锂离子电池原理及生产工艺流程
详细的动力电池生产工艺

锂离子电池原理及工艺流程一、原理1.0 正极构造LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔)正极2.0 负极构造石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极3.0工作原理3.1 充电过程如上图一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。
正极上发生的反应为LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子)负极上发生的反应为6C+XLi++Xe=====LixC63.2 电池放电过程放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。
由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。
电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。
二、工艺流程三、电池不良项目及成因:1.容量低产生原因:a. 附料量偏少;b. 极片两面附料量相差较大;c. 极片断裂;d. 电解液少;e. 电解液电导率低;f. 正极与负极配片未配好;g. 隔膜孔隙率小; h. 胶粘剂老化→附料脱落; i.卷芯超厚(未烘干或电解液未渗透)j. 分容时未充满电; k. 正负极材料比容量小。
2.内阻高产生原因:a. 负极片与极耳虚焊;b. 正极片与极耳虚焊;c. 正极耳与盖帽虚焊;d. 负极耳与壳虚焊;e. 铆钉与压板接触内阻大;f. 正极未加导电剂;g. 电解液没有锂盐; h. 电池曾经发生短路; i. 隔膜纸孔隙率小。
3.电压低产生原因:a. 副反应(电解液分解;正极有杂质;有水);b. 未化成好(SEI膜未形成安全);c. 客户的线路板漏电(指客户加工后送回的电芯);d. 客户未按要求点焊(客户加工后的电芯);e. 毛刺;f. 微短路;g. 负极产生枝晶。
锂离子电池生产工艺流程及相关设备

质量控制: 加强质量 控制,确 保电池质 量和安全 性
PRT SIX
自动化程度提高:采用自动化生产 线,提高生产效率和质量稳定性
设备升级:采用新型设备,提高生 产效率和材料性能
添加标题
添加标题
添加标题
添加标题
工艺优化:改进生产工艺,提高正 极材料的性能和稳定性
环保技术应用:采用环保技术,减 少生产过程中的污染和能耗
优化目的:提高电解液的稳定性和性能 优化方法:采用先进的配方和工艺技术 优化效果:提高电解液的电导率、离子迁移率和循环寿命 优化设备:采用自动化、智能化的生产设备,提高生产效率和质量稳定性
优化电池组装工艺,提高 生产效率
采用自动化设备,减少人 工操作,降低成本
优化电池组装工艺,提高 电池性能和寿命
航空航天:作为动力电池,提供动力 医疗设备:作为电源,提供电力 电动工具:作为动力电池,提供动力
PRT THREE
原料选择:选择合适的锂源、过渡金属和导电添加剂 混合:将原料混合均匀,形成均匀的浆料 涂布:将浆料涂布在集流体上,形成正极材料 干燥:将涂布后的正极材料进行干燥处理,去除水分 压延:将干燥后的正极材料进行压延,形成正极片 切割:将正极片切割成合适的尺寸,用于后续组装
电池包装设备:用于将电池包 装成成品,便于运输和销售
电池管理系统:用于监控和管 理电池的充放电状态,确保电
池的安全性和使用寿命
电池检测设备:用于检测电池的性能、安全性等指标 电池包装设备:用于包装电池,保护电池不受外界环境的影响 电池标签设备:用于打印电池标签,标识电池的型号、规格等信息 电池运输设备:用于运输电池,确保电池在运输过程中的安全
