2018-2019学年高中物理 第一章 电磁感应章末复习课学案 粤教版选修3-2

合集下载

高中物理 第1章 电磁感应 第3节 感应电流的方向学案 粤教版选修3-2-粤教版高中选修3-2物理学

高中物理 第1章 电磁感应 第3节 感应电流的方向学案 粤教版选修3-2-粤教版高中选修3-2物理学

第三节感应电流的方向[学习目标] 1.通过实验探究,归纳出楞次定律.(重点)2.理解楞次定律和右手定则,并能灵活运用它们判断感应电流的方向.(重点)3.理解楞次定律中“阻碍”的含义,并能说出阻碍的几种表现形式.(难点)一、感应电流的方向楞次定律1.探究电流表指针偏转方向与通入电流方向的关系(1)实验装置(如图所示)(2)探究过程电流流入电流表的情况电流表指针偏转方向电流由“+”接线柱流入指针向右偏电流由“-”接线柱流入指针向左偏2.将螺线管与电流计组成闭合回路,分别将条形磁铁的N极、S极插入、抽出线圈,如图a所示,记录感应电流方向如图b所示.a甲乙丙丁探究感应电流方向的实验记录b3.分析归纳(1)线圈内磁通量增加时的情况图号磁场方向感应电流方向(俯视)感应电流的磁场方向归纳总结甲向下逆时针向上感应电流的磁场阻碍磁通量的增加乙向上顺时针向下(2)线圈内磁通量减少时的情况图号磁场方向感应电流方向(俯视)感应电流的磁场方向归纳总结丙向下顺时针向下感应电流的磁场阻碍磁通量的减少丁向上逆时针向上(3)楞次定律感应电流的磁场总要阻碍引起感应电流的磁通量的变化.二、右手定则1.右手定则伸开右手,让拇指跟其余四个手指垂直,并且都跟手掌在同一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指所指的方向就是感应电流的方向.2.右手定则的适用范围闭合电路的部分导体在磁场中做切割磁感线的运动.3.右手定则可以看作楞次定律的特殊情况.1.思考判断(正确的打“√”,错误的打“×”)(1)在楞次定律中,阻碍的是磁通量的变化,而不是阻碍磁通量本身.(√)(2)感应电流的磁场总是阻碍磁通量,与磁通量方向相反.(×)(3)感应电流的磁场可阻止原磁场的变化.(×)(4)右手定则只适用于导体切割磁感线产生感应电流的情况.(√)(5)使用右手定则时必须让磁感线垂直穿过掌心.(×)2.根据楞次定律可知,感应电流的磁场一定是 ( )A.与引起感应电流的磁场方向相同B.阻止引起感应电流的磁通量变化C.阻碍引起感应电流的磁通量变化D.使电路磁通量为零C[由楞次定律可知,感应电流的磁场总是阻碍引起它的原磁通量的变化.具体来说就是“增反减同”.因此C正确.]3.如图所示,当导体棒MN在外力作用下沿导轨向右运动时,流过R的电流方向是( )A.由A→BB.由B→AC.无感应电流D.无法确定A[导体棒MN在外力作用下沿导轨向右运动而切割磁感线产生感应电流,根据右手定则可以判定感应电流的方向为由A→B,故A正确.]楞次定律的理解1.因果关系:楞次定律反映了电磁感应现象中的因果关系,磁通量发生变化是原因,产生感应电流是结果,原因产生结果,结果反过来影响原因.2.“阻碍”的含义【例1】如图所示,要使Q线圈产生图示方向的电流,可采用的方法有( )A.闭合开关S的瞬间B.闭合开关S后,把R的滑片向右移C.闭合开关S后,把P中的铁芯从左边抽出D.闭合开关S后,把Q远离P思路点拨:解答本题时,可按以下思路分析:确定P中电流方向与大小变化―→确定Q中磁场方向及磁通量变化―→确定Q中感应电流方向A[闭合开关S时,线圈中电流从无到有,铁芯中产生向右的磁场,穿过Q的磁通量增加,根据楞次定律,Q中产生图示方向的电流,A对;R的滑片向右移时,P中电流减小,穿过Q的磁通量减小,根据楞次定律,Q中产生与图示相反方向的电流,B错;将铁芯抽出或Q 远离P时,穿过Q的磁通量都减小,根据楞次定律,Q中产生与图示相反方向的电流,C、D 错.]应用楞次定律解题的一般步骤1.如图所示,导线框abcd与直导线在同一平面内,直导线通有恒定电流I,当线框由左向右匀速通过直导线的过程中,线框中感应电流的方向是( )A.先abcd,后dcba,再abcdB.先abcd,后dcbaC.始终dcbaD.先dcba,后abcd,再dcbaD[线框在直导线左侧时,随着线框向右运动,磁通量增加,根据楞次定律,线框中感应电流的方向为dcba.在线框的cd边跨过直导线后,如图所示,根据右手定则ab边产生的感应电流方向为a→b,cd边产生的感应电流方向为c→d.线框全部跨过直导线后,随着向右运动,磁通量减少,根据楞次定律知线框中感应电流的方向为dcba.故选项D正确.],右手定则的应用1.适用范围:闭合电路的部分导体切割磁感线产生感应电流方向的判断.2.右手定则反映了磁场方向、导体运动方向和电流方向三者之间的相互垂直关系.(1)大拇指的方向是导体相对磁场切割磁感线的运动方向,既可以是导体运动而磁场未动,也可以是导体未动而磁场运动,还可以是两者以不同速度同时运动.(2)四指指向电流方向,切割磁感线的导体相当于电源.3.右手定则与楞次定律的区别与联系楞次定律右手定则区别研究对象整个闭合回路闭合回路的一部分,即做切割磁感线运动的导体适用范围各种电磁感应现象只适用于导体在磁场中做切割磁感线运动的情况应用对于磁感应强度随时间变化而产生的电磁感应现象较方便对于导体棒切割磁感线产生的电磁感应现象较方便联系右手定则是楞次定律的特例【例2】如图所示,匀强磁场与圆形导体环平面垂直,导体ef与环接触良好,当ef向右匀速运动时( )A.圆环中磁通量不变,环中无感应电流产生B.整个环中有顺时针方向的电流C.整个环中有逆时针方向的电流D.环的右侧有逆时针方向的电流,环的左侧有顺时针方向的电流思路点拨:①ef相当于电源,电动势的方向为e→f.②ef与左、右部分圆形导体都能构成闭合回路.D[导体ef向右切割磁感线,由右手定则可判断导体ef中感应电流的方向由e f.而导体ef分别与导体环的左、右两部分构成两个闭合回路,故环的右侧有逆时针方向的电流,环的左侧有顺时针方向的电流.](1)判断感应电流方向时可根据具体情况选取楞次定律或右手定则;闭合电路的一部分导体切割磁感线时,应用右手定则比较方便.(2)区分右手定则和安培定则:右手定则判断电流的方向;安培定则判断电流产生磁场的方向.训练角度1:右手定则与楞次定律的综合2.下列选项图表示闭合电路中的一部分导体ab在磁场中做切割磁感线运动的情景,其中能产生由a到b的感应电流的是( )A B C DA[由右手定则可知,A中电流方向由a→b,B中电流方向由b→a;由楞次定律知,C 中电流沿a→c→b→a方向,D中电流方向由b→a.]训练角度2:右手定则与左手定则的综合3.(多选)两根相互平行的金属导轨水平放置于如图所示的匀强磁场中,在导轨上接触良好的导体棒AB和CD可以自由滑动.当AB在外力F作用下向右运动时,下列说法中正确的是( )A.导体棒CD内有电流通过,方向是D→CB.导体棒CD内有电流通过,方向是C→DC.磁场对导体棒CD的作用力向左D.磁场对导体棒AB的作用力向左BD[由右手定则判断AB棒中感应电流的方向是B→A,以此为基础,再判断CD棒内的电流方向为C→D,最后根据左手定则进一步确定CD棒和AB棒所受的安培力方向分别为向右和向左,经过比较可得正确选项.],楞次定律的拓展应用1.楞次定律的另一种表述:感应电流的效果总是反抗(或阻碍)产生感应电流的原因.2.运动情况的判断——第一种方法:由于相对运动导致的电磁感应现象,感应电流的效果阻碍相对运动.简记口诀:“来拒去留”.3.面积变化趋势的判断——第二种方法:电磁感应致使回路面积有变化趋势时,则面积收缩或扩张是为了阻碍回路磁通量的变化,即磁通量增大时,面积有收缩趋势,磁通量减少时,面积有扩张趋势.简记口诀:“增缩减扩”.【例3】如图所示,一个轻质铝环套在一根水平光滑绝缘杆上,当一条形磁铁向右运动靠近铝环时,铝环的运动情况是 ( )A.向右运动B.向左运动C.静止不动D.不能判定A[解法一:电流元受力分析法.如图所示,当磁铁向环运动时,穿过铝环的磁通量增加,由楞次定律判断出铝环的感应电流的磁场方向与原磁场的方向相反,即向右,根据安培定则可判断出感应电流方向,从左侧看为顺时针方向,把铝环的电流等效为多段直线电流元,取上、下两小段电流元进行研究,由左手定则判断出两段电流元的受力,由此可判断整个铝环所受合力向右,故A选项正确.解法二:阻碍相对运动法.产生磁场的物体与闭合线圈之间的相互作用力可概括为四个字——“来拒去留”.磁铁向右运动时,铝环产生的感应电流总是阻碍磁铁与导体间的相对运动,则磁铁和铝环间有排斥作用,故A正确.解法三:等效法.如图所示,磁铁向右运动,使铝环产生的感应电流可等效为条形磁铁,而两磁铁有排斥作用,故A项正确.]在【例3】中,若有两个轻质铝环套在水平光滑杆上,则两个铝环之间的距离如何变化?提示:两环产生同向感应电流,相互吸引,距离变小.电磁感应现象中导体运动问题的分析方法(1)确定所研究的闭合电路.(2)明确闭合电路所包围的区域磁场的方向及磁场的变化情况.(3)确定穿过闭合电路的磁通量的变化或导体是否切割磁感线.(4)根据楞次定律或右手定则判定感应电流的方向.(5)根据左手定则或“来拒去留”“增反减同”等判断导体所受安培力及运动的方向.4.如图所示,光滑固定金属导轨M、N水平放置,两根导体棒P、Q平行放于导轨上,形成一个闭合回路。

