩阵为_________________。
6. 元实二次型
是正定的充分必要条件是它的正惯
性指数等于___________________.
7.对于线性空间 V 中向量
,若在数域 P 中有 个
不全为零的数
,使
,则向量
称为_________.
8.相似矩阵的特征值__________.
(D) 1 + 22 ,2 + 23,3 + 21 . 3 线性方程组 Ax = b 的系数矩阵式 45 矩阵,且 A 的行向量线性无关,则错误的命题是
( D ).
(A) 齐次方程组 AT x = 0 只有零解;
(B)齐次方程组 AT Ax = 0 必有非零解; (C) 对任意的 b ,方程组 Ax = b 必有无穷多解; (D) 对任意的 b ,方程组 AT x = b 必有唯一解.
考试日期:
考试时间:120 分钟
试卷总分:100 分
一、填空(共 50 分,每小题 5 分)
1、设矩阵
与
相似,则
。
2、已知
是矩阵
的一个特征向量,则
特征向量 对应的特征值
。
3、 满足________时,二次型
浙江省2020届高三高考模拟试题数学试卷及解析word版

浙江省2020届高三高考模拟试题数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知U=R,集合A={x|x<32},集合B={y|y>1},则∁U(A∩B)=()A.[32,+∞)B.(−∞,1]∪[32,+∞)C.(1,32)D.(−∞,32)2.已知i是虚数单位,若z=3+i1−2i,则z的共轭复数z等于()A.1−7i3B.1+7i3C.1−7i5D.1+7i53.若双曲线x2m−y2=1的焦距为4,则其渐近线方程为()A.y=±√33x B.y=±√3x C.y=±√55x D.y=±√5x4.已知α,β是两个相交平面,其中l⊂α,则()A.β内一定能找到与l平行的直线B.β内一定能找到与l垂直的直线C.若β内有一条直线与l平行,则该直线与α平行D.若β内有无数条直线与l垂直,则β与α垂直5.等差数列{a n}的公差为d,a1≠0,S n为数列{a n}的前n项和,则“d=0”是“S2nS n∈Z”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.随机变量ξ的分布列如表:ξ﹣1012P13a b c其中a,b,c成等差数列,若E(ξ)=19,则D(ξ)=()A.181B.29C.89D.80817.若存在正实数y,使得xyy−x =15x+4y,则实数x的最大值为()A.15B.54C.1D.48.从集合{A,B,C,D,E,F}和{1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).则每排中字母C 和数字4,7至少出现两个的不同排法种数为( ) A .85B .95C .2040D .22809.已知三棱锥P ﹣ABC 的所有棱长为1.M 是底面△ABC 内部一个动点(包括边界),且M 到三个侧面P AB ,PBC ,P AC 的距离h 1,h 2,h 3成单调递增的等差数列,记PM 与AB ,BC ,AC 所成的角分别为α,β,γ,则下列正确的是( )A .α=βB .β=γC .α<βD .β<γ10.已知|2a →+b →|=2,a →⋅b →∈[−4,0],则|a →|的取值范围是( ) A .[0,1]B .[12,1]C .[1,2]D .[0,2]二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.若α∈(0,π2),sinα=√63,则cosα= ,tan2α= .12.一个长方体被一个平面截去一部分后,剩余部分的三视图如图所示,则该几何体与原长方体的体积之比是 ,剩余部分表面积是 .13.若实数x ,y 满足{x +y −3≥02x −y +m ≤0y ≤4,若3x +y 的最大值为7,则m = .14.在二项式(√x +1ax 2)5(a >0)的展开式中x﹣5的系数与常数项相等,则a 的值是 .15.设数列{a n }的前n 项和为S n .若S 2=6,a n +1=3S n +2,n ∈N *,则a 2= ,S 5= . 16.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知a cos B =b cos A ,∠A =π6,边BC 上的中线长为4.则c = ;AB →⋅BC →= .17.如图,过椭圆C:x2a2+y2b2=1的左、右焦点F1,F2分别作斜率为2√2的直线交椭圆C上半部分于A,B两点,记△AOF1,△BOF2的面积分别为S1,S2,若S1:S2=7:5,则椭圆C离心率为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知函数f(x)=sin(2x+π3)+sin(2x−π3)+2cos2x,x∈R.