设备类型:搅拌机、计量泵、过滤器等 功能:将电解液原料进行混合、过滤、计量等操作 操作流程:原料加入搅拌机进行混合,然后通过计量泵进行计量,最后通过过滤器进行过滤 注意事项:确保原料的纯度和计量的准确性,避免杂质和误差影响电池性能
锂离子电池基本原理配方及工艺流程

锂离⼦电池基本原理配⽅及⼯艺流程锂离⼦电池原理及⼯艺流程⼀、原理1.0 正极构造LiCoO2+ 导电剂+ 粘合剂(PVDF) + 集流体(铝箔)正极2.0 负极构造⽯墨+ 导电剂+ 增稠剂(CMC) + 粘结剂(SBR) + 集流体(铜箔)负极3.0⼯作原理3.1 充电过程:⼀个电源给电池充电,此时正极上的电⼦e从通过外部电路跑到负极上,正锂离⼦Li+从正极“跳进”电解液⾥,“爬过”隔膜上弯弯曲曲的⼩洞,“游泳”到达负极,与早就跑过来的电⼦结合在⼀起。
负极上发⽣的反应为6C + xLi++ x e?→Li x C63.2 电池放电过程放电有恒流放电和恒阻放电,恒流放电其实是在外电路加⼀个可以随电压变化⽽变化的可变电阻,恒阻放电的实质都是在电池正负极加⼀个电阻让电⼦通过。
由此可知,只要负极上的电⼦不能从负极跑到正极,电池就不会放电。
电⼦和Li+都是同时⾏动的,⽅向相同但路不同,放电时,电⼦从负极经过电⼦导体跑到正极,锂离⼦Li+从负极“跳进”电解液⾥,“爬过”隔膜上弯弯曲曲的⼩洞,“游泳”到达正极,与早就跑过来的电⼦结合在⼀起。
3.3 充放电特性电芯正极采⽤LiCoO2、LiNiO2、LiMn2O2,其中LiCoO2本是⼀种层结构很稳定的晶型,但当从LiCoO2拿⾛x个Li离⼦后,其结构可能发⽣变化,但是否发⽣变化取决于x的⼤⼩。
通过研究发现当x > 0.5时,Li1-x CoO2的结构表现为极其不稳定,会发⽣晶型瘫塌,其外部表现为电芯的压倒终结。
所以电芯在使⽤过程中应通过限制充电电压来控制Li1-X CoO2中的x值,⼀般充电电压不⼤于4.2V那么x⼩于0.5 ,这时Li1-X CoO2的晶型仍是稳定的。
负极C6其本⾝有⾃⼰的特点,当第⼀次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有⼀部分Li留在负极C6中⼼,以保证下次充放电Li的正常嵌⼊,否则电芯的压倒很短,为了保证有⼀部分Li留在负极C6中,⼀般通过限制放电下限电压来实现:安全充电上限电压≤ 4.2V,放电下限电压≥ 2.5V。
锂离子电池生产工艺流程

锂离子电池生产工艺流程1. 简介锂离子电池是一种常见的电池类型,在现代生活中被广泛应用于手机、笔记本电脑、电动汽车等各种电子设备中。
其生产工艺流程是一个复杂的过程,涉及多个步骤和工艺。
2. 成分及原理锂离子电池由正极、负极、电解液和隔膜组成。
正极通常是由锂离子化合物构成,负极是石墨或其他碳材料,电解液是导电液体,隔膜用于防止正负极直接接触。
正负极之间通过电解液中的离子进行离子运输,从而实现电池的放电和充电过程。
3. 生产工艺流程3.1. 正负极材料制备1.正极材料制备:正极材料一般是金属氧化物,如锰酸锂,钴酸锂等。
制备过程包括原料混合、研磨、干燥等步骤。
2.负极材料制备:负极材料通常是石墨或其他碳材料。
制备过程包括原料混合、成型、烘干等步骤。
3.2. 电解液制备电解液一般是由溶解锂盐在有机溶剂中形成的液体。
制备过程包括原料混合、搅拌、过滤等步骤。
3.3. 电池组装1.正负极制片:将正负极材料分别涂覆在导电片上,并经过烘干、压片等工艺制备成正负极片。
2.隔膜处理:将隔膜切割成适当的形状和尺寸。
3.组装:将正负极片和隔膜按照设计要求层叠组装,注入电解液,封口形成锂离子电池。
3.4. 充电、放电、封装1.充电:将组装好的电池连接到充电设备中,通过外部电源将电池充满电。
2.放电:将电池连接到外部设备中,从电池中释放能量。