高中物理第一章电磁感应第三节感应电流的方向学案粤教版选修3_2

高中物理第一章电磁感应第三节感应电流的方向学案粤教版选修3_2

第三节 感应电流的方向定律的普遍意义.一、楞次定律 1.楞次定律:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化.2.楞次定律的适用范围:所有判断感应电流方向的情况.预习交流1电磁感应中,若电路不闭合,穿过回路的磁通量变化时,是否还会产生“阻碍”作用?为什么?答案:若电路不闭合,无感应电流,即无感应电流产生的磁场,所以不会产生阻碍原磁场变化的作用.二、右手定则1.右手定则:伸开右手,让拇指跟其余四个手指垂直,并且都跟手掌在同一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指所指的方向就是感应电流的方向.2.右手定则的适用范围:闭合电路的一部分导体在磁场中做切割磁感线的运动.3.右手定则可以看作楞次定律的特殊情况.预习交流2如图所示,水平放置的平行金属导轨的两端接有电阻R ,导线ab 能在框架上无摩擦地滑动,匀强磁场垂直穿过框架平面,当ab 匀速向右移动时,试判断流过R 的电流方向.答案:由右手定则可判断流过导线ab 的电流方向为b →a ,所以流过R 的电流方向为d →R →c .一、楞次定律1.楞次定律中反映了怎样的因果关系?答案:闭合回路中磁通量变化是因,产生感应电流是果;原因产生结果,结果又反过来影响原因.2.仔细阅读楞次定律的内容后,(1)你是怎样理解“阻碍”二字的含义的呢?(2)是谁阻碍了谁?(3)阻碍了什么?(4)如何阻碍的?(5)阻碍的结果又是什么呢?答案:(1)“阻碍”并不是“阻止”,只是延缓了磁通量的变化,电路中磁通量还是变化的.例如:当原磁通量增加时,虽有感应电流的阻碍,磁通量还是在增加,只是增加得慢一点.实际上楞次定律中的“阻碍”二字,是指“反抗产生感应电流的那个原因”.(2)谁阻碍谁:是感应电流的磁通量阻碍引起感应电流的磁场(原磁场)的磁通量的变化.(3)阻碍什么:阻碍的是磁通量的变化,而不是阻碍磁通量本身.(4)如何阻碍:当原磁场磁通量增加时,感应电流的磁场与原磁场的方向相反;当原磁场磁通量减少时,感应电流的磁场方向与原磁场的方向相同,即“增反减同”.(5)结果:阻碍并不是阻止,只是延续了磁通量的变化,这种变化继续进行,最终结果不受影响.3.“楞次定律”中反映了怎样的能量转化关系?答案:楞次定律中的阻碍作用,正是能的转化和守恒定律的反映,在克服这种阻碍的过程中,其他形式的能转化为电能.4.按图所示将磁铁插入线圈和从线圈中拔出,请思考:(1)插入和拔出磁铁时,电流方向一样吗?(2)改变N极、S极方向,反复做这个实验,用怎样一句话把判断感应电流的方向的方法总结出来?答案:(1)不一样(2)感应电流的磁场总是要阻碍引起感应电流的磁场(原磁场)磁通量的变化.根据楞次定律可知,感应电流的磁场一定().A.阻碍引起感应电流的磁通量B.与引起感应电流的磁场方向相反C.阻碍引起感应电流的磁场的磁通量的变化D.与引起感应电流的磁场方向相同答案:C解析:根据楞次定律,感应电流的磁场阻碍引起感应电流的磁场的磁通量的变化,与磁通量无关,所以A项错误,C项正确;当磁通量增加时,感应电流的磁场与原磁场方向相反.当磁通量减小时,感应电流的磁场与原磁场方向相同,所以B、D两项错误.1.对楞次定律的理解在闭合电路中产生的感应电流的磁场总要阻碍引起感应电流的磁通量的变化,说明闭合电路中磁通量发生变化是产生感应电流的条件,所产生的感应电流的磁场又反过来影响电路中磁通量的变化.可简单描述为2.楞次定律中的阻碍通常表现为四种:(1)阻碍原磁通量的变化(增反减同);(2)阻碍导体的相对运动(来拒去留),不是阻碍导体或磁体的运动;(3)通过改变线圈的面积来“反抗”磁场变化(增缩减扩);(4)阻碍自身电流的变化(自感现象)(第6节中将学到).3.应用楞次定律解决问题的一般步骤:(1)确定研究对象,即明确要判断的是哪个闭合电路中产生感应电流;(2)确定研究对象所在处的磁场方向及其磁场的分布情况;(3)确定穿过闭合电路的磁通量的变化情况;(4)根据楞次定律判断闭合回路中的感应电流的方向.二、楞次定律的应用1.应用楞次定律如何判定感应电流的方向?楞次定律的“阻碍”作用正是能量转化和守恒的反映,那么从能量转化和守恒的角度如何来理解楞次定律?答案:增反减同,其他形式的能与电能之间的转化2.如图所示,两个线圈A,B套在一起,线圈A中通有电流,方向如图所示.当线圈A 中的电流突然增强时,线圈B中的感应电流方向如何?此时线圈B具有扩张趋势还是收缩趋势?答案:顺时针方向有扩张趋势由右手螺旋定则可判断线圈A中电流在线圈内的磁场向外,在线圈外的磁场向里,穿过线圈B的合磁通量向外.当线圈A中电流增强时,产生的磁场增强,通过线圈B的磁通量增加.由楞次定律结合右手螺旋定则可判断线圈B中的感应电流为顺时针方向,即与线圈A 中的感应电流方向相反.线圈B的变化有两种判断方法:(1)直接利用左手定则.线圈B所在处的磁场方向向里,取一小段电流元应用左手定则判断受力方向沿半径向外,所以线圈B有扩张趋势.(2)应用楞次定律的另一种表述.因为感应电流受安培力总是阻碍磁通量的变化,而线圈B面积越大,通过的磁通量越少.所以当线圈A中的电流增强时,通过线圈B中的磁通量增加,线圈B中的感应电流受安培力使线圈B有扩张趋势,以阻碍磁通量的增加.如图所示,闭合螺线管固定在置于光滑水平面上的小车上,现将一条形磁铁从左向右插入螺线管中的过程中,则().A.车将向右运动B.使条形磁铁向右插入时外力所做的功全部由螺线管转变为电能,最终转化为螺线管的内能C.条形磁铁会受到向左的力D.车会受到向左的力答案:AC解析:假设磁铁的N极插入小车,根据楞次定律可判断线圈中的感应电流的磁场向左,即螺线管左端相当于N极,所以磁铁与小车相互排斥,小车在光滑水平面上受力向右运动,所以A、C两项正确,D项错误.电磁感应现象中满足能量守恒,由于小车动能增加,外力做的功转化为小车动能和螺线管中的内能,所以B项错误.1.应用楞次定律解题的一般步骤一般步骤也可概括为下列四句话:“明确增减和方向,‘增反减同’切莫忘,安培定则来判断,四指环绕是流向.”2.从功和能的观点入手分析清楚电磁感应过程中能量转化的关系,往往能使问题迎刃而解.3.楞次定律的推广(1)若由于相对运动导致电磁感应现象,则感应电流的效果阻碍该相对运动,简称口诀:“来拒去留”.(2)若电磁感应致使回路的面积有收缩或扩张的趋势,则收缩或扩张是为了阻碍回路磁通量的变化,即磁通量增大时,面积有收缩趋势,磁通量减少时,面积有增大趋势,简称口诀:“增缩减扩”.4.右手定则是楞次定律的一个特例,它仅适用于闭合回路的一部分导体做切割磁感线运动产生感应电流.三、右手定则中的导体(○表示导体横截面)切割磁感线吗?答案:导体“切割”磁感线的条件是导体及导体的运动方向不与磁感线平行.“切割”就像用镰刀割麦子一样确实要切割,图中的一部分导体在磁场中向下运动,实际上并不切割磁感线.2.右手定则描述了三种情况:①磁场方向、导体棒的方向和导体棒的运动方向两两垂直时;②磁场方向与导体棒的方向垂直、导体棒的方向与导体棒的运动方向垂直,但磁场方向与导体棒的运动方向不垂直时;③磁场方向与导体棒的运动方向垂直,导体棒的方向与导体棒的运动方向垂直,但磁场方向与导体棒的方向不垂直时,感应电流方向的判断方法。