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[−π4,π2]上的最大值和最小值.19.(15分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1.(1)求证:AB1⊥平面A1BC1;(2)若D在B1C1上,满足B1D=2DC1,求AD与平面A1BC1所成的角的正弦值.20.(15分)已知等比数列{a n}(其中n∈N*),前n项和记为S n,满足:S3=716,log2a n+1=﹣1+log2a n.(1)求数列{a n}的通项公式;(2)求数列{a n•log2a n}(n∈N*)的前n项和T n.21.(15分)已知抛物线C:y=12x2与直线l:y=kx﹣1无交点,设点P为直线l上的动点,过P作抛物线C的两条切线,A,B为切点.(1)证明:直线AB恒过定点Q;(2)试求△P AB面积的最小值.22.(15分)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2).(1)求a的取值范围;(2)证明:f(x1)−f(x2)<12.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【详解详析】∵U=R,A={x|x<32},B={y|y>1},∴A∩B=(1,32),∴∁U(A∩B)=(−∞,1]∪[32,+∞).故选:B.2.【详解详析】∵z=3+i1−2i =(3+i)(1+2i)(1−2i)(1+2i)=15+75i,∴z=15−75i.故选:C.3.【详解详析】双曲线x2m−y2=1的焦距为4,可得m+1=4,所以m=3,所以双曲线的渐近线方程为:y=±√33x.故选:A.4.【详解详析】由α,β是两个相交平面,其中l⊂α,知:在A中,当l与α,β的交线相交时,β内不能找到与l平行的直线,故A错误;在B中,由直线与平面的位置关系知β内一定能找到与l垂直的直线,故B正确;在C中,β内有一条直线与l平行,则该直线与α平行或该直线在α内,故C错误;在D 中,β内有无数条直线与l 垂直,则β与α不一定垂直,故D 错误. 故选:B .5.【详解详析】等差数列{a n }的公差为d ,a 1≠0,S n 为数列{a n }的前n 项和, “d =0”⇒“S 2n S n∈Z ”,当S2nS n∈Z 时,d 不一定为0,例如,数列1,3,5,7,9,11中,S 6S 3=1+3+5+7+9+111+3+5=4,d =2,故d =0”是“S 2n S n∈Z ”的充分不必要条件.故选:A .6.【详解详析】∵a ,b ,c 成等差数列,E (ξ)=19, ∴由变量ξ的分布列,知:{a +b +c =232b =a +c (−1)×13+b +2c =19,解得a =13,b =29,c =19,∴D (ξ)=(﹣1−19)2×13+(0−19)2×13+(1−19)2×29+(2−19)2×19=8081.故选:D .7.【详解详析】∵xyy−x =15x+4y , ∴4xy 2+(5x 2﹣1)y +x =0, ∴y 1•y 2=14>0, ∴y 1+y 2=−5x 2−14x ≥0,∴{5x 2−1≥0x <0,或{5x 2−1≤0x >0, ∴0<x ≤√55或x ≤−√55①, △=(5x 2﹣1)2﹣16x 2≥0, ∴5x 2﹣1≥4x 或5x 2﹣1≤﹣4x , 解得:﹣1≤x ≤15②,综上x 的取值范围是:0<x ≤15;x的最大值是15,故选:A.8.【详解详析】根据题意,分2步进行分析:①,先在两个集合中选出4个元素,要求字母C和数字4,7至少出现两个,若字母C和数字4,7都出现,需要在字母A,B,D,E,F中选出1个字母,有5种选法,若字母C和数字4出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若字母C和数字7出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若数字4、7出现,需要在字母A,B,D,E,F中选出2个字母,有C52=10种选法,则有5+35+35+10=85种选法,②,将选出的4个元素全排列,有A44=24种情况,则一共有85×24=2040种不同排法;故选:C.9.