3.封装:将充放电测试合格的电池进行封装,以保护电池内部结构。
4. 质量控制在生产过程中,需要进行严格的质量控制,以确保电池的性能和安全性。
常见的质量控制方法包括原料检测、生产过程监控、成品检验等。
5. 结语锂离子电池生产工艺流程是一个复杂而精细的过程,需要严格控制各个环节,才能生产出高性能、安全可靠的电池产品。
加强研发和技术创新,不断提高生产工艺水平,将成为锂离子电池产业持续发展的关键。
锂离子电池生产工艺流程

锂离子电池生产工艺流程一、前驱体制备锂离子电池的前驱体通常是正极材料、负极材料和电解液。
正极材料一般采用钴酸锂、镍酸锂等化合物,负极材料则为石墨、硅等。
在正极材料的制备过程中,需要按照一定比例混合原料,然后进行固相反应或湿法合成。
随后,通过球磨或其它方式将颗粒大小调整到要求的范围内。
在负极材料的制备过程中,一般会使用机械研磨、混合球磨等方法,将石墨和添加剂混合并研磨得到所需颗粒。
二、电极制备电极的制备主要包括浆料制备、电极涂布、干燥、成型等过程。
首先,将前驱体和导电剂、粘结剂等混合,制备成粘度适宜的浆料。
然后,将浆料涂布在铝箔或铜箔基片上,并通过匀胶刀或导刀使其形成均匀的电极层。
接下来,将电极进行干燥和成型,常用的方法有烘箱干燥和辊压成型。
在这一过程中,需要控制干燥温度和时间,以及辊压的压力和速度,确保电极的厚度和密度符合要求。
三、装配装配是将正极、负极和隔膜按照一定组合方式叠放在一起,并加入适量的电解液,形成电池的核心结构。
装配过程主要包括电池片的成型、电极的叠层、电解液的注入等步骤。
首先,将正极、负极和隔膜分别进行形状整理,然后按照正极-隔膜-负极的顺序叠放。
接下来,利用热压机或超声波焊接机将电池片压合在一起。
最后,通过真空注液或真空负压注液等方式将电解液注入电池中。
四、封装封装过程主要是将装配好的电池放入金属壳体或软包装中,并进行密封保护。
金属壳体一般由铝、钢等材料制成,而软包装则采用复合材料。
在封装过程中,首先将电池片放入壳体或软包内,然后利用封口机将封口边缘加热,使其熔化并封住电池。
此外,还需将封好的电池进行真空抽气和注入保护剂等处理,以提高电池的安全性和使用寿命。
五、测试电池生产完成后,需要进行各项测试以保证质量和性能达到要求。
测试主要包括容量测试、内阻测试、循环寿命测试、短路测试等。
容量测试可以通过充放电方式来测试电池的能量储存能力。
内阻测试可以通过交流阻抗分析仪来测量电池的内部电阻。
锂离子生产工艺流程

锂离子生产工艺流程一、介绍锂离子电池是目前最常见的可充电电池之一,广泛应用于移动通信、电动车和储能等领域。
锂离子电池的核心是正极材料、负极材料和电解液。
而其中的正极材料则主要是采用锂离子化合物,如锂铁磷酸盐、锂镍酸盐等。
本文将详细探讨锂离子生产的工艺流程。
二、锂离子生产工艺流程锂离子生产的工艺流程包括原料处理、化学合成、制备电极材料、电池组装等环节。
下面将对每个环节进行详细介绍。
1. 原料处理原料处理是锂离子生产的第一步,它的目的是将原料进行处理和净化,以便后续合成步骤的顺利进行。
常见的原料包括锂硫酸、锂氢氧化物等。
原料处理包括以下几个步骤:•原料粉碎:将原料进行粉碎,使其颗粒尺寸均匀,有利于后续的化学合成。
•原料筛分:通过筛网将不符合要求的颗粒筛掉,保证原料的质量。
•原料干燥:对原料进行干燥处理,去除其中的水分或其他杂质。
2. 化学合成化学合成是锂离子生产的核心环节,它主要用于合成锂离子化合物,如锂铁磷酸盐、锂镍酸盐等。
化学合成包括以下几个步骤:•反应槽装填:将经过原料处理的物质装入反应槽中,并在槽中加入适量的溶剂。
•加热搅拌:启动反应槽的加热搅拌系统,控制温度和搅拌速度,促进反应的进行。
•过滤分离:将反应后的混合物进行过滤分离,得到合成产物。