2019高中物理 第一章 电磁感应章末复习课学案 粤教版选修3-2

2019高中物理 第一章 电磁感应章末复习课学案 粤教版选修3-2

第一章 电磁感应章末复习课【知识体系】[答案填写] ①磁通量 ②磁通量的变化率 ③nΔΦΔt ④E =BLv ⑤12BL 2ω ⑥电流主题1 楞次定律的理解及其推广1.楞次定律的理解.楞次定律解决的问题是感应电流的方向问题,它涉及两个磁场,感应电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场),前者和后者的关系不是“同向”和“反向”的简单关系,而是前者“阻碍”后者“变化”的关系.2.对“阻碍”意义的理解.(1)阻碍原磁场的变化.“阻碍”不是阻止,而是“延缓”,感应电流的磁场不会阻止原磁场的变化,只能使原磁场的变化被延缓或者说被迟滞了,原磁场的变化趋势不会改变,不会发生逆转.(2)阻碍的是原磁场的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流.(3)阻碍不是相反,当原磁通量减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动.(4)由于“阻碍”,为了维持原磁场的变化,必须有外力克服这一“阻碍”而做功,从而导致其他形式的能量转化为电能,因而楞次定律是能量转化和守恒定律在电磁感应中的体现.3.楞次定律的推广.楞次定律可推广为感应电流的效果总是要反抗(或阻碍)产生感应电流的原因.因此也常用以下结论作迅速判断:(1)阻碍原磁通量的变化(增反减同).(2)阻碍导体的相对运动(来拒去留).(3)使线圈的面积有扩大或缩小的趋势(增缩减扩).(4)阻碍原电流的变化(自感现象).[典例❶] 如图所示,通电螺线管置于闭合金属环a的轴线上,当螺线管中电流I减小时( )A.环有缩小的趋势以阻碍原磁通量的减小B.环有扩大的趋势以阻碍原磁通量的减小C.环有缩小的趋势以阻碍原磁通量的增大D.环有扩大的趋势以阻碍原磁通量的增大解析:当螺线管中通过的电流逐渐变小时,电流产生的磁场逐渐变弱,故穿过金属环a 的磁通量变小,根据楞次定律可知,为阻碍原磁通量变小,金属环a有收缩的趋势,故A 正确,BCD错误.答案:A针对训练1.(2016·上海卷)(多选)如图(a),螺线管内有平行于轴线的外加匀强磁场,图中箭头所示方向为其正方向.螺线管与导线框abcd相连,导线框内有一小金属圆环L,圆环与导线框在同一平面内.当螺线管内的磁感应强度B随时间按图(b)所示规律变化时( )图(a) 图(b)A.在t1~t2时间内,L有收缩趋势B.在t2~t3时间内,L有扩张趋势C .在t 2~t 3时间内,L 内有逆时针方向的感应电流D .在t 3~t 4时间内,L 内有顺时针方向的感应电流解析:在t 1~t 2时间内,穿过圆环的磁通量向上不是均匀增大,由楞次定律可以确定L 必须减小面积以达到阻碍磁通量的增大,故有收缩的趋势,故A 正确;在t 2~t 3时间内,穿过圆环的磁通量向上均匀减小,由法拉第电磁感应定律可知,L 中磁通量不变,则L 中没有感应电流,因此没有变化的趋势,故B 、C 错误;在t 3~t 4时间内,向下的磁通量减小,根据楞次定律,在线圈中的电流方向c 到b ,根据右手螺旋定则,穿过圆环L 的磁通量向内减小,则根据楞次定律,在金属圆环中产生顺时针方向的感应电流,故D 正确.答案:AD主题2 电磁感应中的电路问题在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势.若回路闭合,则产生感应电流,感应电流引起热效应,所以电磁感应问题常常与电路知识综合考查.1.解决与电路相联系的电磁感应问题的基本方法.(1)明确哪部分导体或电路产生感应电动势,该导体或电路就是电源,其他部分是外电路.(2)用法拉第电磁感应定律确定感应电动势的大小,用楞次定律或右手定则确定感应电流的方向.(3)画等效电路图.分清内外电路,画出等效电路图是解决此类问题的关键.(4)运用闭合电路欧姆定律、串并联电路的特点、电功、电功率等公式求解.2.问题示例.图甲 图乙(1)图甲中若磁场增强,可判断感应电流方向为逆时针,则ΦB >ΦA ;若线圈内阻为r ,则U BA =ΔΦΔt ·R R +r. (2)图乙中,据右手定则判定电流流经AB 的方向为B →A ,则可判定ΦA >ΦB ,若导体棒的电阻为r ,则U AB =BLv R +r·R . 【典例2】 (多选)半径为a 的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B ,杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示.则( )A .θ=0时,杆产生的电动势为2BavB .θ=π3时,杆产生的电动势为3BavC .θ=0时,杆受的安培力大小为8B 2av (π+4)R 0D .θ=π3时,杆受的安培力大小为3B 2av (5π+3)R 0解析:θ=0时,杆产生的电动势E =BLv =2Bav ,故A 正确;当θ=π3时,根据几何关系得出此时导体棒的有效切割长度是a ,所以杆产生的电动势为Bav ,故B 错误;θ=0时,由于单位长度电阻均为R 0,所以电路中总电阻⎝⎛⎭⎪⎫2+π2aR 0.所以杆受的安培力大小是8B 2av (π+4)R 0,故C 正确;当θ=π3时,电路中总电阻是⎝ ⎛⎭⎪⎫518π+1aR 0,所以杆受到的安培力18B 2av (5π+18)R,故D 错误. 答案:AC针对训练2.(2016·全国Ⅱ卷)(多选)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P 、Q 分别于圆盘的边缘和铜轴接触,圆盘处于方向竖直向上的匀强磁场B 中,圆盘旋转时,关于流过电阻R 的电流,下列说法正确的是( )A .若圆盘转动的角速度恒定,则电流大小恒定B .若从上往下看,圆盘顺时针转动,则电流沿a 到b 的方向流动C .若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D .若圆盘转动的角速度变为原来的2倍,则电流在R 上的热功率也变为原来的2倍解析:铜盘转动产生的感应电动势为:E =12BL 2ω,B 、L 、ω不变,E 不变,电流I =E R=BL 2ω2R,电流大小恒定不变,由右手定则可知,回路中电流方向不变,若从上往下看,圆盘顺时针转动,由右手定则知,电流沿a 到b 的方向流动,故A 、B 正确;若圆盘转动方向不变,角速度大小发生变化,则电流方向不变,大小变化,故C 错误;若圆盘转动的角速度变为原来的2倍,回路电流变为原来2倍,根据P =I 2R ,电流在R 上的热功率也变为原来的4倍,故D 错误.答案:AB主题3 电磁感应中的动力学问题1.解决电磁感应中的动力学问题的一般思路.(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.(2)求回路中的电流.(3)分析研究导体的受力情况(包含安培力,用左手定则确定其方向).(4)根据牛顿第二定律或物体受力平衡列方程求解.2.受力情况、运动情况的动态分析.导体受力运动产生感应电动势→感应电流→通电导体受安培力作用→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,最终结果是加速度等于0,导体达到稳定运动状态.此类问题要画好受力图,抓住加速度a =0时,速度v 达到最值的特点.[典例❸] (2017·天津卷)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R .金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使磁感应强度随时间均匀减小,ab 始终保持静止,下列说法正确的是( )A .ab 中的感应电流方向由b 到aB .ab 中的感应电流逐渐减小C .ab 所受的安培力保持不变D .ab 所受的静摩擦力逐渐减小解析:导体棒ab 、电阻R 、导轨构成闭合回路,磁感应强度均匀减小(ΔB Δt=k 为一定值),则闭合回路中的磁通量减小,根据楞次定律,可知回路中产生顺时针方向的感应电流,ab中的电流方向由a 到b ,故A 错误;根据法拉第电磁感应定律,感应电动势E =ΔΦΔt =ΔB ·S Δt=k ·S ,回路面积S 不变,即感应电动势为定值,根据欧姆定律I =E R ,所以ab 中的电流大小不变,故B 错误;安培力F =BIL ,电流大小不变,磁感应强度减小,则安培力减小,故C 错误;导体棒处于静止状态,所受合力为零,对其受力分析,水平方向静摩擦力f 与安培力F 等大反向,安培力减小,则静摩擦力减小,故D 正确.答案:D针对训练3.(多选)两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图所示.除电阻R 外其余电阻不计.现将金属棒从弹簧原长位置由静止释放,则( )A .金属棒向下运动时,流过电阻R 的电流方向为a →bB .释放瞬间金属棒的加速度等于重力加速度gC .金属棒的速度为v 时,所受的安培力大小为F =B 2L 2v RD .电阻R 上产生的总热量等于金属棒重力势能的减少量解析:导体棒下落过程中切割磁感线,回路中形成电流,根据楞次定律判断电流的方向,流过电阻R 电流方向为b →a ,故A 错误;金属棒释放瞬间,速度为零,感应电流为零,由于弹簧处于原长状态,因此金属棒只受重力作用,故其加速度的大小为g ,故A 正确;当金属棒的速度为v 时,由F 安=BIL =B BLv R L =B 2l 2v R,故C 正确;当金属棒下落到最底端时,重力势能转化为弹性势能和焦耳热,所以R 上产生的总热量小于金属棒重力势能的减少量,故D 错误.答案:BC主题4 电磁感应中的能量问题1.能量转化.在电磁感应现象中,通过外力克服安培力做功,把机械能或其他形式的能转化为电能,克服安培力做多少功,就有多少其他形式的能转化为电能,即在电路中就产生多少电能.若电路是纯电阻电路,转化过来的电能全部转化为内能;若电路为非纯电阻电路,则电能一部分转化为内能,一部分转化为其他形式的能,比如:用电器有电动机,一部分转化为机械能.2.一般思路.(1)分析回路,分清电源和外电路.(2)分清哪些力做功,明确有哪些形式的能量发生转化.如:3.电能的三种求解思路.(1)利用克服安培力做功求解,电磁感应中产生的电能等于克服安培力所做的功.(2)利用能量守恒求解,相应的其他能量的减少量等于产生的电能.(3)利用电路特征来求解,通过电路中所消耗的电能来计算.【典例4】 如图所示,MN 、PQ 为足够长的平行金属导轨,间距L =0.2 m ,导轨平面与水平面间夹角θ=30°,N 、Q 间连接一个电阻R =0.1 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B =0.5 T .一根质量m =0.03 kg 的金属棒正在以v =1.2 m/s 的速度沿导轨匀速下滑,下滑过程中始终与导轨垂直,且与导轨接触良好.金属棒及导轨的电阻不计,g =10 m/s 2,sin 37°=0.60,cos 37°=0.80.求:(1)电阻R 中电流的大小;(2)金属棒与导轨间的滑动摩擦因数的大小;(3)对金属棒施加一个垂直于金属棒且沿导轨平面向上的恒定拉力F =0.2 N ,若金属棒继续下滑x =0.14 m 后速度恰好减为0,则在金属棒减速过程中电阻R 中产生的焦耳热为多少?解析:(1)感应电动势E =BLv =0.5×0.2×1.2 V =0.12 V ,感应电流I =E R =0.120.1A =1.2 A. (2)导体棒受到的安培力F 安=BIL =0.5×0.2×1.2 N =0.12 N.金属棒匀速下滑,根据平衡条件可知mg sin θ-f -F 安=0,且F N -mg cos θ=0,又f =μF N ,代入数据,解得μ=0.25.(3)从施加拉力F 到金属棒停下的过程中,由能量守恒定律,得(F -mg sin θ+μmg cos θ)x +Q =12mv 2, 代入数据,解得产生的焦耳热Q =1.04×10-2J.答案:(1)1.2 A (2)0.25 (3)1.04×10-2 J针对训练4.(2014·广东卷)如图所示,上下开口、内壁光滑的铜管P 和塑料管Q 竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块( )A .在P 和Q 中都做自由落体运动B .在两个下落过程中的机械能都守恒C .在P 中的下落时间比在Q 中的长D .落至底部时在P 中的速度比在Q 中的大解析:由于电磁感应,在铜管P 中还受到向上的磁场力,而在塑料管中只受到重力,即只在Q 中做自由落体运动,故选项A 、B 错误;而在P 中加速度较小,故选项C 正确而选项D 错误.答案:C统揽考情1.感应电流的产生条件、方向判断和电动势的简单计算,磁感应强度、磁通量、电动势、电压、电流随时间变化的图象,以及感应电动势、感应电流随线框位移变化的图象,是高频考点,以选择题为主.2.滑轨类问题、线框穿越有界匀强磁场、电磁感应中的能量转化等综合问题,能很好地考查考生的能力,备受命题专家的青睐.真题例析(2015·课标全国Ⅱ卷)如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c 金属框中无电流B .U b >U c 金属框中电流方向沿a →b →c →aC .U bc =-12Bl 2ω金属框中无电流 D .U bc =12Bl 2ω金属框中电流方向沿a →c →b →a 解析:当金属框绕ab 边以角速度ω逆时针转动时,穿过直角三角形金属框abc 的磁通量恒为0,所以没有感应电流,由右手定则可知,c 点电势高,U bc =-12Bl 2ω,故C 正确,A 、B 、D 错误.答案:C针对训练(2017·全国卷Ⅰ)扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM 的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是( )A BC D解析:感应电流产生的条件是闭合回路中的磁通量发生变化.在A 图中系统振动时在磁场中的部分有时多有时少,磁通量发生变化,产生感应电流,受到安培力,阻碍系统的振动,故A正确;而BCD三个图均无此现象,故错误.答案:A1.(2016·江苏卷)(多选)电吉他中电拾音器的基本结构如图所示,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发生声音,下列说法正确的有( )A.选用铜质弦,电吉他仍能正常工作B.取走磁体,电吉他将不能正常工作C.增加线圈匝数可以增大线圈中的感应电动势D.磁振动过程中,线圈中的电流方向不断变化解析:铜不可以被磁化,则选用铜质弦,电吉他不能正常工作,故A错误;取走磁体,就没有磁场,振弦不能切割磁感线产生电流,电吉他将不能正常工作,故B正确;根据E=n ΔΦΔt可知,增加线圈匝数可以增大线圈中的感应电动势,故C正确;磁振动过程中,磁场方向不变,但磁通量有时变大,有时变小,则线圈中的电流方向不断变化,故D正确.答案:BCD2.(2017·全国卷Ⅲ)如图,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直.金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面.现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是( )A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向解析:因为PQ 突然向右运动,由右手定则可知,PQRS 中有沿逆时针方向的感应电流,穿过T 中的磁通量减小,由楞次定律可知,T 中有沿顺时针方向的感应电流,D 正确,ABC 错误.答案:D3.(2016·浙江卷)如图所示,a 、b 两个闭合正方形线圈用同样的导线制成,匝数均为10 匝,边长l a =3l b ,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( )A .两线圈内产生顺时针方向的感应电流B .a 、b 线圈中感应电动势之比为9∶1C .a 、b 线圈中感应电流之比为3∶4D .a 、b 线圈中电功率之比为3∶1解析:根据楞次定律可知,原磁场向里增大,则感应电流的磁场与原磁场方向相反,因此感应电流为逆时针,故A 错误;根据法拉第电磁感应定律可知,E =n ΔΦΔt =n ΔBS Δt , 而S =l 2, 因此电动势之比为9∶1,故B 正确;线圈中电阻R =ρL g,而导线长度L =n ×4l ,故电阻之比为3∶1, 由欧姆定律可知I =E R ,则电流之比为3∶1, 故C 错误;电功率P =E 2R ,电动势之比为9∶1,电阻之比为3∶1,则电功率之比为27∶1,故D 错误.答案:B4.(2017·全国卷Ⅱ)(多选)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m 、总电阻为0.005 Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界平行,如图(a)所示.已知导线框一直向右做匀速直线运动,cd 边于t =0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是( )图(a) 图(b)A .磁感应强度的大小为0.5 TB .导线框运动速度的大小为0.5 m/sC .磁感应强度的方向垂直于纸面向外D .在t =0.4 s 至t =0.6 s 这段时间内,导线框所受的安培力大小为0.1 N解析:由E-t 图象可知,线框经过0.2 s 全部进入磁场,则速度v =l t =0.10.2m/s =0.5 m/s ,选项B 正确;E =0.01 V ,根据E =BLv 可知,B =0.2 T ,选项A 错误;根据楞次定律可知,磁感应强度的方向垂直于纸面向外,选项C 正确;在t =0.4 s 至t =0.6 s 这段时间内,导线框中的感应电流I =E R =0.010.005A =2 A ,所受的安培力大小为F =BIL =0.04 N ,选项D 错误;故选BC.答案:BC5.(2015·课标全国Ⅰ卷)如图,一长为10 cm 的金属棒ab 用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1 T ,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘,金属棒通过开关与一电动势为12 V 的电池相连,电路总电阻为2 Ω.已知开关断开时两弹簧的伸长量均为0.5 cm ;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3 cm ,重力加速度大小取10 m/s 2.判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量.解析:金属棒通电后,闭合回路电流I =U R =122A =6 A. 导体棒受到安培力F =BIL =0.06 N.根据安培定则可判断金属棒受到安培力方向竖直向下,开关闭合前:2×k ×0.5×10-2=mg ,开关闭合后:2×k ×(0.5+0.3)×10-2=mg +F .则m =0.01 kg.答案:安培力方向竖直向下 0.01 kg。

高中物理第一章电磁感应第1节电磁感应现象教案粤教版选修3_220170926425

高中物理第一章电磁感应第1节电磁感应现象教案粤教版选修3_220170926425

第1节电磁感应现象本节教材分析三维目标1、知识与技能(1)知道电磁之间存在联系。

(2)知道电磁感应现象;知道产生感应电流要在一定条件下进行。

(3)知道法拉第发现了电磁感应现象,知道电磁感应现象对科学技术和人类文明进步的意义。

2、过程与方法(1)探究磁生电的条件,进一步了解电和磁之间的相互联系。

(2)经历实验探究过程,学习科学探究的基本方法,进一步了解探索自然奥秘的科学方法。

3、情感态度与价值观(1)认识自然现象之间是相互联系的,树立普遍联系的观点。

(2)通过对科学家的介绍,培养学生严肃认真、不怕艰苦的学习态度。

教学重点学生动手探究磁是否能生电及怎样才能生电。

教学难点引导学生按照探究步骤独立完成一个较为完整的探究过程。

教学建议本节教材从电流的磁效应现象出发,揭示出电与磁存在内在的联系,从而引出科学家们对“磁能生电吗?”这个问题的探索历程。

学生实验“探究感应电流产生的条件”是高中基础型教材中的重点探究课题,让学生通过猜想、假设、实验、比较、归纳等过程,得出实验结论。

然后用“示例”作为应用实验结论分析实际现象的范例。

由于微弱磁通量变化产生的感应电流用学生实验的器材无法测出来,所以介绍采用现代化技术手段“DIS实验”来测定微弱的地磁场磁通量变化产生的感应电流。

最后,“历史回眸”中关于法拉第生平事迹的介绍,不仅阐述了发现电磁感应在人类文明史中的伟大意义,同时也揭示了“寓偶然于必然之中”的哲学观点。

本节教学建议在实验室进行,用1课时完成教学。

1.关于探究感应电流产生条件的“自主活动”的参考解答把线圈和灵敏电流计连接成闭合电路。

若把条形磁铁放在线圈里静止不动,线圈里没有感应电流,灵敏电流计的指针不会偏转;若将条形磁铁在线圈中间插入或拔出,灵敏电流计的指针就会发生偏转,说明线圈里有感应电流产生。