【详解详析】依题意知正四面体P﹣ABC的顶点P在底面ABC的射影是正三角形ABC的中心O,由余弦定理可知,cosα=cos∠PMO•cos<MO,AB>,其中<MO,AB>表示直线MO与AB的夹角,同理可以将β,γ转化,cosβ=cos∠PMO•cos<MO,BC>,其中<MO,BC>表示直线MO与BC的夹角,cosγ=cos∠PMO•cos<MO,AC>,其中<MO,AC>表示直线MO与AC的夹角,由于∠PMO是公共的,因此题意即比较OM与AB,BC,AC夹角的大小,设M到AB,BC,AC的距离为d1,d2,d3则d1=sinℎ1θ,其中θ是正四面体相邻两个面所成角,sinθ=2√23,所以d1,d2,d3成单调递增的等差数列,然后在△ABC中解决问题由于d1<d2<d3,可知M在如图阴影区域(不包括边界)从图中可以看出,OM与BC所成角小于OM与AC所成角,所以β<γ,故选:D.10.【详解详析】选择合适的基底.设m →=2a →+b →,则|m →|=2,b →=m →−2a →,a →⋅b →=a →⋅m →−2a →2∈[−4,0], ∴(a →−14m →)2=a →2−12a →•m →+116m →2≤8+116m →2 |m →|2=m →2=4,所以可得:m→28=12,配方可得12=18m →2≤2(a →−14m →)2≤4+18m →2=92,所以|a →−14m →|∈[12,32], 则|a →|∈[0,2]. 故选:D .二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.【详解详析】∵α∈(0,π2),sinα=√63, ∴cosα=√1−sin 2α=√33,tanα=sinαcosα=√2,∴tan2α=2tanα1−tan 2α=√21−(√2)2=−2√2.故答案为:√33,﹣2√2.12.【详解详析】根据几何体的三视图转换为几何体为: 如图所示:该几何体为长方体切去一个角.故:V =2×1×1−13×12×2×1×1=53.所以:V 1V =532=56.S =2(1×2+1×2+1×1)−12(1×2+1×2+1×1)+12×√2×√2=9.故答案为:56,9.13.【详解详析】作出不等式组{x +y −3≥02x −y +m ≤0y ≤4对应的平面区域如图:(阴影部分).令z =3x +y 得y =﹣3x +z , 平移直线y =﹣3x +z , 由图象可知当3x +y =7.由 {3x +y =7y =4,解得 {x =1y =4,即B (1,4),同时A 也在2x ﹣y +m =0上, 解得m =﹣2x +y =﹣2×1+4=2. 故答案为:2.14.【详解详析】∵二项式(√x +1ax2)5(a >0)的展开式的通项公式为 T r +1=C 5r •(1a)r•x5−5r 2,令5−5r 2=−5,求得r =3,故展开式中x﹣5的系数为C 53•(1a )3;令5−5r 2=0,求得r =1,故展开式中的常数项为 C 51•1a =5a , 由为C 53•(1a )3=5•1a ,可得a =√2,故答案为:√2.15.【详解详析】∵数列{a n }的前n 项和为S n .S 2=6,a n +1=3S n +2,n ∈N *, ∴a 2=3a 1+2,且a 1+a 2=6,解得a 1=1,a 2=5,a 3=3S 2+2=3(1+5)+2=20, a 4=3S 3+2=3(1+5+20)+2=80, a 5=3(1+5+20+80)+2=320, ∴S 5=1+5+20+80+320=426. 故答案为:5,426.16.【详解详析】由a cos B =b cos A ,及正弦定理得sin A cos B =sin B cos A , 所以sin (A ﹣B )=0, 故B =A =π6,所以由正弦定理可得c =√3a ,由余弦定理得16=c 2+(a2)2﹣2c •a2•cos π6,解得c =8√217;可得a =8√77,可得AB →⋅BC →=−ac cos B =−8√77×8√217×√32=−967.故答案为:8√217,−967. 17.【详解详析】作点B 关于原点的对称点B 1,可得S △BOF 2=S△B′OF 1,则有S 1S2=|y A ||y B 1|=75,所以y A =−75y B 1.将直线AB 1方程x =√2y4−c ,代入椭圆方程后,{x =√24y −c x 2a 2+y 2b 2=1,整理可得:(b 2+8a 2)y 2﹣4√2b 2cy +8b 4=0, 由韦达定理解得y A +y B 1=4√2b 2cb 2+8a 2,y A y B 1=−8b 4b 2+8a 2,三式联立,可解得离心率e =ca =12. 故答案为:12.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.【详解详析】(1)f (x )=sin2x +cos2x +1=√2sin(2x +π4)+1 所以最小正周期为π. 因为当π2+2kπ≤2x +π4≤3π2+2kπ时,f (x )单调递减.