•洗涤干燥:对合成产物进行洗涤和干燥处理,去除溶剂和杂质,得到纯净的锂离子化合物。
3. 制备电极材料制备电极材料是锂离子生产的关键环节,电极材料包括正极材料和负极材料。
制备电极材料包括以下几个步骤:•配料混合:将正极活性材料、负极活性材料和导电剂按一定比例进行混合,并加入适量的粘结剂和溶剂。
•混合搅拌:对配料进行混合搅拌,使其均匀分布,形成电极浆料。
•涂布:将电极浆料涂布在铝箔或铜箔基片上,并通过烘干处理,形成电极片。
•切割压制:对电极片进行切割和压制,获得所需尺寸的电极。
4. 电池组装电池组装是锂离子生产的最后一步,它将制备好的正负极材料和电解液组装成电池。
详细锂离子电池生产工艺流程含图片

极片烘烤 烘烤箱 刷粉台 刷粉
相应图片 (2)
卷绕-放入正极片 卷绕-放入负极片 卷绕-放入正极片 卷绕-卷绕体
相 应 图 片(3)
捏扁的电芯 压扁 贴上胶纸 贴侧胶纸
相应图片 (4)
贴底胶纸 套壳 套壳后全测内阻 焊连接片
相 应 图 片(5)
缠胶纸 已缠好胶纸 点焊负极 极耳整形
相应图片 (6)
单击此处添加副标题
锂离子电池生 产工艺流程
正极拉浆流程图
双面拉浆
开 始
正 极 配
料
正
正
极
极
搅
拉
拌
浆
量 确 认
厚 度 、 重
正 极 拉 浆 检
查
符号说明:
•
表示对生产对象进行加工、装配等;
•
表示品质部负责的专检点;
1
表示生产对象在工作地有计划地存放;
负极拉浆流程图
双面拉浆
开 始
负 极 配
料
负
负
极
极
正
负
极
片
烘
卷
烤
绕
正负极刷粉
卷 绕 检 查
捍
压
贴
扁
扁
上
胶
纸
符号说明:
•
表示对生产对象进行加工、装配等;
•
表示品质部负责的专检点;
•
表示生产对象在工作地有计划地存放;
4
表示生产对象在工作地附近的临时存放。
钢壳电池装配工艺流程图2
钢壳
盖板
贴
贴贴
套
电
测套
焊
上
侧底
壳
池
内壳
连
胶
锂离子电池生产工艺流程详解

锂离子电池生产工艺流程详解锂离子电池作为目前最常用的电池类型之一,其生产工艺已经非常成熟。
它的生产工艺需要许多步骤和环节,下面我们来详细了解一下锂离子电池生产工艺流程。
一、电池正负极材料制备1.正极材料制备锂离子电池的正极材料通常有三种:钴酸锂、锰酸锂和三元材料。
这些材料需要通过化学方法和物理方法进行制备。
钴酸锂制备:将钴碳酸和碳酸锂一起加入反应釜中,加入稀酸和腐蚀剂煮沸反应,然后蒸发水分得到钴酸锂。
锰酸锂制备:将锰碳酸和碳酸锂一起加入反应釜中,加入稀酸和腐蚀剂煮沸反应,然后蒸发水分得到锰酸锂。
三元材料制备:将镍酸锂、钴酸锂和锰酸锂混合在一起,加入稀酸和腐蚀剂煮沸反应,然后蒸发水分得到三元材料。
2.负极材料制备锂离子电池的负极材料通常为石墨,制备方法为:将天然石墨研磨成粉末,然后加入粘合剂、导电剂等材料,混合均匀后进行成型。
二、电池组件制备1.正负极片制备将正极材料和负极材料分别涂覆在铝箔和铜箔上,然后将它们一层一层叠合在一起,形成正负极片。
2.隔膜制备将聚丙烯材料加入溶剂中,制成聚丙烯膜,然后在聚丙烯膜表面涂覆聚合物电解质,制成隔膜。
3.电解液制备锂离子电池的电解液通常为有机溶剂,例如碳酸二甲酯、碳酸乙酯等。
电解液还需要添加锂盐,通常为氟化锂或磷酸锂等物质。
三、电池组装1.正负极片堆叠将正负极片和隔膜一层一层堆叠,形成电池芯。
2.注入电解液将电池芯浸泡在预先准备好的电解液中,使电解液充分渗透到电池芯中。
3.封口在注入电解液后,需要对电池进行封口,避免电解液泄漏。
四、成品测试将已经组装好的电池进行各种测试,如容量测试、内阻测试、循环寿命测试等。
五、包装和出厂将测试合格的电池进行包装,如塑料、纸盒等包装,然后成品出厂。
以上就是锂离子电池生产工艺的详细流程,生产工艺环节多且繁琐,需要高度的科学精神和技术水平的支持。
