《理论力学》第一章-力的分析试题及答案

合集下载

《理论力学》第一章-力的分析试题及答案

《理论力学》第一章-力的分析试题及答案

理论力学2章作业题解1-1 支座受力F ,已知F =10kN ,方向如图所示。

求力F 沿x 、y 轴及沿x ′、y ′轴分解的结果,并求力F 在各轴上的投影。

解答 分力的大小需按平行四边形法则进行计算。

F 在x ,y 轴上的分力大小为:kN F F x 66.830cos ||0==r ,kN F F y 0.530sin ||0==r 。

F 在x ¢,y ¢轴上的分力大小为:kN F F x 0.10||==¢r ,kN F F y 17.515sin 2||0=´=¢r 。

F 在x ,y 轴上的投影大小为:kN F F x 66.830cos 0==,kN F F y 0.530sin 0==。

F 在x ¢,y ¢轴上的投影大小为:kN F F x 66.830cos 0==¢,kN F F y 59.275cos 0-=-=¢。

1-3计算图中F 1、F 2、F 3三个力分别在x 、y 、z 轴上的投影。

已知F 1=2kN ,F 2=1kN ,F 3=3kN 。

解答 0.0,6.18.0,2.16.011111==´=-=´-=z y x F kN F F kN F F .kN F F kN F F kN F F z y x 707.0,566.08.0,424.06.0222222222222=´==´´==´´=kN F kN F kN F z y x 0.3,0.0,0.0333===1-5 力F 沿正六面体的对顶线AB 作用,F =100N 。

求F 在ON 上的投影。

解答 计算ON 方向的单位矢量n 。

k j kj n 447.0894.020040020040022+=++=力F 的解析表达式为:k j i k j i F 470.62470.62852.46 400400300)400400300(100222++-=++++-= 力F 在ON 轴的投影为N F ON 78.83447.047.62894.047.62=´+´=×=n F题1-1 附图题1-3 附图 题1-5 附图1-8试求附图所示绳子张力F T对A 点及对B 点的矩。

理论力学习题答案

理论力学习题答案
2.3.11图示桁架系统上,已知:F=1500kN,L1=4m, L2=3m。试求桁架中各杆(1,2,3,4,5,6,7)的内力。
第三章 空间力系
一、是非题判断题
3.1.1对一空间任意力系,若其力多边形自行封闭,则该力系的主矢为零。 (∨)
平面力系中,若其力多边形自行闭合,则力系平衡。(×)
3.1.2只要是空间力系就可以列出6 个独立的平衡方程。 (×)
2.3.4悬臂式吊车的结构简图如图所示,由DE、AC二杆组成,A、B、C为铰链连接。已知P1=5kN,P2=1kN,不计杆重,试求杆AC杆所受的力和B点的支反力。
(答案:FBx=3.33kN,FBy=0.25kN,FAC=6.65kN)
2.3.5由AC和CD构成的组合粱通过铰链C连接,它的支承和受力如图所示,已知均布载荷强度q=10kN/m,力偶矩M=40kN.m,不计梁重,求支座A、B、D的约束反力和铰链C处所受的力。
3.1.3若由三个力偶组成的空间力偶系平衡,则三个力偶矩矢首尾相连必构成自行封闭的三角形。(∨)
3.1.4空间汇交力系平衡的充分和必要条件是力系的合力为零;空间力偶系平衡的充分和必要条件是力偶系的合力偶矩为零。(∨)
二、填空题
3.2.1若一空间力系中各力的作用线平行于某一固定平面,则此力系有5个独立的平衡方程。
3.3.3如图所示,三圆盘A、B、C的半径分别为15cm、10cm、5cm,三根轴OA、OB、OC在同一平面内,∠AOB为直角,三个圆盘上分别受三个力偶作用,求使物体平衡所需的力F和α角。
3.3.4某传动轴由A、B两轴承支承。圆柱直齿轮的节圆直径d=17.3cm,压力角 =20º,在法兰盘上作用一力偶矩为M=1030N.m的力偶,如轮轴的自重和摩擦不计,求传动轴匀速转动时A、B两轴承的约束反力。(答案:FAx=4.2kN,FAz=1.54kN,FBz=7.7kN,FBz.=2.79kN)