所以单调递减区间是[π8+kπ,5π8+kπ].(2)当x ∈[−π4,π2]时,2x +π4∈[−π4,5π4],当2x +π4=π2函数取得最大值为√2+1,当2x +π4=−π4或5π4时,函数取得最小值,最小值为−√22×√2+1=0.19.【详解详析】(1)在直三棱柱ABC ﹣A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1, 根据已知条件易得AB 1⊥A 1B ,由A 1C 1⊥面ABB 1A 1,得AB 1⊥A 1C 1, A 1B ∩A 1C 1=A 1,以AB 1⊥平面A 1BC 1;(2)以A 1B 1,A 1C 1,A 1A 为x ,y ,z 轴建立直角坐标系,设AB =a , 则A (0,0,a ),B (a ,0,a ),C 1(0,a ,0),D(a3,2a 3,0),所以AD →=(a3,2a 3,−a),设平面A 1BC 1的法向量为n →,则n →=(1,0,−1), 可计算得到cos <AD →,n →>=2√77,所以AD 与平面A 1BC 1所成的角的正弦值为2√77. 20.【详解详析】(1)由题意,设等比数列{a n }的公比为q , ∵log 2a n +1=﹣1+log 2a n , ∴log 2a n+1−log 2a n =log 2a n+1a n=−1,∴q =a n+1a n =12.由S 3=716,得a 1[1−(12)3]1−12=716,解得a 1=14.∴数列{a n }的通项公式为a n =12n+1.(2)由题意,设b n =a n •log 2a n ,则b n =−n+12n+1. ∴T n =b 1+b 2+…+b n =−(222+323+⋯+n+12n+1) 故−T n =222+323+⋯+n+12n+1,−T n2=223+⋯+n2n+1+n+12n+2.两式相减,可得−T n2=12+123+⋯+12n+1−n+12n+2=34−n+32n+2.∴T n=n+32n+1−32.21.【详解详析】(1)由y=12x2求导得y′=x,设A(x1,y1),B(x2,y2),其中y1=12x12,y2=12x22则k P A=x1,P A:y﹣y1=x1(x﹣x1),设P(x0,kx0﹣1),代入P A直线方程得kx0﹣1+y1=x1x0,PB直线方程同理,代入可得kx0﹣1+y2=x2x0,所以直线AB:kx0﹣1+y=xx0,即x0(k﹣x)﹣1+y=0,所以过定点(k,1);(2)直线l方程与抛物线方程联立,得到x2﹣2kx+2=0,由于无交点解△可得k2<2.将AB:y=xx0﹣kx0+1代入y=12x2,得12x2−xx0+kx0−1=0,所以△=x02−2kx0+2>0,|AB|=2√1+x02√△,设点P到直线AB的距离是d,则d=02√1+x02,所以S△PAB=12|AB|d=(x02−2kx0+2)32=[(x0−k)2+2−k2]32,所以面积最小值为(2−k2)32.22.【详解详析】(1)求导得f′(x)=lnx+1﹣2ax(x>0),由题意可得函数g(x)=lnx+1﹣2ax有且只有两个零点.∵g′(x)=1x −2a=1−2axx.当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,舍去;当a>0时,令g′(x)=0,解得x=12a,所以x∈(0,12a ),g′(x)>0,g(x)单调递增,x∈(12a,+∞),g′(x)<0,g(x)单调递减.所以x=12a 是g(x)的极大值点,则g(12a)>0,解得0<a<12;(2)g(x)=0有两个根x1,x2,且x1<12a<x2,又g(1)=1﹣2a>0,所以x1<1<12a<x2,从而可知f(x)在区间(0,x1)上递减,在区间(x1,x2)上递增,在区间(x2,+∞)上递减.所以f(x1)<f(1)=−a<0,f(x2)>f(1)=−a>−1,2.所以f(x1)−f(x2)<12。
(完整word版)高等代数试卷及答案(二),推荐文档

一、填空题 (共10题,每题2分,共20 分)1.只于自身合同的矩阵是 矩阵。
2.二次型()()11212237,116x f x x x x x ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭的矩阵为__________________。
3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。
4.正交变换在标准正交基下的矩阵为_______________________________。
5.标准正交基下的度量矩阵为_________________________。