因此,锂离子电池生产工艺的研究和提升,对于电池的性能和使用效果都有非常重要的影响。
锂离子电池的发展历程虽然只有30多年,但其在可再生能源、电子产品、电动汽车等领域的应用增速却是非常迅猛的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂离子电池原理及工艺流程一、原理1.0 正极构造LiCoO2(钴酸锂)+导电剂+粘合剂(PVDF)+集流体(铝箔)正极2.0 负极构造石墨+导电剂+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极3.0工作原理3.1 充电过程:一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。
正极上发生的反应为LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子)负极上发生的反应为6C+XLi++Xe=====LixC63.2 电池放电过程放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。
由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。
电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。
二工艺流程1.正负极配方1.1正极配方(LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔)正极)(10μm):93.5%LiCoO2其它:6.5%如Super-P:4.0%PVDF761:2.5%NMP(增加粘结性):固体物质的重量比约为810:1496a)正极黏度控制6000cps(温度25转子3);b)NMP重量须适当调节,达到黏度要求为宜;c)特别注意温度湿度对黏度的影响●钴酸锂:正极活性物质,锂离子源,为电池提高锂源。
钴酸锂:非极性物质,不规则形状,粒径D50一般为6-8 μm,含水量≤0.2%,通常为碱性,PH值为10-11左右。
锰酸锂:非极性物质,不规则形状,粒径D50一般为5-7 μm,含水量≤0.2%,通常为弱碱性,PH值为8左右。
●导电剂:提高正极片的导电性,补偿正极活性物质的电子导电性。
提高正极片的电解液的吸液量,增加反应界面,减少极化。
非极性物质,葡萄链状物,含水量3-6%,吸油值~300,粒径一般为2-5 μm;主要有普通碳黑、超导碳黑、石墨乳等,在大批量应用时一般选择超导碳黑和石墨乳复配;通常为中性。
●PVDF粘合剂:将钴酸锂、导电剂和铝箔或铝网粘合在一起。
非极性物质,链状物,分子量从300,000到3,000,000不等;吸水后分子量下降,粘性变差。
●NMP:弱极性液体,用来溶解/溶胀PVDF,同时用来稀释浆料。
●正极引线:由铝箔或铝带制成。
1.2负极配方(石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极)负极材料:94.5%Super-P:1.0%SBR:2.25%CMC:2.25%水:固体物质的重量比为1600:1417.5a)负极黏度控制5000-6000cps(温度25转子3)b)水重量需要适当调节,达到黏度要求为宜;c)特别注意温度湿度对黏度的影响2.正负极混料★石墨:负极活性物质,构成负极反应的主要物质;主要分为天然石墨和人造石墨两大类。
非极性物质,易被非极性物质污染,易在非极性物质中分散;不易吸水,也不易在水中分散。
被污染的石墨,在水中分散后,容易重新团聚。
一般粒径D50为20μm左右。
颗粒形状多样且多不规则,主要有球形、片状、纤维状等。
★导电剂:提高负极片的导电性,补偿负极活性物质的电子导电性。
提高反应深度及利用率。