理论力学1课后习题答案解析

理论力学1课后习题答案解析

一、判断题(共268小题)1、试题编号:200510701005310,答案:RetEncryption(A)。

质点是这样一种物体:它具有一定的质量,但它的大小和形状在所讨论的问题中可忽略不计。

()2、试题编号:200510701005410,答案:RetEncryption(A)。

所谓刚体,就是在力的作用下,其内部任意两点之间的距离始终保持不变的物体。

()3、试题编号:200510701005510,答案:RetEncryption(B)。

在研究飞机的平衡、飞行规律以及机翼等零部件的变形时,都是把飞机看作刚体。

()4、试题编号:200510701005610,答案:RetEncryption(B)。

力对物体的作用,是不会在产生外效应的同时产生内效应的。

()5、试题编号:200510701005710,答案:RetEncryption(A)。

力学上完全可以在某一点上用一个带箭头的有向线段显示出力的三要素。

()6、试题编号:200510701005810,答案:RetEncryption(B)。

若两个力大小相等,则这两个力就等效。

()7、试题编号:200510701005910,答案:RetEncryption(B)。

凡是受二力作用的直杆就是二力杆。

()8、试题编号:200510701006010,答案:RetEncryption(A)。

若刚体受到不平行的三力作用而平衡,则此三力的作用线必汇交于一点。

()9、试题编号:200510701006110,答案:RetEncryption(A)。

在任意一个已知力系中加上或减去一个平衡力系,会改变原力系对变形体的作用效果。

()10、试题编号:200510701006210,答案:RetEncryption(A)。

绳索在受到等值、反向、沿绳索的二力作用时,并非一定是平衡的。

()11、试题编号:200510701006310,答案:RetEncryption(A)。

理论力学习题册答案

理论力学习题册答案

第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。

()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。

()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。

()4、凡是受两个力作用的刚体都是二力构件。

()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。

()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

)a(球A )b(杆ABd(杆AB、CD、整体)c(杆AB、CD、整体)-2 -)e (杆AC 、CB 、整体)f (杆AC 、CD 、整体四.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

)a (球A 、球B 、整体)b (杆BC 、杆AC 、整体班级姓名学号- 3 -第一章静力学公理与受力分析(2)一.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

WA DBCEOriginal FigureADBCEWWF AxF Ay F BFBD of the entire frame )a(杆AB、BC、整体)b(杆AB、BC、轮E、整体)c(杆AB、CD、整体)d(杆BC带铰、杆AC、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体- 4 -班级姓名学号- 5 -第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’,所以力偶的合力等于零。

()2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。

理论力学受力分析习题

理论力学受力分析习题

P
NB
NA
NC
画受力图必须注意以下几点:
1.明确研究对象 2.正确确定研究对象受力数目 3.正确画出约束反力 4.注意物体间相互作用力的方向
= 200 mm,l =1500 mm。试画出杆
AB ,活塞和连杆以及压块C 的受力
图。
解: 1.杆AB 的受力图。 2. 活塞和连杆的受力图。
B
FBA
y
E
A
D
FA
F
B
A
C
l
l
3. 压块 C 的受力图。
y
FCB
C FCx x
FAB
B
x
FBC
FCy
Q A
P B
B
A
C
P
Q
NAx NAy
P NBy
NB
析物体B、球A和滑轮C的受力情况,并分别画出平衡时各物体的受力图。
解: 1. 物体B受力图。
FD
D
B
2. 球A受力图。
W2
3. 滑轮C的受力图。 (理论滑轮只改变绳子拉力的方向,
不改变绳子拉力的大小.)
FE
E
AF
W1 FF
HG
E
C
AF
D B
W1
I H
FH
G
C
FC
FG
例 等腰三角形构架ABC的顶点A,B,C都用铰链连接,底边AC固定,而
等腰三角形构架abc的顶点都用铰链连接底边ac固定而ab边的中点作用有平行于固定边ac如图所示
例 画出重为W 的小球的受力图。
以小球为 解除约束 画受力图 研究对象 取隔离体
主动力
约束力
FRA
W FRB