6.线性变换可对角化的充要条件为__________________________________。
7.在22P ⨯中定义线性变换σ为:()a b X X c d σ⎛⎫= ⎪⎝⎭,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。
8.设1V 、2V 都是线性空间V 的子空间,且12V V ⊆,若12dim dim V V =,则_____________________。
9.叙述维数公式_________________________________________________________________________。
10.向量α在基12,,,n ααα⋅⋅⋅(1)与基12,,,n βββ⋅⋅⋅(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。
二、判断题 (共10 题,每题1分,共10分)1.线性变换在不同基下的矩阵是合同的。
( ) 2.设σ为n 维线性空间V 上的线性变换,则()10V V σσ-+=。
( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。
( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++⋅⋅⋅+=与12n x x x ==⋅⋅⋅=的解空间,则12n V V P ⊕= ( )5.2211nn i i i i n x x ==⎛⎫- ⎪⎝⎭∑∑为正定二次型。
2020-2021学年浙江省杭州市高三高考数学仿真模拟检测试卷10及答案解析

高考模拟试卷数学文科卷本试题卷分为选择题和非选择题两部分,共4页,全卷满分150分,考试时间120分钟. 参考公式: 球的表面积公式24R S π=球的体积公式334R V π=其中R 表示球的半径 锥体的体积公式Sh V 31=其中S 表示锥体的底面积,h 表示锥体的高柱体的体积公式Sh V =其中S 表示柱体的底面积,h 表示柱体的高 台体的体积公式h S S S S V )(312211++=其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高选择题部分一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015柯桥二检文改编)已知全集{}7,6,5,4,3,21,=U ,集合{}52,1A ,=,{}6,5,4B C U =,则集合=⋂B A( )A .{}2,1 B . {}5 C .{}32,1, D .{}7,6,4,3 2.(2016嵊州一检改编)设,a b ∈R ,则“220a b ->”是0a b ”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件3.(2016嵊州一检)已知γβα,,为不同的平面,m l ,为不同的直线.若l =⋂βα,α⊂m ,l //γ,γ⊥m ,则 ( )A .m //βB .β⊥mC .l //mD .m l ⊥ 4.(2016宁波一检文改编)已知实数列{}n a 是等比数列,若8753-=a a a , 则955191a a a a a a ++( )A .有最小值12B .有最大值12C .有最小值4D .有最大值4 5.(2016嘉兴一检文)已知函数)sin()(ϕω+=x A x f 2,0πϕω<>( )的部分图象如图所示,则=)(πf yA .3B .0C .2-D . 16. (2015杭州七校模拟)已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与4枝康乃馨的价格之和小于20元,那么2枝玫瑰和3枝康乃馨的价格的比较结果是( )A. 2枝玫瑰的价格高B. 3枝康乃馨的价格高C.价格相同D.不能确定7.(2015衢州二模文)若直线02=+-by ax )0,0(>>b a 被圆014222=+-++y x y x 所截得的弦长为4,则ba 32+的最小值为 ( ) A . 10 B .624+ C .324+ D . 648.(2015温州二模理)如图所示,C B A ,,是双曲线12222=-by a x )0,0(>>b a 上的三个点,AB 经过原点O ,AC 经过右焦点F ,若AC BF ⊥且CF BF =,则该双曲线的离心率是( )x125π12π-2O2-A .B .C .D . 3非选择题部分二、填空题:(本大题共7小题, 前4小题每题6分, 后3小题每题4分,共36分).9.(2015嵊州二检文改编)已知函数)(x f y =为R 上的偶函数,当0≥x 时,7)2(log )(2-+=x x f ,则)2(f =__________,))0((f f =__________。