防止枝晶的产生。
利用导电材料的吸液能力,提高反应界面,减少极化。
(可根据石墨粒度分布选择加或不加)。
★添加剂:降低不可逆反应,提高粘附力,提高浆料黏度,防止浆料沉淀。
增稠剂/防沉淀剂(CMC):高分子化合物,易溶于水和极性溶剂。
异丙醇:弱极性物质,加入后可减小粘合剂溶液的极性,提高石墨和粘合剂溶液的相容性;具有强烈的消泡作用;易催化粘合剂网状交链,提高粘结强度。
乙醇:弱极性物质,加入后可减小粘合剂溶液的极性,提高石墨和粘合剂溶液的相容性;具有强烈的消泡作用;易催化粘合剂线性交链,提高粘结强度(异丙醇和乙醇的作用从本质上讲是一样的,大批量生产时可考虑成本因素然后选择添加哪种)。
★水性粘合剂(SBR):将石墨、导电剂、添加剂和铜箔或铜网粘合在一起。
小分子线性链状乳液,极易溶于水和极性溶剂。
增稠剂/防沉淀剂(CMC):高分子化合物,易溶于水和极性溶剂。
★负极引线:由铜箔或镍带制成。
去离子水(或蒸馏水):稀释剂,酌量添加,改变浆料的流动性。
2.1正极混料●原料的掺和:(1)粘合剂的溶解(按标准浓度)及热处理。
(2)钴酸锂和导电剂球磨:使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团聚作用和的导电性。
配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。
●干粉的分散、浸湿:(1)原理:固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面;如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。
当润湿角≤90度,固体浸湿。
当润湿角>90度,固体不浸湿。
正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。
(2)分散方法对分散的影响:A、静置法(时间长,效果差,但不损伤材料的原有结构);B、搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别材料的自身结构)。
1、搅拌桨对分散速度的影响。
搅拌桨大致包括蛇形、蝶形、球形、桨形、齿轮形等。
一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。
2、搅拌速度对分散速度的影响。
一般说来搅拌速度越高,分散速度越快,但对材料自身结构和对设备的损伤就越大。
3、浓度对分散速度的影响。
通常情况下浆料浓度越小,分散速度越快,但太稀将导致材料的浪费和浆料沉淀的加重。
4、浓度对粘结强度的影响。
浓度越大,柔制强度越大,粘接强度越大;浓度越低,粘接强度越小。
5、真空度对分散速度的影响。
高真空度有利于材料缝隙和表面的气体排出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。
6、温度对分散速度的影响。
适宜的温度下,浆料流动性好、易分散。
太热浆料容易结皮,太冷浆料的流动性将大打折扣。
稀释。
将浆料调整为合适的浓度,便于涂布。
(1)钴酸锂:脱水。
一般用120 oC常压烘烤2小时左右。
(2)导电剂:脱水。
一般用200 oC常压烘烤2小时左右。
(3)粘合剂:脱水。
一般用120-140 oC常压烘烤2小时左右,烘烤温度视分子量的大小决定。
(4) NMP:脱水。
使用干燥分子筛脱水或采用特殊取料设施,直接使用。