理论力学第一章习题答案

理论力学第一章习题答案

由题分析可知,点C 的坐标为⎩⎨⎧=+=ψψϕsin cos cos a y a r x 又由于在∆AOB 中,有ϕψsin 2sin ar =(正ry r a 2sin 2sin ==ψϕ联立以上各式运用1cos sin 22=+ϕϕ由此可得rya x r a x 22cos cos --=-=ψϕ得12422222222=---++r y a x y a x r y得22222223y a x r a x y -=-++化简整理可得()()2222222234r a y x y a x -++=-此即为C 点的轨道方程. (2)要求C 点的速度,分别求导⎪⎪⎩⎪⎪⎨⎧=--=2cos sin cos 2cos sin ϕωψψϕωϕωr y r r x 其中ϕω = 又因为ψϕsin 2sin a r =对两边分别求导 故有ψϕωψcos 2cos a r =所以22y x V +=4cos sin cos 2cos sin 2222ϕωψψϕωϕωr r r +⎪⎪⎭⎫ ⎝⎛--= ()ψϕψϕϕψω++=sin cos sin 4cos cos 22r1.4 解 如题1.4.1图所示,A BOCLxθd 第1.4题图OL 绕O 点以匀角速度转动,C 在AB 上滑动,因此C 点有一个垂直杆的速度分量22x d OC v +=⨯=⊥ωωC 点速度dx d d v v v 222sec sec cos +====⊥⊥ωθωθθ 又因为ωθ= 所以C点加速度 θθθω ⋅⋅⋅⋅==tan sec sec 2d dt dv a ()2222222tan sec 2d x d x d +==ωθθω1.5 解 由题可知,变加速度表示为⎪⎭⎫ ⎝⎛-=T t c a 2sin 1π 由加速度的微分形式我们可知dtdv a =代入得dtT t c dv ⎪⎭⎫ ⎝⎛-=2sin 1π 对等式两边同时积分dt T tc dv t v⎰⎰⎪⎭⎫ ⎝⎛-=002sin1π可得 :D Ttc Tct v ++=2cos2ππ(D 为常数)代入初始条件:0=t 时,0=v ,故cT D π2-= 即⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=12cos 2T t T t c v ππ 又因为dtds v =所以=ds dt T t T t c ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+12cos 2ππ 对等式两边同时积分,可⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=t T t T T t c s 2sin 22212πππ1.6解 由题可知质点的位矢速度r λ=//v ①沿垂直于位矢速度μθ=⊥v又因为 r r λ== //v , 即r rλ=μθθ==⊥r v 即rμθθ= ()()j i v a θ r dtd r dt d dt d +==(取位矢方向i ,垂直位矢方向j ) 所以()j i i i θ r rdtd r i dt r d r dt d +=+=()dtd r dt d r dt dr r dt d j j j j θθθθ ++=i j j 2r r r θθθ -+= 故()()j i a θθθr r r r 22++-= 即 沿位矢方向加速度()2θr r a -= 垂直位矢方向加速度()θθr r a 2+=⊥ 对③求导r rr 2λλ== 对④求导θμμθθrrr +-=2⎪⎭⎫⎝⎛+=λμμθr把③④⑦⑧代入⑤⑥式中可得rr a 222//θμλ-=⎪⎭⎫ ⎝⎛+=⊥r a μλμθ1.7 解 由题可知⎩⎨⎧==θθsin cos r y r x ①②对①求导θθθ sin cos r r x-= ③ 对③求导θθθθθθθcos sin sin 2cos 2 r r r rx ---=④对②求导θθθcos sin r r y+=⑤ 对⑤求导θθθθθθθsin cos cos 2sin 2 r r rr y -++=⑥ 对于加速度a ,我们有如下关系见题1.7.1图题1.7.1图即⎩⎨⎧+=+=θθθθθθcos sin sin cos a a y a a x r r⑦--⑧ 对⑦⑧俩式分别作如下处理:⑦θcos ⨯,⑧θsin ⨯ 即得⎩⎨⎧+=-=θθθθθθθθθθcos sin sin sin cos sin cos cos a a y a a x r r⑨--⑩ ⑨+⑩得θθsin cos yx a r += ⑾ 把④⑥代入 ⑾得2θr r a r -= 同理可得θθθ r r a 2+= 1.8解 以焦点F 为坐标原点,运动如题1.8.1图所示]题1.8.1图则M 点坐标⎩⎨⎧==θθsin cos r y r x 对y x ,两式分别求导⎪⎩⎪⎨⎧+=-=θθθθθθcos sin sin cos r r yr r x 故()()22222cos sin sin cos θθθθθθ r r r r y xv ++-=+=222ωr r+= 如图所示的椭圆的极坐标表示法为()θcos 112e e a r +-=对r 求导可得(利用ωθ= )又因为()()221cos 111ea e e a r -+-=θ即()rer e a --=21cos θ 所以()()2222222221211cos 1sin e r e ar r e a --+--=-=θθ故有()2222224222sin 1ωθωr e a r e v +-=()2224221ea r e -=ω()()]1211[2222222e r e ar r ea --+--22ωr +()()⎥⎦⎤⎢⎣⎡--+-⋅-=2222222221121e e ar r r e e a r ω()r r a b r -=2222ω 即()r a r br v -=2ω(其中()b a e b ,1222-=为椭圆的半短轴)1.9证 质点作平面运动,设速度表达式为j i v y x v v +=令为位矢与轴正向的夹角,所以dt d v dt dv dt d v dt dv dt d y y x x j j i i v a +++==j i ⎪⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=θθ x y y x v dt dv v dt dv 所以[]j i a ⎪⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=θθ x yy x v dt dv v dt dv ()j i y x v v +⋅ θθ y x y y y x x x v v dt dv v v v dt dv v ++-=dtdv v dt dv v y yxx += 又因为速率保持为常数,即C C v v y x ,22=+为常数对等式两边求导022=+dtdv v dt dv v y y xx所以0=⋅v a即速度矢量与加速度矢量正交.1.10解 由题可知运动轨迹如题1.10.1图所示,题1.10.1图则质点切向加速度dtdv a t =法向加速度ρ2n v a =,而且有关系式ρ2v 2k dt dv -= ①又因为()232y 1y 1'+''=ρ②2px y 2=所以yp y =' ③ 32yp y -='' ④ 联立①②③④2322322y p 1y p 2kv dtdv⎪⎪⎭⎫ ⎝⎛+-= ⑤又dydv ydt dy dy dv dt dv =⋅=把2px y 2=两边对时间求导得py y x=又因为222y xv += 所以22221py v y+= ⑥ 把⑥代入⑤23223222122121⎪⎪⎭⎫ ⎝⎛+⋅-=⋅⎪⎪⎭⎫ ⎝⎛+y p y p kv dydvp y v既可化为222py dykp v dv +-= 对等式两边积分222py dykp v dv p p vu+-=⎰⎰- 所以πk ue v -=1.11解 由题可知速度和加速度有关系如图1.11.1所示题1.11.1图⎪⎪⎩⎪⎪⎨⎧====ααcos sin 2a dt dv a a r v a t n 两式相比得dtdv r v ⋅=ααcos 1sin 2即2cot 1vdv dt r =α 对等式两边分别积分200cot 1v dv dt rv v t⎰⎰=α 即αcot 110rt v v -=此即质点的速度随时间而变化的规律.1.12证 由题1.11可知质点运动有关系式⎪⎪⎩⎪⎪⎨⎧==ααcos sin 2a dtdv a r v ①② 所以 ωθθθd dv dt d d dv dt dv =⋅=,联立①②,有ααωθcos sin 2r v d dv = 又因为r v ω=所以 θαd vdv cot =,对等式两边分别积分,利用初始条件0=t 时,0θθ=()αθθcot 00-=e v v1.13 证(a )当00=v ,即空气相对地面上静止的,有牵相绝v v v +=.式中绝v 质点相对静止参考系的绝对速度, 相v 指向点运动参考系的速度, 牵v 指运动参考系相对静止参考系的速度.可知飞机相对地面参考系速度:绝v =v ',即飞机在舰作匀速直线运动.所以飞机来回飞行的总时间v l t '=20. (b )假定空气速度向东,则当飞机向东飞行时速度01v v v +'=飞行时间1v v lt +'=当飞机向西飞行时速度0v v v v v -'=+=牵相飞行时间2v v lt -'=故来回飞行时间021v v l t t t +'=+=0v v l -'+222v v lv -''= 即2200220112v v t v v v lt '-='-'= 同理可证,当空气速度向西时,来回飞行时间2201v v t t '-= (c )假定空气速度向北.由速度矢量关系如题1.13.1图v 题1.13.1图v v v '+=0绝202v v v -'= 所以来回飞行的总时间222vv l t -'=2200220112v vt v v v l '-='-'=同理可证空气速度向南时,来回飞行总时间仍为2201v v t t '-=1.14解 正方形如题1.14.1图。