2024年浙江省浙大附中数学高三第一学期期末质量检测试题含解析

2024年浙江省浙大附中数学高三第一学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数2sin 1x xy x +=+的部分图象大致为( )A .B .C .D .2.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//m α,//m β,则//αβ B .若m α⊥,m n ⊥,则n α⊥ C .若m α⊥,//m n ,则n α⊥D .若αβ⊥,m α⊥,则//m β3.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC 、直角边AB AC 、,已知以直角边AC AB 、为直径的半圆的面积之比为14,记ABC α∠=,则2cos sin 2αα+=( )A .35B .45C .1D .854.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<5.已知函数()ln af x x a x=-+在[]1,e x ∈上有两个零点,则a 的取值范围是( )A .e ,11e ⎡⎤-⎢⎥-⎣⎦B .e ,11e ⎡⎫⎪⎢-⎣⎭C .e ,11e ⎡⎫-⎪⎢-⎣⎭D .[)1,e - 6.已知函数()3sin cos (0)f x x x ωωω=->,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( ) A .12x π=-B .12x π=C .3x π=-D .3x π=7.函数的图象可能是下面的图象( )A .B .C .D .8.已知函数21,0()2ln(1),0x x x f x x x ⎧-+<⎪=⎨⎪+≥⎩,若函数()()g x f x kx =-有三个零点,则实数k 的取值范围是( ) A .112⎡⎤⎢⎥⎣⎦,B .112⎛⎫ ⎪⎝⎭,C .(0,1)D .12⎛⎫+∞ ⎪⎝⎭,9.如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线段11A C 上,F 、M 分别是AD 、CD 的中点,则下列结论中错误的是( )A .11//FM AC ,B .存在点E ,使得平面//BEF 平面11CCD D C .BM ⊥平面1CC FD .三棱锥B CEF -的体积为定值10.已知集合{}0,1,2,3A =,}{21,B x x n n A ==-∈,P A B =⋂,则P 的子集共有( )A .2个B .4个C .6个D .8个11.已知i 为虚数单位,复数()()12z i i =++,则其共轭复数z =( ) A .13i + B .13i - C .13i -+D .13i --12.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( ) A .36πB .64πC .144πD .256π二、填空题:本题共4小题,每小题5分,共20分。
浙江大学2020-2021学年秋冬学期期末模拟考试《高等代数》试卷及答案解析

γ1
=
1 √
2
(−1,
1,
0)T,
γ2
=
(0, 0, 1)T, γ3
=
1 √
(1, 1, 0)T,
2
令 Q = (γ1, γ2, γ3),所求正交变换矩阵为 x = Qy,标准型为 y12 + y22 − y32, 同时也是规范型。 六、证明:反证法。假设 A 是不可逆的, 则存在非零实列向量 α, 使得 Aα = 0. 将正定阵 AB + BT A 左乘 αT , 右乘 α 可得
(xj − xi) .
1≤i<j≤n
二、证明:
1
A
0 第一行左乘以B加到第二行 A
0
0 I − BA
−−−−−−−−−−−−−−−−−−−−→
BA I − BA
第一列加到第二列 A A
−−−−−−−−−−−−−→ BA I
第二行左乘以-A加到第一行 A − ABA 0
−−−−−−−−−−−−−−−−−−−−→
2
答题卡: 3
答题卡: 4
答题卡: 5
2020-2021 学年秋冬学期高等代数期末模拟考试
命题、组织:丹青学业指导中心
一、解:将行列式升阶为
10
0 ··· 0
1 −1 −1 · · · −1
1 1 + x1 1 + x21 · · · 1 + xn1
1 x1 x21 · · · xn1
|A| = 1 1 + x2 1 + x22 · · · 1 + xn2 = 1 x2 x22 · · · xn2 .
O
In
又
λIm A = λm−n Im A = λm−n|λIn − BA|.