Super-P倒入料桶,同时加入磨球(干料:磨球=1:1),在滚瓶及a)将LiCoO2上进行球磨,转速控制在60rmp以上;b)4小时结束,过筛分离出球磨;a) 将NMP倒入动力混合机(100L)至80℃,称取PVDF加入其中,开机;参数设置:转速25±2转/分,搅拌115-125分钟;b) 接通冷却系统,将已经磨号的正极干料平均分四次加入,每次间隔28-32分钟,第三次加料视材料需要添加NMP,第四次加料后加入NMP;动力混合机参数设置:转速为20±2转/分c) 第四次加料30±2分钟后进行高速搅拌,时间为480±10分钟;动力混合机参数设置:公转为30±2转/分,自转为25±2转/分;d)真空混合:将动力混合机接上真空,保持真空度为-0.09Mpa,搅拌30±2分钟;动力混合机参数设置:公转为10±2分钟,自转为8±2转/分e)取250-300毫升浆料,使用黏度计测量黏度;测试条件:转子号5,转速12或30rpm,温度范围25℃;f)将正极料从动力混合机中取出进行胶体磨、过筛,同时在不锈钢盆上贴上标识,与拉浆设备操作员交接后可流入拉浆作业工序。
a) 完成,清理机器设备及工作环境;b) 操作机器时,需注意安全,避免砸伤头部。
2.2负极混料(1)石墨:A、混合,使原料均匀化,提高一致性。
B、300~400℃常压烘烤,除去表面油性物质,提高与水性粘合剂的相容能力,修圆石墨表面棱角(有些材料为保持表面特性,不允许烘烤,否则效能降低)。
(2)水性粘合剂:适当稀释,提高分散能力。
★掺和、浸湿和分散:(1)石墨与粘合剂溶液极性不同,不易分散。
(2)可先用醇水溶液将石墨初步润湿,再与粘合剂溶液混合。
(3)应适当降低搅拌浓度,提高分散性。
(4)分散过程为减少极性物与非极性物距离,提高势能或表面能,所以为吸热反应,搅拌时总体温度有所下降。
如条件允许应该适当升高搅拌温度,使吸热变得容易,同时提高流动性,降低分散难度。
(5)搅拌过程如加入真空脱气过程,排除气体,促进固-液吸附,效果更佳。
(6)分散原理、分散方法同正极配料中的相关内容★稀释:将浆料调整为合适的浓度,便于涂布。
a)将负极和Super-P倒入料桶同时加入球磨(干料:磨球=1:1.2)在滚瓶及上进行球磨,转速控制在60rmp以上;b)4小时结束,过筛分离出球磨;a) 纯净水加热至至80℃倒入动力混合机(2L)b)加CMC,搅拌60±2分钟;动力混合机参数设置:公转为25±2分钟,自转为15±2转/分;c) 加入SBR和去离子水,搅拌60±2分钟;动力混合机参数设置:公转为30±2分钟,自转为20±2转/分;d) 负极干料分四次平均顺序加入,加料的同时加入纯净水,每次间隔28-32分钟;动力混合机参数设置:公转为20±2转/分,自转为15±2转/分;e) 第四次加料30±2分钟后进行高速搅拌,时间为480±10分钟;动力混合机参数设置:公转为30±2转/分,自转为25±2转/分;f)真空混合:将动力混合机接上真空,保持真空度为-0.09到0.10Mpa,搅拌30±2分钟;动力混合机参数设置:公转为10±2分钟,自转为8±2转/分g)取500毫升浆料,使用黏度计测量黏度;测试条件:转子号5,转速30rpm,温度范围25℃;h)将负极料从动力混合机中取出进行磨料、过筛,同时在不锈钢盆上贴上标识,与拉浆设备操作员交接后可流入拉浆作业工序。
a) 完成,清理机器设备及工作环境;b) 操作机器时,需注意安全,避免砸伤头部。
★配料注意事项:1、防止混入其它杂质;2、防止浆料飞溅;3、浆料的浓度(固含量)应从高往低逐渐调整,以免增加麻烦;4、在搅拌的间歇过程中要注意刮边和刮底,确保分散均匀;5、浆料不宜长时间搁置,以免沉淀或均匀性降低;6、需烘烤的物料必须密封冷却之后方可以加入,以免组分材料性质变化;7、搅拌时间的长短以设备性能、材料加入量为主;搅拌桨的使用以浆料分散难度进行更换,无法更换的可将转速由慢到快进行调整,以免损伤设备;8、出料前对浆料进行过筛,除去大颗粒以防涂布时造成断带;9、对配料人员要加强培训,确保其掌握专业知识,以免酿成大祸;10、配料的关键在于分散均匀,掌握该中心,其它方式可自行调整。