2.关于学生实验“探究感应电流产生的条件”的说明本实验是探索性实验,重在培养学生通过实验探究知识的能力,预期要达到如下目的:(1)能猜想出:通过线圈的磁通量必须发生变化,才会产生感应电流。

[推荐学习]2017_2018高中物理第一章电磁感应习题课:法拉第电磁感应定律的应用学案粤教版选修3

[推荐学习]2017_2018高中物理第一章电磁感应习题课:法拉第电磁感应定律的应用学案粤教版选修3

习题课:法拉第电磁感应定律的应用——两个公式的对比及电荷量的计算[学习目标] 1.理解公式E =n ΔΦΔt 与E =BLv 的区别和联系,能够应用这两个公式求解感应电动势.2.理解电磁感应电路中电荷量求解的基本思路和方法.一、E =n ΔΦΔt和E =BLv 的比较应用例1 如图1所示,导轨OM 和ON 都在纸面内,导体AB 可在导轨上无摩擦滑动,若AB 以5m/s 的速度从O 点开始沿导轨匀速右滑,导体与导轨都足够长,磁场的磁感应强度为0.2T .问:图1(1)3s 末夹在导轨间的导体长度是多少?此时导体切割磁感线产生的感应电动势多大? (2)3s 内回路中的磁通量变化了多少?此过程中的平均感应电动势为多少?答案 (1)53m 53V (2)1532Wb 523V解析 (1)夹在导轨间的部分导体切割磁感线产生的电动势才是电路中的感应电动势. 3s 末,夹在导轨间导体的长度为:l =vt ·tan30°=5×3×tan30°m=53m此时:E =Blv =0.2×53×5V =53V (2)3s 内回路中磁通量的变化量ΔΦ=BS -0=0.2×12×15×53Wb =1532Wb3s 内电路产生的平均感应电动势为: E =ΔΦΔt =15323V=523V.E =BLv 和E =nΔΦΔt本质上是统一的,前者是后者的一种特殊情况.当导体做切割磁感线运动时,用E =BLv 求E 比较方便;当穿过电路的磁通量发生变化时,用E =n ΔΦΔt 求E 比较方便.二、电磁感应中的电荷量问题例2 面积S =0.2m 2、n =100匝的圆形线圈,处在如图2所示的磁场内,磁感应强度B 随时间t 变化的规律是B =0.02t T ,R =3Ω,C =30μF,线圈电阻r =1Ω,求:图2(1)通过R 的电流方向和4s 内通过导线横截面的电荷量; (2)电容器的电荷量.答案 (1)方向由b →a 0.4C (2)9×10-6C解析 (1)由楞次定律可求得电流的方向为逆时针,通过R 的电流方向为b →a ,q =I Δt =E R +r Δt =n ΔBS Δt (R +r )Δt =n ΔBSR +r=0.4C.(2)由E =n ΔΦΔt =nS ΔBΔt =100×0.2×0.02V =0.4V ,I =E R +r =0.43+1A =0.1A , U C =U R =IR =0.1×3V =0.3V , Q =CU C =30×10-6×0.3C =9×10-6C.1.求解电路中通过的电荷量时,一定要用平均感应电动势和平均感应电流计算.2.设感应电动势的平均值为E ,则在Δt 时间内:E =n ΔΦΔt ,I =E R,又q =I Δt ,所以q =n ΔΦR.其中ΔΦ对应某过程磁通量的变化,R 为回路的总电阻,n 为电路中线圈的匝数.针对训练 如图3所示,空间存在垂直于纸面的匀强磁场,在半径为a 的圆形区域内部及外部,磁场方向相反,磁感应强度的大小均为B .一半径为b (b >a ),电阻为R 的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合.当内、外磁场同时由B 均匀地减小到零的过程中,通过导线环截面的电荷量为( )图3A.πB |b 2-2a 2|RB.πB (b 2+2a 2)RC.πB (b 2-a 2)RD.πB (b 2+a 2)R答案 A解析 开始时穿过导线环向里的磁通量设为正值,Φ1=B πa 2,向外的磁通量则为负值,Φ2=-B ·π(b 2-a 2),总的磁通量为它们的代数和(取绝对值)Φ=B ·π|b 2-2a 2|,末态总的磁通量为Φ′=0,由法拉第电磁感应定律得平均感应电动势为E =ΔΦΔt,通过导线环截面的电荷量为q =ER·Δt =πB |b 2-2a 2|R,A 项正确.1.如图4所示,将一个闭合金属圆环从有界磁场中匀速拉出,第一次速度为v ,通过金属圆环某一截面的电荷量为q 1,第二次速度为2v ,通过金属圆环某一截面的电荷量为q 2,则( )图4A .q 1∶q 2=1∶2B .q 1∶q 2=1∶4C .q 1∶q 2=1∶1D .q 1∶q 2=2∶1 答案 C解析 由q =I ·Δt =ΔΦΔtR·Δt 得q =ΔΦR=B ·SR,S 为圆环面积,故q 1=q 2. 2.物理实验中,常用一种叫做“冲击电流计”的仪器测定通过电路的电荷量.如图5所示,探测线圈与冲击电流计串联后可用来测定磁场的磁感应强度.已知线圈的匝数为n ,面积为S ,线圈与冲击电流计组成的回路电阻为R .若将线圈放在被测匀强磁场中,开始时线圈平面与磁场垂直,现把探测线圈翻转180°,冲击电流计测出通过线圈的电荷量为q ,由上述数据可测出被测磁场的磁感应强度为( )图5A.qR SB.qR nS C.qR2nS D.qR2S答案 C解析 q =I ·Δt =ER ·Δt =nΔΦΔtRΔt =n ΔΦR =n 2BS R,所以B =qR2nS.3.可绕固定轴OO ′转动的正方形线框的边长为L ,不计摩擦和空气阻力,线框从水平位置由静止释放,到达竖直位置所用的时间为t ,此时ab 边的速度为v .设线框始终处在竖直向下、磁感应强度为B 的匀强磁场中,如图6所示,试求:图6(1)这个过程中回路中的感应电动势; (2)到达竖直位置瞬间回路中的感应电动势.答案 (1)BL 2t(2)BLv解析 (1)线框从水平位置到达竖直位置的过程中回路中的感应电动势E =ΔΦΔt =BL2t .(2)线框到达竖直位置时回路中的感应电动势E ′=BLv .一、选择题(1~5题为单选题,6~8题为多选题)1.如图1所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( )图1A.Ba 22ΔtB.nBa 22ΔtC.nBa 2ΔtD.2nBa 2Δt答案 B解析 线圈中产生的感应电动势E =n ΔФΔt =n ·ΔB Δt ·S =n ·2B -B Δt ·a 22=nBa22Δt ,选项B 正确.2.如图2所示,将一半径为r 的金属圆环在垂直于环面的磁感应强度为B 的匀强磁场中用力握中间成“8”字形(金属圆环未发生翻转),并使上、下两圆环半径相等.如果环的电阻为R ,则此过程中流过环的电荷量为( )图2A.πr 2BRB.πr 2B2RC .0 D.34-πr 2B R答案 B解析 流过环的电荷量只与磁通量的变化量和环的电阻有关,与时间等其他量无关,ΔΦ=B πr 2-2·B π⎝ ⎛⎭⎪⎫r 22=12B πr 2,因此,电荷量为q =ΔΦR =πr 2B 2R .3.如图3甲所示,矩形导线框abcd 固定在变化的磁场中,产生了如图乙所示的电流(电流方向abcda 为正方向).若规定垂直纸面向里的方向为磁场正方向,能够产生如图乙所示电流的磁场为( )图3答案 D解析 由题图乙可知,0~t 1内,线框中的电流的大小与方向都不变,根据法拉第电磁感应定律可知,线框中的磁通量的变化率相同,故0~t 1内磁感应强度与时间的关系是一条斜线,A 、B 错.又由于0~t 1时间内电流的方向为正,即沿abcda 方向,由楞次定律可知,电路中感应电流的磁场方向向里,故0~t 1内原磁场方向向里减小或向外增大,因此D 项符合题意. 4.如图4所示,两块水平放置的金属板间距离为d ,用导线与一个n 匝线圈连接,线圈置于方向竖直向上的磁场B 中.两板间有一个质量为m ,电荷量为+q 的油滴恰好处于平衡状态,则线圈中的磁场B 的变化情况和磁通量的变化率分别是( )图4A .正在增强;ΔΦΔt =dmg qB .正在减弱;ΔΦΔt =dmgnqC .正在减弱;ΔΦΔt =dmgqD .正在增强;ΔΦΔt =dmgnq答案 B解析 电荷量为q 的带正电的油滴恰好处于静止状态,电场力竖直向上,则电容器的下极板带正电,所以线圈下端相当于电源的正极,由题意可知,根据安培定则和楞次定律,可得穿过线圈的磁通量在均匀减弱;线圈产生的感应电动势:E =n ΔΦΔt ;油滴所受电场力:F =q E d ,对油滴,根据平衡条件得:q Ed =mg ;所以解得线圈中磁通量的变化率的大小为ΔΦΔt =dmgnq.故B 正确,A 、C 、D 错误.5.如图5甲所示,有一面积为S =100cm 2的金属环,电阻为R =0.1Ω,环中磁场的变化规律如图乙所示,且磁场方向垂直纸面向里,在t 1到t 2时间内,通过金属环的电荷量是( )图5A .0.01CB .0.02CC .0.03CD .0.1C答案 A解析 由法拉第电磁感应定律知金属环中产生的感应电动势E =ΔΦΔt ,由闭合电路欧姆定律知金属环中的感应电流为I =E R .通过金属环的电荷量q =I ·Δt =ΔΦR=100×10-4×(0.2-0.1)0.1C =0.01 C .故A 正确.6.如图6所示,三角形金属导轨EOF 上放有一金属杆AB ,在外力作用下,使AB 保持与OF 垂直,从O 点开始以速度v 匀速右移,该导轨与金属杆均为粗细相同的同种金属制成,则下列判断正确的是 ( )图6A .电路中的感应电流大小不变B .电路中的感应电动势大小不变C .电路中的感应电动势逐渐增大D .电路中的感应电流逐渐减小 答案 AC解析 设金属杆从O 开始运动到如题图所示位置所经历的时间为t ,∠EOF =θ,金属杆切割磁感线的有效长度为L ,故E =BLv =Bv ·vt tan θ=Bv 2tan θ·t ,即电路中感应电动势与时间成正比,C 选项正确;电路中感应电流I =E R =Bv 2tan θ·tρlS.而l 等于闭合三角形的周长,即l =vt +vt ·tan θ+vtcos θ=vt (1+tan θ+1cos θ),所以I =Bv tan θ·Sρ(1+tan θ+1cos θ)是恒量,所以A 正确.7.如图7所示是测量通电螺线管内部磁感应强度的一种装置:把一个很小的测量线圈放在待测处(测量线圈平面与螺线管轴线垂直),将线圈与可以测量电荷量的冲击电流计G 串联,当将双刀双掷开关K 由位置1拨到位置2时,测得通过测量线圈的电荷量为q .已知测量线圈的匝数为n ,面积为S ,测量线圈和G 串联回路的总电阻为R .下列判断正确的是( )图7A .在此过程中,穿过测量线圈的磁通量的变化量ΔΦ=qRB .在此过程中,穿过测量线圈的磁通量的变化量ΔΦ=qRnC .待测处的磁感应强度的大小为B =qR nSD .待测处的磁感应强度的大小为B =qR2nS答案 BD解析 由E =n ΔΦΔt ,E =IR ,q =I Δt ,得q =n ΔΦR ,得ΔΦ=qRn,B 正确;ΔΦ=2BS ,得B =qR2nS,D 正确. 8.如图8所示,一导线弯成半径为a 的半圆形闭合回路.虚线MN 右侧有磁感应强度为B 的匀强磁场,方向垂直于回路所在的平面.回路以速度v 向右匀速进入磁场,直径CD 始终与MN 垂直.从D 点到达边界开始到C 点进入磁场为止,下列说法正确的是( )图8A .感应电流方向不变B .CD 段直导线始终不受安培力C .感应电动势最大值E m =BavD .感应电动势平均值E =14πBav答案 ACD解析 在闭合回路进入磁场的过程中,通过闭合回路的磁通量逐渐增大,根据楞次定律可知感应电流的方向始终为逆时针方向,A 正确.根据左手定则可判断,CD 段受安培力向下,B 不正确.当半圆形闭合回路一半进入磁场时,这时有效切割长度最大为a ,所以感应电动势最大值E m =Bav ,C 正确.感应电动势平均值E =ΔΦΔt =14πBav ,D 正确. 二、非选择题9.如图9甲所示,固定在水平面上电阻不计的光滑金属导轨,间距d =0.5m .右端接一阻值为4Ω的小灯泡L ,在CDEF 矩形区域内有竖直向上的匀强磁场,磁感应强度B 按如图乙规律变化.CF 长为2m .在t =0时,金属棒ab 从图示位置由静止在恒力F 作用下向右运动到EF 位置,整个过程中小灯泡亮度始终不变.已知ab 金属棒电阻为1Ω,求:图9(1)通过小灯泡的电流; (2)恒力F 的大小; (3)金属棒的质量.答案 (1)0.1A (2)0.1N (3)0.8kg解析 (1)金属棒未进入磁场时,电路总电阻R 总=R L +R ab =5 Ω 回路中感应电动势为:E 1=ΔΦΔt =ΔBΔtS =0.5 V 灯泡中的电流为I L =E 1R 总=0.1 A. (2)因灯泡亮度不变,故在t =4 s 末金属棒刚好进入磁场,且做匀速运动,此时金属棒中的电流I =I L =0.1 A恒力大小:F =F 安=BId =0.1 N.(3)因灯泡亮度不变,金属棒在磁场中运动时,产生的感应电动势为E 2=E 1=0.5 V 金属棒在磁场中的速度v =E 2Bd=0.5 m/s 金属棒未进入磁场时的加速度为a =v t=0.125 m/s 2故金属棒的质量为m =Fa=0.8 kg.10.如图10所示,面积为0.2m 2的100匝线圈A 处在磁场中,磁场方向垂直于线圈平面.磁感应强度B 随时间变化的规律是B =(6-0.2t ) T ,已知电路中的R 1=4Ω,R 2=6Ω,电容C =30μF ,线圈的电阻不计,求:图10(1)闭合S 一段时间后,通过R 2的电流大小及方向.(2)闭合S 一段时间后,再断开S ,S 断开后通过R 2的电荷量是多少?答案 (1)0.4A 由上向下通过R 2 (2)7.2×10-5C解析 (1)由于磁感应强度随时间均匀变化,根据B =(6-0.2t ) T ,可知⎪⎪⎪⎪⎪⎪ΔB Δt =0.2T/s ,所以线圈中感应电动势的大小为E =n ΔΦΔt =nS ·⎪⎪⎪⎪⎪⎪ΔB Δt =100×0.2×0.2V =4V. 通过R 2的电流大小为I =ER 1+R 2=44+6A =0.4A 由楞次定律可知电流的方向自上而下通过R 2.(2)闭合S 一段时间后,电容器充电,此时两板间电压U 2=IR 2=0.4×6V =2.4V.再断开S ,电容器将放电,通过R 2的电荷量就是电容器原来所带的电荷量Q =CU 2=30×10-6×2.4C =7.2×10-5C.11.如图11所示,固定在水平桌面上的金属框架edcf 处在竖直向下的匀强磁场中,金属棒ab 在框架上可无摩擦滑动,此时adcb 构成一个边长为l 的正方形,金属棒的电阻为r ,其余部分电阻不计,开始时磁感应强度为B 0.图11(1)若从t =0时刻起,磁感应强度均匀增加,每秒增量为k ,同时保持金属棒静止.求金属棒中的感应电流,在图上标出感应电流的方向.(2)在上述(1)情况中,始终保持金属棒静止,当t =t 1时需加的垂直于金属棒的水平拉力为多大?(3)若从t =0时刻起,磁感应强度逐渐减小,当金属棒以恒定速度v 向右做匀速运动时,可使金属棒中不产生感应电流.则磁感应强度应怎样随时间变化(写出B 与t 的关系式)?答案 (1)kl 2r 见解析图 (2)(B 0+kt 1)kl 3r(3)B =B 0l l +vt解析 (1)感应电动势E =ΔΦΔt=kl 2. 感应电流I =E r =kl 2r, 由楞次定律可判定感应电流方向为逆时针,如图所示.(2)t =t 1时,B =B 0+kt 1,F =BIl ,所以F =(B 0+kt 1)kl 3r. (3)要使金属棒中不产生感应电流,则应保持总磁通量不变, 即Bl (l +vt )=B 0l 2,所以B =B 0l l +vt.。