浙江大学城市学院线性代数期末试卷汇集

浙江大学城市学院线性代数期末试卷及解答浙江大学姜豪汇编2012年2月目录第一部分试卷真题城院线代11—12学年第一学期期末试卷 (2)城院线代10—11学年第二学期期末试卷 (4)城院线代10—11学年第一学期期末试卷 (6)城院线代09—10学年第二学期期末试卷 (7)城院线代09—10学年第一学期期末试卷 (9)第二部分答案与评估城院线代11—12学年第一学期期末试卷答案 (11)城院线代11—12学年第一学期期末试卷难度与题量评估 (12)城院线代10—11学年第二学期期末试卷答案 (12)城院线代10—11学年第二学期期末试卷难度与题量评估 (13)城院线代10—11学年第一学期期末试卷答案 (13)城院线代10—11学年第一学期期末试卷难度与题量评估 (14)城院线代09—10学年第二学期期末试卷答案 (14)城院线代09—10学年第二学期期末试卷难度与题量评估 (16)城院线代09—10学年第一学期期末试卷答案 (16)城院线代09—10学年第一学期期末试卷难度与题量评估 (17)第三部分试题详解城院线代11—12学年第一学期期末试卷详解 (18)城院线代10—11学年第二学期期末试卷详解 (24)城院线代10—11学年第一学期期末试卷详解 (31)城院线代09—10学年第二学期期末试卷详解 (37)城院线代09—10学年第一学期期末试卷详解 (43)第一部分 试卷真题城院线代11—12学年第一学期期末考试卷一、填空题(每空2分,共20分)1.3阶行列式132201171--中12a 的余子式为______,23a 的代数余子式为._______2.设B A ,均为3阶方阵,且3|| ,2||==B A ,则__,|2|=T AB __|)(|12=-A 。
3.已知向量111α⎛⎫ ⎪= ⎪ ⎪⎝⎭,且T A αα=,则A ⎛⎫ ⎪=⎪ ⎪⎝⎭ ,2012A ⎛⎫⎪= ⎪ ⎪⎝⎭。
4.已知向量组321,,ααα线性无关,4321,,,αααα线性相关,则_____4α(填能或不能)由321,,ααα线性表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
In
又
λIm A = λm−n Im A = λm−n|λIn − BA|.
B In
B λIn
所以 |λIm − AB| = λm−n|λIn − BA|. 当 λ = 0 时,若 m > n,因为 r(AB) < m,所以 | − AB| = 0,结论成
立;若 m = n,显然结论也成立。 (2)设 A = In − 2αT α,由(1)可得
(αT
AT
)
(Aα)
=
( λ0
αT
)
(λ0α)
.
由此可得,αT
α
=
λ20αT
α,
即
(λ20
−
) 1
αT
α
=
0,
由于
α
̸=
0,
因此
αT
α
̸=
0.
从而 λ20 − 1 = 0. 于是 λ0 = ±1.
(2)如果正交矩阵 A 的行列式 |A| = −1, 那么
| − I − A| =
A (−AT
−
) I
= |A| (−A − I)T
(xj − xi) .
1≤i<j≤n
二、证明:
1
A
0 第一行左乘以B加到第二行 A
0
0 I − BA
−−−−−−−−−−−−−−−−−−−−→
BA I − BA
第一列加到第二列 A A
−−−−−−−−−−−−−→ BA I
第二行左乘以-A加到第一行 A − ABA 0
−−−−−−−−−−−−−−−−−−−−→
2
答题卡: 3
答题卡: 4
答题卡: 5
2020-2021 学年秋冬学期高等代数期末模拟考试
命题、组织:丹青学业指导中心
一、解:将行列式升阶为
10
0 ··· 0
1 −1 −1 · · · −1
1 1 + x1 1 + x21 · · · 1 + xn1
1 x1 x21 · · · xn1
|A| = 1 1 + x2 1 + x22 · · · 1 + xn2 = 1 x2 x22 · · · xn2 .