理论力学习题解答第一章

理论力学习题解答第一章

第一章 静力学基本概念
1-1 考虑力对物体作用的运动效应,力是( A )。

A.滑动矢量
B.自由矢量
C.定位矢量
1-2 如图1-18所示,作用在物体A 上的两个大小不等的力1F 和2F ,沿同一直线但方向相反,则其合力可表为( C )。

A.1F –2F
B.2F - 1F
C.1F +2F
图1-18 图1-19 1-3 F =100N ,方向如图1-19所示。

若将F 沿图示x ,y 方向分解,则x 方向分力的大小 x F = C N ,y 方向分力的大小y F = ___B __ N 。

A. 86.6
B. 70.0
C. 136.6
D.25.9
1-4 力的可传性只适用于 A 。

A. 刚体
B. 变形体
1-5 加减平衡力系公理适用于 C 。

A. 刚体;
B. 变形体;
C. 刚体和变形体。

1-6 如图1-20所示,已知一正方体,各边长a ,沿对角线BH 作用一个力F ,则该力在x 1轴上的投影为 A 。

A. 0
B. F/2
C. F/6
D.-F/3
1-7如图1-20所示,已知F=100N ,则其在三个坐标轴上的投影分别为:
Fx Fy Fz
图1-20 图1-21。

理论力学作业答案

理论力学作业答案

解:力系对O点的主矩在轴上的投影为
M Ox M x F F2 cos a .100 F3 sin .300 51.8 N .m M Oy M y F F1 .200 F2 sin a .100 36.64 N .m M Oz M z F F2 cos a .200 F3 cos .300 103.6 N .m
FCy
P1
FDx
解得: FCy 4550 N
P
3、研究杆ABC
FCy
C
M F F
y
C
0
M A 6FAx 3FBx 0 0
B
FCx
FBy
FAy FBy FCy P3 0
x
0
FBx
FAx FBx FCx 0
MA P3 FAy
A
解得: FBx 22800, FBy 17850
M M FAx tan , FAy , M A M a a
3-9(b)
已知:q, M, a,. 不计梁自重,求支座A、B、C约束反力。 FNC FBy FBx

解:BC段梁受力分析如图,平面任意力系平衡方程为
F F
解得:
FNC
x y
0 FBx FNC sin 0 0 FBy qa FNC cos 0
解得: FAx 0, FAy 1 F M , FNB 1 3F M 2 a 2 a
3-5(b)
已知:F, M, q, a, 求支座A、B约束反力。
q
M
解:梁受力分析如 图,平面任意力系 平衡方程为
FAx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理论力学2章作业题解
1-1 支座受力F ,已知F =10kN ,方向如图所示。

求力F 沿x 、y 轴及沿x ′、y ′轴分解的结果,并求力F 在各轴上的投影。

解答 分力的大小需按平行四边形法则进行计算。

F 在x ,y 轴上的分力大小为:kN F F x 66.830cos ||0
==r ,kN F F y 0.530sin ||0==r 。

F 在x ¢,y ¢轴上的分力大小为:kN F F x 0.10||==¢r ,kN F F y 17.515sin 2||0=´=¢r 。

F 在x ,y 轴上的投影大小为:kN F F x 66.830cos 0==,kN F F y 0.530sin 0==。

F 在x ¢,y ¢轴上的投影大小为:kN F F x 66.830cos 0==¢,kN F F y 59.275cos 0-=-=¢。

1-3计算图中F 1、F 2、F 3三个力分别在x 、y 、z 轴上的投影。

已知F 1=2kN ,F 2=1kN ,F 3=3kN 。

解答 0.0,6.18.0,2.16.011111==´=-=´-=z y x F kN F F kN F F .
kN F F kN F F kN F F z y x 707.0,566.08.0,424.06.022
2222222222=´==´´==´´
=
kN F kN F kN F z y x 0.3,0.0,0.0333===
1-5 力F 沿正六面体的对顶线AB 作用,F =100N 。

求F 在ON 上的投影。

解答 计算ON 方向的单位矢量n 。

k j k
j n 447.0894.020040020040022+=++=
力F 的解析表达式为:
k j i k j i F 470.62470.62852.46 400400300)400400300(1002
22++-=++++-= 力F 在ON 轴的投影为
N F ON 78.83447.047.62894.047.62=´+´=×=n F
题1-1 附图
题1-3 附图 题1-5 附图
1-8试求附图所示绳子张力F T对A 点及对B 点的矩。

已知F T=10kN ,l =2m ,R =0.5m ,030=a 。

解答 首先将F T 平移至圆心O 点,并附加一力偶,然后求对A 、B 点的矩。

m kN l F l F R F M T T T A ×=×-×+×=0.560sin sin 2/cos 0a a m kN l F l F R F M T T T B ×-=×-×-×=3.1260sin sin 2/cos 0a a
1-10 钢缆AB 中的张力F T=10kN 。

写出该张力F T对O 点的矩的矢量表达式。

图中坐标单位为m 。

解答 A 点的位置矢量k j r 42+=A 。

F T的解析式为 18
)4(10k j i F --=T (kN ) 对O 点的矩
m kN T A O ×-+-=´=)71.443.943.9(k j i F r M
题1-8 附图 o
题1-10 附图。

相关文档
最新文档