2018-2019版物理选修3-2粤教版全程导学笔记课件:第一章 电磁感应 微型专题3 精品

2018-2019版物理选修3-2粤教版全程导学笔记课件:第一章 电磁感应 微型专题3 精品

答案
mgRsin θ B2L2
解析 当 a=0 时,ab 杆有最大速度,此时 mgsin θ=B2LR2vm,
解得:vm=mgBR2sLi2n
θ .
解析 答案
总结提升
电磁感应中力学问题的解题技巧: (1)受力分析时,要把立体图转换为平面图,同时标明电流方向及磁场 B的方向,以便准确地画出安培力的方向. (2)要特别注意安培力的大小和方向都有可能变化. (3)根据牛顿第二定律分析a的变化情况,以求出稳定状态的速度. (4)列出稳定状态下的受力平衡方程往往是解题的突破口.
1234
解析 答案
(3)导体ab达到最大速度时产生的电功率.
答案 10 W 解析 导体ab达到最大速度时其电功率为P=IE 由以上各式得 P=(BLvRmax)2=(0.1×01.1×10)2 W=10 W.
1234
解析 答案
达标检测
1.如图5所示,MN和PQ是两根互相平行竖直放置的光滑
金属导轨,已知导轨足够长,且电阻不计,ab是一根不
但与导轨垂直而且始终与导轨接触良好的金属杆,开始
时,将开关S断开,让杆ab由静止开始自由下落,过段时
间后,再将S闭合,若从S闭合开始计时,则金属杆ab的
速度v随时间t变化的图象不可能是下图中的
图3
(1)导体棒所能达到的最大速度; 答案 10 m/s
解析 答案
(2)试定性画出导体棒运动的速度-时间图象. 答案 见解析图 解析 由(1)中分析可知,导体棒运动的速度-时间图象如图所示.
解析 答案
总结提升
电磁感应动力学问题中,要把握好受力情况、运动情况的动态分析.
基本思路是:导体受外力运动 —E—=—Bl→v
达标检测

通用版2018_2019版高中物理第一章电磁感应章末学案教科版选修3_2word格式

第一章电磁感应章末总结一、楞次定律的理解与应用1.感应电流的磁场总要阻碍引起感应电流的磁通量的变化.感应电流的磁场方向不一定与原磁场方向相反,只有在磁通量增加时两者才相反,而在磁通量减少时两者是同向的.2.“阻碍”并不是“阻止”,而是“延缓”,回路中的磁通量变化的趋势不变,只不过变化得慢了.3.“阻碍”的表现:增反减同、来拒去留等.例1如图1甲所示,圆形线圈P静止在水平桌面上,其正上方固定一螺线管Q,P和Q 共轴,Q中通有变化电流i,电流随时间变化的规律如图乙所示(图甲所示Q中电流方向为正),P所受的重力为G,桌面对P的支持力为N,则( )图1A.t1时刻N>G,P有收缩的趋势B.t2时刻N=G,此时穿过P的磁通量为0C.t3时刻N=G,此时P中无感应电流D.t4时刻N<G,此时穿过P的磁通量最小答案 A解析当螺线管中电流增大时,其形成的磁场不断增强,因此线圈P中的磁通量向下增大,根据楞次定律可知线圈P将阻碍其磁通量的增大,故线圈有收缩的趋势,线圈中产生逆时针方向的感应电流(从上向下看),由安培定则可判断,螺线管下端为N极,线圈等效成小磁铁,N极向上,则此时N>G,故A正确;当螺线管中电流不变时,其形成的磁场不变,线圈P中的磁通量不变,因此线圈中无感应电流产生,线圈和螺线管间无相互作用力,故t2时刻N=G,此时穿过P的磁通量不为0,故B错误;t3时刻螺线管中电流为零,但是线圈P中磁通量是变化的,因此此时线圈中有感应电流,故C错误;t4时刻电流不变时,其形成的磁场不变,线圈P中磁通量不变,故D错误.二、电磁感应中的图像问题对图像的分析,应做到:(1)明确图像所描述的物理意义;(2)明确各种物理量正、负号的含义;(3)明确斜率的含义;(4)明确图像和电磁感应过程之间的对应关系.例2如图2所示,三条平行虚线位于纸面内,中间虚线两侧有方向垂直于纸面的匀强磁场,磁感应强度等大反向.菱形闭合导线框ABCD位于纸面内且对角线AC与虚线垂直,磁场宽度与对角线AC长均为d,现使线框沿AC方向匀速穿过磁场,以逆时针方向为感应电流的正方向,则从C点进入磁场到A点离开磁场的过程中,线框中电流i随时间t的变化关系图像可能是( )图2答案 D解析 导线框ABCD 在进入左边磁场时,由楞次定律和安培定则可以判断出感应电流的方向应为正方向,选项B 、C 错误;当导线框ABCD 一部分在左磁场区,另一部分在右磁场区时,回路中的最大电流要加倍,方向与刚进入时的方向相反,选项D 正确,选项A 错误.电磁感应中图像类选择题的两个常见解法(1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是物理量的正负,排除错误的选项.(2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图像作出分析和判断,这未必是最简捷的方法,但却是最有效的方法.三、电磁感应中的电路问题求解电磁感应中电路问题的关键是分清楚内电路和外电路.“切割”磁感线的导体和磁通量变化的线圈都相当于“电源”,该部分导体(或线圈)的电阻相当于内电阻,而其余部分的电阻则是外电阻.例3 把总电阻为2R 的均匀电阻丝焊接成一半径为a 的圆环,水平固定在竖直向下的磁感应强度为B 的匀强磁场中,如图3所示,一长度为2a 、电阻等于R 、粗细均匀的金属棒MN 放在圆环上,它与圆环始终保持良好的接触,当金属棒以恒定速度v 向右移动经过环心O时,求:图3(1)棒上电流的大小和方向及棒两端的电压U MN ; (2)在圆环和金属棒上消耗的总热功率. 答案 (1)4Bav 3R 方向由N →M 23Bav(2)8B2a2v23R解析 (1)把切割磁感线的金属棒看成一个具有内阻为R 、电动势为E 的电源,两个半圆环看成两个并联电阻,画出等效电路如图所示.等效电源电动势为:E =BLv =2Bav .外电路的总电阻为:R 外=R1R2R1+R2=12R .棒上电流大小为:I =E R 总=2Bav 12R +R =4Bav3R.电流方向从N 流向M .根据闭合电路欧姆定律知,棒两端的电压为电源路端电压.U MN =IR 外=23Bav(2)圆环和金属棒上消耗的总热功率为:P =IE =8B2a2v23R.电磁感应中电路问题的分析方法:(1)明确电路结构,分清内、外电路,画出等效电路图.(2)根据产生感应电动势的方式计算感应电动势的大小,如果是磁场变化,由E =n ΔΦΔt 计算;如果是导体切割磁感线,由E =BLv 计算. (3)根据楞次定律或右手定则判断感应电流的方向. (4)根据电路组成列出相应的方程式.四、电磁感应中的力电综合问题此类问题涉及电路知识、动力学知识和能量观点,综合性很强,解决此类问题要注重以下三点: (1)电路分析①找“电源”:确定出由电磁感应所产生的电源,求出电源的电动势E 和内阻r . ②电路结构分析弄清串、并联关系,求出相关部分的电流大小,为求安培力做好铺垫.(2)力和运动分析①受力分析:分析研究对象(常为金属杆、导体线圈等)的受力情况,尤其注意安培力的方向.②运动分析:根据力与运动的关系,确定出运动模型,根据模型特点,找到解决途径.(3)功和能量分析①做功分析,找全力所做的功,弄清功的正、负.②能量转化分析,弄清哪些能量增加,哪些能量减少,根据功能关系、能量守恒定律列方程求解.例4如图4所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L=0.4 m,导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN.Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T.在区域Ⅰ中,将质量m1=0.1 kg、电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑.然后,在区域Ⅱ中将质量m2=0.4 kg、电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑.cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2,问:图4(1)cd下滑的过程中,ab中的电流方向;(2)ab刚要向上滑动时,cd的速度v多大;(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8 m,此过程中ab 上产生的热量Q是多少.答案(1)由a流向b(2)5 m/s (3)1.3 J解析(1)由右手定则可判断出cd中的电流方向为由d到c,则ab中电流方向为由a流向b.(2)开始放置时ab刚好不下滑,ab所受摩擦力为最大静摩擦力,设其大小为f max,有f max=m1g sin θ①设ab刚要上滑时,cd棒的感应电动势为E,由法拉第电磁感应定律有E=BLv②设电路中的感应电流为I ,由闭合电路欧姆定律有I =ER1+R2③设ab 所受安培力为F 安,有F 安=BIL ④此时ab 受到的最大静摩擦力方向沿导轨向下,由平衡条件有F 安=m 1g sin θ+f max ⑤ 联立①②③④⑤式,代入数据解得v =5 m/s. (3)设cd 棒运动过程中在电路中产生的总热量为Q 总, 由能量守恒定律有m 2gx sin θ=Q 总+12m 2v 2又Q =R1R1+R2Q 总 解得Q =1.3 J.。