2020-2021 学年秋冬学期高等代数期末模拟考试
命题、组织:丹青学业指导中心
欢迎大家参加期末模拟考,下面是考试须知: 1. 请将除答题必备工具外的物品放到讲台上,电子设备关机或静音。 2. 请对号入座,并将身份证或校园卡放在桌面左上角。 3. 本场考试持续两个小时,开考后迟到二十分钟及以上不得参加本次考试,考试进行三十 分钟后方能交卷离开。 4. 开考信号发出后方可开始答题,考试终了信息发出后,应立即停止答题,离开考场。 5. 遵守考场纪律。
阵, 求证: A 为可逆矩阵.(10’)
七、设 A, B 都是数域 F 上的 m × n 矩阵, 求证: 方程组 Ax = 0, Bx = 0 同
解的充要条件是存在可逆矩阵 P, 使 B = P A. (10’)
八、设 A 是 n 阶实反对称矩阵, D = diag {d1, d2, · · · , dn} 是同阶对角矩阵 且主对角线上元素全大于零, 求证: |A + D| > 0. (15’)
|λIn − A| = (λ − 1)In + 2αT α = (λ − 1)n−1(λ − 1 + 2) = (λ − 1)n−1(λ + 1).
所以矩阵 A 的特征值为 −1 和 1. 四、证明:(1)如果 λ0 是正交矩阵 A 的一个特征值,那么在 Rn 中存在
2
α ̸= 0, 使得 Aα = λ0α. 该式两边取转置得,αT AT = λ0αT . 两式相乘有
一、计算下列行列式:(10’)
1 + x1 1 + x21 · · · 1 + xn1
|A| =
1 + x2 ...
1 + x22 ...
···
1 + xn2 ...
.
1 + xn 1 + x2n · · · 1 + xnn
二、设 A, B 是 n 阶矩阵, 证明(10’) r(A − ABA) = r(A) + r(I − BA) − n.
... ... ...
...
... ... ...
...
1 xn x2n · · · xnn
1 xn x2n · · · xnn
后面一个行列式的第一行提出公因子 −1 后是一个关于 1, x1, x2, · · · , xn 的 Vandermonde 行列式, 从而可得
∏
|A| = (2x1x2 · · · xn − (x1 − 1) (x2 − 1) · · · (xn − 1))
ααT
为正交矩阵,a
̸=
0,
I
为
3 阶单位矩阵。(15’)
(1) 求 a 的值;
(2) 当 α = (1, 1, 0)T 时,求正交变换 x = Qy 将二次型 f (x1, x2, x3) = xTAx 化为规范型。
六、设 A 是 n 阶实对称矩阵, 若存在 n 阶实矩阵 B, 使 AB + BT A 是正定
...
...
...
...
... ... ...
...
1 1 + xn 1 + x2n · · · 1 + xnn
1 xn x2n · · · xnn
将第一行拆开, 得
2 0 0 ··· 0
−1 −1 −1 · · · −1
1 x1 x21 · · · xn1
1 x1 x21 · · · xn1
|A| = 1 x2 x22 · · · xn2 + 1 x2 x22 · · · xn2 .
= −| − I − A|.
于是 2| − I − A| = 0. 从而 | − I − A| = 0. 因此 −1 是 A 的一个特征值。 (3)如果 |A| = 1, 且 n 是奇数, 那么
三、设 A 是 m × n 矩阵, B 是 n × m 矩阵, 且 m ≥ n. 求证:(15’) (1)|λIm − AB| = λm−n |λIn − BA|. (2)设 α = (a1, a2, · · · , an) 是实 n 维行向量,且 ααT = 1. 试求矩阵 In−
2αT α 的特征值。
BA I
第二列右乘以-BA加到第一列 A − ABA 0
−−−−−−−−−−−−−−−−−−−−−−→
0
I
以上变换都是初等变换,均保持秩不变,从而等式成立。
三、证明:(1)当 λ ̸= 0 时,考虑分块矩阵
λIm
B
A In
因为
λIm A
λIm − AB A
=
= |λIm − AB|.
B In
1
四、设 A 是一个 n 阶正交矩阵,证明:(15’)
(1)如果 A 有特征值,那么它的特征值是 1 或 −1;
(2)如果 |A| = −1,那么 −1 是 A 的一个特征值;
(3)如果 |A| = 1,且 n 是奇数,那么 1 是 A 的一个特征值。
五、设
α
为Hale Waihona Puke 3维非零实列向量,A
=
I
−
a αT
α