2019高中物理 第一章 电磁感应章末复习课学案 教科版选修3-2

第一章 电磁感应[巩固层·知识整合][体系构建][核心速填]1.“磁生电”的发现:法拉第发现“磁生电”. 2.感应电流产生条件:电路闭合、磁通量发生变化. 3.感应电流方向的判断:楞次定律、右手定则. 4.感应电动势的大小:E =n ΔΦΔt ,E =BLv .5.感应电动势的方向:电源内部电流的方向.6.电磁感应中能量的转化:安培力做负功,其他形式的能转化为电能;安培力做正功,电能转化为其他形式的能.7.自感现象产生条件:线圈本身电流发生变化;自感系数:由线圈本身性质决定;应用——日光灯. 8.涡流涡流的防止和利用:电磁阻尼、电磁驱动.[提升层·能力强化]1.基本方法(1)由法拉第电磁感应定律和楞次定律求感应电动势的大小和方向. (2)求回路中的电流.(3)分析导体受力情况(包括安培力在内的全面受力分析).(4)根据平衡条件或牛顿第二定律列方程. 2.电磁感应中的动力学临界问题(1)解决这类问题的关键是通过受力分析和运动状态的分析,寻找过程中的临界状态,如速度、加速度为最大值、最小值的条件.(2)基本思路是:导体受外力运动―――→E =BLv感应电动势――→I =ER感应电流―――→F =BIL导体安培力―→合外力变化―→加速度变化―→速度变化―→临界状态―→列式求解.如图1­1所示,线圈abcd 每边长l =0.20 m ,线圈质量m 1=0.10 kg 、电阻R=0.10 Ω,重物质量为m 2=0.14 kg.线圈上方的匀强磁场磁感应强度B =0.5 T ,方向垂直线圈平面向里,磁场区域的宽度为h =0.20 m .重物从某一位置下降,使ab 边进入磁场开始做匀速运动,求线圈做匀速运动的速度.图1­1【解析】 线圈在匀速上升时受到的安培力F 安、绳子的拉力F 和重力m 1g 相互平衡,即F =F 安+m 1g① 重物受力平衡:F =m 2g② 线圈匀速上升,在线圈中产生的感应电流I =E R =BlvR③ 线圈受到向下的安培力F 安=BIl④联立①②③④式解得v =m 2-m 1gRB 2l 2=4 m/s.【答案】 4 m/s1.(多选)如图1­2甲所示,MN 左侧有一垂直纸面向里磁感应强度大小为B 的匀强磁场.现将一质量为m 、边长为l 的正方形金属线框置于该磁场中,使线框平面与磁场方向垂直,且bc 边与磁场边界MN 重合.对线框施加一按图1­2乙所示规律变化的水平拉力F ,使线框由静止开始向右做匀加速直线运动;当t =0时,拉力大小为F 0;线框的ad 边与磁场边界MN 重合时,拉力大小为3F 0.则( )甲 乙图1­2A .线框的加速度为2F 0mB .线框的ad 边出磁场时的速度为2F 0lmC .线框在磁场中运动的时间为ml F 0D .线框的总电阻为B 2l2l 2mF 0BD [t =0时刻,感应电动势E =0,感应电流I =0,安培力F 安=BIL =0.由牛顿第二定律得F 0=ma ,得a =F 0m,A 错误;根据公式v 2=2al ,得v =2F 0lm,B 正确;根据运动学公式得t =va=2mlF 0,C 错误;线框的ad 边与磁场边界MN 重合时,根据3F 0-B 2l 2vR=ma ,得R =B 2l2l2mF 0,D 正确.]1.确定电源,产生感应电动势的那部分电路就相当于电源,利用法拉第电磁感应定律确定其电动势的大小,利用右手定则或楞次定律确定其方向以及感应电流的方向,需要强调的是:在电源内部电流是由负极流向正极的,在外部从正极流向外电路,并由负极流入电源.2.分析电路结构,画出等效电路图,这一步关键是“分析”的到位与准确,承上启下,为下一步的处理做好准备.3.利用电路规律求解,主要还是利用欧姆定律、串并联电路中电功、电热之间的关系等.4.注意:电源两极间的电压为路端电压.如图1­3所示,粗细均匀的金属环的电阻为R ,可绕轴O 转动的金属杆OA 的电阻为R 4,杆长为l ,A 端与环相接触,一阻值为R2的定值电阻分别与杆的端点O 及环边缘D 连接.杆OA 在垂直于环面向里、磁感应强度为B 的匀强磁场中,以角速度ω顺时针转动.求电路中总电流的变化范围.图1­3【解析】 设OA 杆转至题中所示位置时,金属环A 、D 间的两部分电阻分别为R 1、R 2,其等效电路如图所示,则电路中的总电流为I =E R 总=E R 2+R 4+R 并=12B ωl 234R +R 并,式中R 并=R 1R 2R 1+R 2.因为R 1+R 2=R 为定值,故当R 1=R 2时,R 并有最大值,最大值为R4;当R 1=0或R 2=0时,R 并有最小值,最小值为0,因此电流的最小值和最大值分别为I min =12B ωl 234R +14R =B ωl 22R ,I max =12B ωl 234R +0=2B ωl 23R .所以B ωl 22R ≤I ≤2B ωl 23R .【答案】 B ωl 22R ≤I ≤2B ωl23R明确电路结构,分清内、外电路根据产生感应电动势的方式计算感应电动势的大小,计算;如果是导体切割磁感线,由根据楞次定律判断感应电流的方向根据电路组成列出相应的方程式[针对训练2.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是 ( )【导学号:24622048】A BC DB [在磁场中的线框与速度垂直的边等效为切割磁感线产生感应电动势的电源.四个选项中的感应电动势大小均相等,回路电阻也相等,因此电路中的电流相等,B 中a 、b 两点间电势差为路端电压,为电动势的34,而其他选项则为电动势的14.故B 正确.]电磁感应过程,实质上也是一个能量转化和守恒的过程.通过安培力做负功,将其他非电能转化为电能;同时又将转化来的电能进一步转化成其他非电能.因此电磁感应过程总是伴随着能量转化.2.利用功能关系求解电磁感应问题的基本方法(1)用法拉第电磁感应定律或导体切割磁感线公式确定感应电动势的大小,用楞次定律和右手定则判断感应电动势的方向.(2)画出等效电路,求解电路中相关参量,分析电路中能量转化关系.(3)研究导体机械能的转化,利用能量转化和守恒关系,列出机械能功率与电路中电功率变化的守恒关系式.3.电磁感应中能量转化类型 (1)机械能→电能→机械能+内能 (2)化学能→电能→机械能+内能 (2)非电能→电能→内能如图1­4所示,足够长的U 形框架宽度是L =0.5 m ,电阻忽略不计,其所在平面与水平面成θ=37°角,磁感应强度B =0.8 T 的匀强磁场方向垂直于导体框平面, 一根质量为m =0.2 kg ,有效电阻R =2 Ω的导体棒MN 垂直跨放在U 形框架上,该导体棒与框架间的动摩擦因数μ=0.5,导体棒由静止开始沿框架下滑到刚开始匀速运动时,通过导体棒横截面的电荷量共为Q =2 C .求:图1­4(1)导体棒匀速运动的速度;(2)导体棒从静止开始下滑到刚开始匀速运动,这一过程中导体棒的有效电阻消耗的电功.【解析】 (1)导体棒受力如图,匀速下滑时有平行斜面方向:mg sin θ-F f -F =0垂直斜面方向:F N -mg cos θ=0其中F f =μF N 安培力F =BIL 电流I =E R感应电动势E =BLv 由以上各式得v =5 m/s. (2)通过导体棒的电量Q =I Δt其中平均电流I =ER =ΔΦR Δt设导体棒下滑位移为s ,则ΔΦ=BsL 由以上各式得s =QR BL =2×20.8×0.5m =10 m全程由动能定理得mgs sin θ-W 安-μmg cos θ·s =12mv 2其中克服安培力做功W 安等于电功W则W =mgs ·sin θ-μmgs cos θ-12mv 2=(12-8-2.5) J =1.5 J. 【答案】 (1)5 m/s (2)1.5 J [针对训练]3.水平放置的光滑平行导轨上放置一根长为L 、质量为m 的导体棒ab ,ab 处在磁感应强度大小为B 、方向如图1­5所示的匀强磁场中,导轨的一端接一阻值为R 的电阻,导轨及导体棒电阻不计.现使ab 在水平恒力F 作用下由静止沿垂直于磁场的方向运动,当通过的位移为x 时,ab 达到最大速度v m .此时撤去外力,最后ab 静止在导轨上.在ab 运动的整个过程中,下列说法正确的是( )图1­5A .撤去外力后,ab 做匀减速运动B .合力对ab 做的功为FxC .R 上释放的热量为Fx +12mv 2mD .R 上释放的热量为FxD [撤去外力后,导体棒水平方向只受安培力作用,而F 安=B 2L 2vR,F 安随v 的变化而变化,故导体棒做加速度变化的变速运动,A 错;对整个过程由动能定理得W 合=ΔE k =0,B 错;由能量守恒定律知,恒力F 做的功等于整个回路产生的电能,电能又转化为R 上释放的热量,即Q =Fx ,C 错,D 正确.](1)电磁感应中常涉及磁感应强度B 、磁通量Φ、感应电动势E 和感应电流I 等随时间变化的图像,即B ­t 图像、Φ ­t 图像、E ­t 图像和I ­t 图像.(2)对于导体切割磁感线产生的感应电动势和感应电流的情况,有时还常涉及感应电动势E 和感应电流I 等随位移x 变化的图像,即E ­x 图像和I ­x 图像等.2.两类图像问题(1)由给定的电磁感应过程选出或画出正确的图像;(2)由给定的有关图像分析电磁感应过程,求解相应的物理量. 3.解题的基本方法(1)关键是分析磁通量的变化是否均匀,从而判断感应电动势(电流)或安培力的大小是否恒定,然后运用楞次定律或左手定则判断它们的方向,分析出相关物理量之间的函数关系,确定其大小和方向及在坐标轴中的范围.(2)图像的初始条件,方向与正、负的对应,物理量的变化趋势,物理量的增、减或方向正、负的转折点都是判断图像的关键.4.解题时要注意的事项(1)电磁感应中的图像定性或定量地表示出所研究问题的函数关系.(2)在图像中,E、I、B等物理量的方向通过物理量的正、负来反映.(3)画图像要注意纵、横坐标的单位长度、定义或表达.如图1­6所示,有一等腰直角三角形的区域,其斜边长为2L,高为L.在该区域内分布着如图所示的磁场,左侧磁场方向垂直纸面向外,右侧磁场方向垂直纸面向里,磁感应强度大小均为B.一边长为L、总电阻为R的正方形导线框abcd,从图示位置开始沿x 轴正方向以速度v匀速穿过磁场区域.取沿a→b→c→d→a的感应电流方向为正,则选项图中表示线框中电流i随bc边的位置坐标x变化的图像正确的是( )图1­6D[根据右手定则确定,当bc边刚进入左侧磁场时,电流为正方向,C错误;根据E =BLv,感应电动势和感应电流的大小与有效长度成正比,bc边在左侧磁场时,有效长度沿x方向逐渐增大,bc边进入右侧磁场时,ad边进入左侧磁场,由于两侧磁场方向相反,故有效长度为ad边和bc边切割磁感线有效长度之和,保持不变,且电流为负方向,故A错误;当bc边离开右侧磁场后,ad边切割磁感线,电流方向仍为正方向,故B错误,D正确.]排除法:定性地分析电磁感应过程中物理量的变化趋势增大还是减小、变化快慢均匀变化还是非均匀变化,特别是物理量的正负,排除错误的选项函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数4.如图1­7所示,三条平行虚线位于纸面内,中间虚线两侧有方向垂直于纸面的匀强磁场,磁感应强度等大反向.菱形闭合导线框ABCD位于纸面内且对角线AC与虚线垂直,磁场宽度与对角线AC长均为d,现使线框沿AC方向匀速穿过磁场,以逆时针方向为感应电流的正方向,则从C点进入磁场到A点离开磁场的过程中,线框中电流i随时间t的变化关系可能是 ( )图1­7A BC DD[导线框ABCD在进入左边磁场时,由楞次定律和安培定则可以判断出感应电流的方向应为正方向,选项B、C不可能;当导线框ABCD一部分在左磁场区,另一部分在右磁场区时,回路中的最大电流要加倍,方向与刚进入时的方向相反,选项D可能,选项A不可能.]。

[精品]2019高中物理第一章电磁感应第五节电磁感应规律的应用学案粤教版选修3_24

第五节 电磁感应规律的应用4.掌握电磁感应过程中的能量转化.一、法拉第电机1.法拉第电机是应用了导体棒在磁场中切割磁感线而产生感应电动势的原理.2.产生电动势的导体相当于电源,此电源与其他部分的导体或线框构成了闭合电路,遵从闭合电路欧姆定律. 3.在电源内部,感应电流方向是从电源的负极流向正极;在外电路中,电流从电源的正极经用电器流向负极. 预习交流1如图是一个水平放置的导体框架,宽度L =0.50 m ,接有电阻R=0.20 Ω,磁感应强度B =0.40 T ,方向如图所示.今有一导体棒ab 横放在框架上,并能无摩擦地沿框滑动,框架及导体棒ab 的电阻均不计,当ab 以v =4.0 m/s 的速度向右匀速滑动时,试求:电路上的感应电流的大小.答案:导体棒ab 切割磁感线产生的感应电动势的大小为E =BLv =0.40×0.50×4.0 V=0.80 V ,导体棒ab 相当于电源,由它对外电路供电,则由闭合电路欧姆定律得:I =E R +r =0.800.20A =4.0 A .二、电磁感应中的能量1.电磁感应中的能量:在由导体切割磁感线产生的电磁感应现象中,导体克服安培力做多少功,就有多少其他形式的能转化为电能,即电能是通过克服安培力做功转化来的.2.电磁感应现象符合能量守恒定律.3.反电动势(1)定义:直流电动机模型通电后,线圈因受安培力而转动,切割磁感线产生的感应电动势. (2)方向:与外加电压的方向相反.(3)决定因素:电动机线圈转动越快,反电动势越大. 预习交流2在有安培力做功的电路中,欧姆定律是否依然适用?答案:有安培力做功的电路为非纯电阻电路,电路中发生了电能与机械能的转化,欧姆定律不再适用. 预习交流3同学们,你阅读了教材中与反电动势有关的内容后,你认为反电动势与欧姆定律不适用于非纯电阻电路有关吗?答案:有关.设电路中的电池电动势为E ,反电动势为E ′,则电路中的总电动势为E -E ′,若电路中的总电阻为R ,由闭合电路欧姆定律可得电路中的电流I =E -E ′R .所以,由于反电动势的存在,回路中的电流I <ER.一、法拉第电机学生思考:法拉第电机的原理是怎样的?答案:法拉第电机原理图如下图所示.放在磁场中的铜盘可以看成是由无数根铜棒组成的,这些铜棒就像自行车的“辐条”一样.铜棒一端连在铜盘圆心,另一端连在圆盘边缘.当转动圆盘时,铜棒在两磁极间切割磁感线,铜棒就相当于电源,其中圆心为电源的一个极,铜盘的边缘为电源的另一个极.它可以通过导线对用电器供电.如图所示,是法拉第做成的世界上第一台发电机模型的原理图.将铜盘放在磁场中,让磁感线垂直穿过铜盘;图中a ,b 导线与铜盘的中轴线处在同一平面内;转动铜盘,就可以使闭合电路获得电流.若图中铜盘半径为L ,匀强磁场的磁感应强度为B ,回路总电阻为R ,从上往下看逆时针匀速转动铜盘的角速度为ω.则下列说法正确的是( ).A .回路中有大小和方向做周期性变化的电流B .回路中电流大小恒定,且等于2BL RC .回路中电流方向不变,且从b 导线流进灯泡,再从a 导线流向旋转的铜盘D .若将匀强磁场改为仍然垂直穿过铜盘的按正弦规律变化的磁场,不转动铜盘,灯泡中也会有电流流过 答案:C解析:铜盘在转动的过程中产生的恒定电流为I =BL 2ω2R,选项A 、B 错误.由右手定则可知铜盘在转动的过程中产生的电流从b 导线流进灯泡,再从a 导线流向旋转的铜盘,选项C 正确.若将匀强磁场改为仍然垂直穿过铜盘的按正弦规律变化的磁场,不转动铜盘时闭合回路的磁通量不发生变化,灯泡中没有电流流过,选项D 错误.1.当导体棒各点的切割速度相同时,产生的感应电动势用E =BLv 来求.2.当导体各部分切割磁感线线速度不同时,取其平均速度.如图所示,导体棒绕A 点以角速度ω匀速转动时产生感应电动势的大小为E =BL v =BL ×0+ωL 2=12BL 2ω.二、电磁感应中的电路1.如图所示,导体棒ab 在切割磁感线的过程中电路中会产生感应电流.请分析:(1)电路中有电源吗? 答案:电路中有电源.(2)如果有,哪部分导体相当于电源? 答案:导体棒ab 相当于电源. (3)又如何确定电源的正负极呢?答案:在电源内部电流由负极流向正极,在电源外部由正极流向负极.由右手定则可知导体棒在向右运动过程中电流由a 端流出,故a 端相当于电源的正极,b 端相当于电源负极.2.产生感应电动势的部分是电源,其余部分则为外电路.试说明图甲、乙所示电路中哪部分导体相当于电源,并画出等效电路.判断a ,b 两点电势的高低.答案:图甲中线圈相当于电源,图乙中导体棒相当于电源;根据楞次定律可判断甲图中线圈外电流方向由b →a .根据右手定则可判定乙图中棒上电流方向由b →a .因为在电源内部电流由电源负极流向正极,所以甲图b 点相当于电源正极,a 点相当于电源负极,b 点电势高于a 点电势.乙图a 点相当于电源正极,b 点相当于电源负极.a 点电势高于b 点.等效电路如图.固定在匀强磁场中的正方形导线框abcd 边长为L ,其中ab 为一段电阻为R 的均匀电阻丝,其余三边均为电阻可以忽略的铜线,磁感应强度为B ,方向垂直纸面向里,现有一段与ab 完全相同的电阻丝PQ 架在导线框上,如图所示,以恒定的速度v 从ad 边滑向bc 边,当PQ 滑过L3的距离时,通过aP 段电阻丝的电流是多大?方向如何?答案:6BvL11R方向由P 到a 解析:PQ 在磁场中切割磁感线产生感应电动势,闭合电路中有感应电流,可将电阻丝PQ 视为有内阻的电源,电阻丝aP 与bP 并联,且R aP =13R ,R bP =23R ,画出等效电路图如图所示,这样就将问题转化为纯电路问题.根据题意,电源电动势E =BvL外电阻R 外=R aP R bP R aP +R bP =29R总电阻R 总=R 外 +r =29R +R =119R所以电路中的总电流为I =E R 总=9BLv 11R根据并联电路的分流原理I aP =23I =6BLv 11R,方向由P 到a .1.求解电磁感应中的电路问题的关键是分析清楚哪是内电路,哪是外电路,切割磁感线的导体和磁通量发生变化的线圈都相当于“电源”,该部分导体的电阻相当于内阻,而其余部分的电路则是外电路.2.解决此类问题的基本步骤是:(1)由法拉第电磁感应定律和楞次定律或右手定则确定感应电动势的大小和方向. (2)画等效电路,感应电流的方向就是电源内部的电流方向.(3)运用闭合电路欧姆定律,结合串、并联电路的规律等公式联立求解. 三、动生电动势与感生电动势1.什么是动生电动势,你能举例说明吗?答案:由于导体棒做切割磁感线的运动,而在导体棒两端产生的感应电动势,叫做动生电动势.如图所示,当导体棒CD ,在磁场中做切割磁感线运动时,CD 间就会产生感应电动势.2.动生电动势的产生与电路闭合还是断开,有关吗?答案:无关.无论电路闭合还是断开,只要有导体做切割磁感线的运动,电路中就有动生电动势产生.当电路闭合,其一部分导体做切割磁感线的运动时,电路中有感应电流产生;当电路闭合,整个电路以相同速度做切割磁感线运动时,只产生感应电动势,不产生感应电流.3.什么是感生电动势,你能举例说明吗?答案:闭合电路本身静止,由于穿过闭合电路的磁通量发生变化,而产生的感应电动势.例如,在如图甲所示的闭合电路中,存在如图所示的垂直纸面向里的磁场.当此磁场从T =0时刻起,按如图乙所示的规律变化时,A 、B 两点间就会产生感生电动势.4.什么是感生电场?感生电场与感生电流的关系是什么?怎样确定感生电场的方向?答案:如图所示,当存在于某空间的磁场发生变化时,就会在此变化磁场的垂直方向上产生感生电场.当在变化磁场的垂直方向上存在闭合导体时,导体中的自由电子会在感生电场的作用下,定向移动,形成感应电流.当磁场变化时,一定能产生感应电场,但不一定能产生感应电流,因此感应电场的方向为此处存在感应电流时,感应电流的方向.如图所示,固定于水平桌面上的金属框架cdef ,处在竖直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动.此时abed 构成一个边长为L 的正方形,棒的电阻为r ,其余部分电阻不计,开始时磁感应强度为B 0.(1)若从t =0时刻起,磁感应强度均匀增加,每秒增量为k ,同时保持棒静止,求棒中的感应电流,并在图上标出感应电流的方向;(2)在上述(1)的情况中,始终保持棒静止,当t =t 1时需加的垂直于棒的水平拉力为多大?(3)若从t =0时刻起,磁感应强度逐渐减小,当棒以恒定速度v 向右做匀速运动时,可使棒中不产生感应电流,则磁感应强度应怎样随时间变化(写出B 与t 的关系式)?答案:(1)RL 2r电流方向如图所示(2)(B 0+kt 1)kL 3r (3)B =B 0L L +vt解析:(1)感应电动势E =ΔB Δt S =kL 2,感应电流I =E r =kL 2r,由楞次定律可判定感应电流方向为逆时针.(2)t =t 1时,B =B 0+kt 1,此时棒所受安培力F =BIL ,棒静止时所加水平拉力与棒所受安培力大小相等、方向相反,所以所加外力的大小F ′=F =BIL =(B 0+kt 1)kL 3r.(3)要使棒中不产生感应电流,应使回路中总磁通量始终保持不变,所以应有 BL (L +vt )=B 0L 2,解得磁感应强度随时间的变化规律为B =B 0LL +vt.动生电动势与感生电动势的区别1.产生原因不同2.移动电荷的非静电力不同.感生电动势中移动电荷的非静电力是感生电场对自由电荷的电场力;动生电动势中移动电荷的非静电力是导体中自由电荷所受洛伦兹力沿导体方向的分力. 3.回路中相当于电源的部分不同4.判断电流方向的方法不同.感生电流由楞次定律判断;动生电流由右手定则判断,也可由楞次定律判断.5.计算电动势的方法不同.感生电动势由E =n ΔΦΔt计算;动生电动势通常由E =BLv sin θ计算,也可由E =n ΔΦΔt计算. 四、电磁感应过程中的能量转化1.试分析导体棒切割磁感线产生电能过程中洛伦兹力、安培力、外力的做功情况.答案:外力推动导体棒运动,做正功;安培力阻碍导体棒运动,做负功;导体棒中电子所受洛伦兹力整体上不做功,不能通过洛伦兹力将磁场能转化为电能,导体棒克服安培力做功将其他形式的能转化为电能.2.安培力做功与电能转化是相对应的,你知道安培力做功与电能的关系吗?答案:安培力做负功,将其他形式的能转化为电能.安培力做正功,会将电能转化为其他形式的能,如机械能等.3.学生思考:电磁感应现象中,能量是怎样转化的呢?答案:导体棒中的电流受到安培力的作用,安培力的方向与相对运动的方向相反,阻碍导体的相对运动,导体棒要克服安培力做功,将机械能转化为电能.当产生的电流通过用电器后,同时将转化来的电能进一步转化成其他形式的能.在竖直向下的磁感应强度为B 的匀强磁场中,有两根水平放置相距L 且足够长的平行金属导轨AB 、CD ,在导轨的AC 端连接一阻值为R 的电阻.一根垂直于导轨放置的金属棒ab ,其质量为m .现用水平细绳跨过定滑轮连接一质量为M 的重物拉动金属杆ab ,如图所示.若重物从静止开始下落,且导轨和金属棒的电阻、定滑轮的质量及一切摩擦均不计,求:(1)金属棒的最大速度;(2)若重物从静止开始至匀速运动的某一时刻,下落的高度为h ,求这一过程中电阻R 上产生的热量.点拨:物体具有最大速度时,加速度为零,所受合力为零.物体下落时,重力势能减少了,那么,减少的重力势能转化为了哪些能?答案:(1)MgR B 2L 2 (2)Mg [h -(M +m )MgR22B 4L4] 解析:(1)重物M 拉动金属杆运动,切割磁感线产生感应电流,ab 杆将受到水平向左的安培力的作用,杆的速度将逐渐增大,在物体的重力和安培力相等时,金属棒达到最大速度.设最大速度为v max ,最大速度时有BIL =Mg ,I =E R =BLv max R ,解得 v max =MgRB 2L2.(2)从静止至匀速之后的某时刻,下降的高度为h ,由能量转化和守恒可得Mgh =12(M +m )v 2max +Q ,解得 Q =Mg [h -(M +m )MgR22B 4L4].求解电磁感应现象中能量守恒问题的一般思路1.分析回路,分清电源和外电路.在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,其余部分相当于外电路.231.一闭合线圈,放在随时间均匀变化的磁场中,线圈平面和磁场方向垂直,若想使线圈中的感应电流增强一倍,下述方法可行的是( ).A .使线圈匝数增加一倍B .使线圈面积增加一倍C .使线圈匝数减少一半D .使磁感应强度的变化率增大一倍 答案:D解析:根据公式E =n ΔΦΔt =n ΔB Δt S 和I =ER可以判断,当线圈匝数增加一倍时,n 变为原来的2倍,E 变为原来的2倍,但R 也变为原来的2倍,即感应电流不变,A 项错误;同理C 项错误;线圈面积增加一倍,半径变为原来的2倍,电阻R 也变为原来的2倍,但E 变为原来的2倍,所以感应电流变为原来的2倍,B 项错误;使ΔBΔt增大1倍,E 变为原来的2倍,但R 不变,所以感应电流变为原来的2倍,D 项正确.2.如图所示,水平导轨的电阻忽略不计,金属棒ab 和cd 的电阻分别为R ab 和R cd ,且R ab >R cd ,处于匀强磁场中.金属棒cd 在力F 的作用下向右匀速运动.ab 在外力作用下处于静止状态,下面说法正确的是( ).A .U ab >U cdB .U ab =U cdC .U ab <U cdD .无法判断 答案:B 解析:电源是将非电能转换成电能的装置.本题中是通过电磁感应将机械能转化成为电能.cd 的作用是电源.ab 则是外电路中的电阻.画出等效电路图,如图所示.然后再运用恒定电流的知识进行计算.电磁感应的问题中经常用到化简为直流电路的等效方法.金属棒在力F 的作用下向右做切割磁感线的运动应视为电源,而c 、d 分别等效为这个电源的正、负极,U cd 是电源两极的路端电压,不是内电压.又因为导轨的电阻忽略不计,因此金属棒ab 两端的电压U ab 也等于路端电压,即U cd =U ab ,所以应选B 项.3.如下图所示,闭合开关S ,将条形磁铁插入闭合线圈,第一次用0.2 s ,第二次用0.4 s ,并且两次的起始和终止位置相同,则( ).A .第一次磁通量变化较大B .第一次G 的最大偏角较大C .第一次经过G 的总电量较多D .若断开S ,G 均不偏转,故均无感应电动势产生 答案:B解析:将磁铁插到闭合线圈的同一位置,磁通量的变化量相同,而用的时间不同,所以磁通量的变化率不同;感应电流I =E R =ΔΦΔt ·R ,感应电流的大小不同;流过线圈横截面的电荷量q =I Δt =ΔΦΔtR ·Δt =ΔΦR,两次磁通量的变化量相同,电阻不变,所以q 与磁铁插入线圈的快慢无关.4.如图所示,金属杆ab 以恒定的速率v 在光滑平行导轨上向右滑行,设整个电路中总电阻为R (恒定不变),整个装置放在垂直纸面向里的匀强磁场中,下列叙述正确的是( ).A .ab 杆中的电流与速率v 成正比B .磁场作用于ab 杆的安培力与速率v 的平方成正比C .电阻R 上产生的电热功率与速率v 的平方成正比D .外力对ab 杆做功的功率与速率v 成正比 答案:AC解析:由E =BLv 和I =E R 得:I =BLv R .所以安培力F =BIL =B 2L 2v R ,电阻上消耗的热功率P =I 2R =B 2L 2v 2R;外力对ab 杆做功的功率就等于消耗的热功率.A 、C 项正确,B 、D 项错误.5.如下图所示,在磁感应强度为B =0.4 T 的匀强磁场中放一个半径r 0=50 cm 的圆形导轨,上面搁有互相垂直的两根导体棒,一起以角速度ω=103rad/s 逆时针匀速转动,圆导轨边缘和两棒中央通过电刷与外接路连接.若每半根导体棒的有效电阻R 0=0.4 Ω,外接电阻R =3.9 Ω,求:(1)每半根导体棒产生的感应电动势.(2)当电键S 接通和断开时两电表示数(假定R V →∞,R A →0)分别为多少?答案:(1)50 V (2)S 断开,电压表示数为50 V ,电流表示数为0;S 接通,电压表示数为48.75 V ,电流表示数为12.5 A .解析:(1)每半根导体棒产生的感应电动势为E 1=Br 0v =12Br 20ω=12×0.4×103×(0.5)2V =50 V .(2)两根棒一起转动时,每半根棒中产生的感应电动势大小相等,方向相同(从边缘指向中心),总的电动势和内电阻分别为E =E 1=50 V ,r =14R 0=0.1 Ω.当电键S 断开时,外电路开路,电流表示数为零,电压表示数等于电源电动势,为50 V .当电键S 接通时,全电路总电阻为R ′=r +R =(0.1+3.9)Ω=4 Ω由全电路欧姆定律得电流(即电流表示数)为I =E R ′=504A =12.5 A 此时电压表示数即路端电压为U =E -Ir =(50-12.5×0.1)V =48.75 V 或U =IR =12.5×3.9 V=48.75 V .。

高中物理电磁感应 总复习教案粤教版选修3

电磁感应单元复习:(一)、电磁感应现象1、利用磁场产生电流的现象称为电磁感应现象,所产生的电动势称为感应电动势,所产生的电流称为感应电流。

2、产生感应电流的条件是穿过闭合电路的磁通量发生变化。

3、初中物理中的另一种说法:闭合电路的一部分导体在磁场中切割磁感线运动时,导体中会产生感应电流,也可以概括为上面讲的条件。

4、电磁感应现象的实质是产生感应电动势,电路闭合才有感应电流,若电路不闭合,虽没有电流,但感应电动势可依然存在。

5.产生感应电动势的那部分导体相当于电源。

(二)、楞次定律1、感应电流具有这样的方向,感应电流的磁场总要阻碍引起感应电流的磁通量的变化,该规律叫做楞次定律。

2、应用楞次定律判断感应电流的方向,首先要明确原磁场的方向;其次要明确穿过闭合电路的磁通量是增加的还是减少的;然后根据楞次定律确定感应电流的磁场方向;最后利用安培定则来确定感应电流的方向。

3、从导体和磁场的相对运动来看,感应电流总要阻碍它们之间的相对运动,因此楞次定律是能量守恒定律的必然结果。

4、判断导体切割磁感线所产生的感应电流的方向时,右手定则与楞次定律是等效的,而右手定则比楞次定律更方便,但前者只适宜于导体切割磁感线的情况,而后者是普遍适用的规律。

(三)求感应电动势的大小有两种方法:即法拉第电磁感应定律E= △Φ /△t ;切割法:E=BLv1、应用法拉第电磁感应定律E=△Φ /△t ,应注意以下几点:(1)要严格区分磁通量Φ磁通量的变化量△Φ,磁通量的变化率△Φ/△t ;(2)如是由磁场变化引起时,则用S△B来计算;如有回路面积变化引起时,则用B△S来计算。

(3)由E=△Φ/△t算出的通常是时间△t内的平均感应电动势,一般并不等于初态与末态电动势的平均值。

(4)当线圈有n匝时,E = n△Φ/△t 。

2、用公式E = BLv求电动势时,应注意以下几点:(1)此公式一般用于匀强磁场(或导体所在位置的各点的B相同),导体各部分切割磁感线速度相同的情况,(2)若导体各部分切割磁感线的速度不同,可取其平均速度,求电动势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 电磁感应章末复习课【知识体系】[答案填写] ①磁通量 ②磁通量的变化率 ③nΔΦΔt ④E =BLv ⑤12BL 2ω ⑥电流主题1 楞次定律的理解及其推广1.楞次定律的理解.楞次定律解决的问题是感应电流的方向问题,它涉及两个磁场,感应电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场),前者和后者的关系不是“同向”和“反向”的简单关系,而是前者“阻碍”后者“变化”的关系.2.对“阻碍”意义的理解.(1)阻碍原磁场的变化.“阻碍”不是阻止,而是“延缓”,感应电流的磁场不会阻止原磁场的变化,只能使原磁场的变化被延缓或者说被迟滞了,原磁场的变化趋势不会改变,不会发生逆转.(2)阻碍的是原磁场的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流.(3)阻碍不是相反,当原磁通量减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动.(4)由于“阻碍”,为了维持原磁场的变化,必须有外力克服这一“阻碍”而做功,从而导致其他形式的能量转化为电能,因而楞次定律是能量转化和守恒定律在电磁感应中的体现.3.楞次定律的推广.楞次定律可推广为感应电流的效果总是要反抗(或阻碍)产生感应电流的原因.因此也常用以下结论作迅速判断:(1)阻碍原磁通量的变化(增反减同).(2)阻碍导体的相对运动(来拒去留).(3)使线圈的面积有扩大或缩小的趋势(增缩减扩).(4)阻碍原电流的变化(自感现象).[典例❶] 如图所示,通电螺线管置于闭合金属环a的轴线上,当螺线管中电流I减小时( )A.环有缩小的趋势以阻碍原磁通量的减小B.环有扩大的趋势以阻碍原磁通量的减小C.环有缩小的趋势以阻碍原磁通量的增大D.环有扩大的趋势以阻碍原磁通量的增大解析:当螺线管中通过的电流逐渐变小时,电流产生的磁场逐渐变弱,故穿过金属环a 的磁通量变小,根据楞次定律可知,为阻碍原磁通量变小,金属环a有收缩的趋势,故A 正确,BCD错误.答案:A针对训练1.(2016·上海卷)(多选)如图(a),螺线管内有平行于轴线的外加匀强磁场,图中箭头所示方向为其正方向.螺线管与导线框abcd相连,导线框内有一小金属圆环L,圆环与导线框在同一平面内.当螺线管内的磁感应强度B随时间按图(b)所示规律变化时( )图(a) 图(b)A.在t1~t2时间内,L有收缩趋势B.在t2~t3时间内,L有扩张趋势C .在t 2~t 3时间内,L 内有逆时针方向的感应电流D .在t 3~t 4时间内,L 内有顺时针方向的感应电流解析:在t 1~t 2时间内,穿过圆环的磁通量向上不是均匀增大,由楞次定律可以确定L 必须减小面积以达到阻碍磁通量的增大,故有收缩的趋势,故A 正确;在t 2~t 3时间内,穿过圆环的磁通量向上均匀减小,由法拉第电磁感应定律可知,L 中磁通量不变,则L 中没有感应电流,因此没有变化的趋势,故B 、C 错误;在t 3~t 4时间内,向下的磁通量减小,根据楞次定律,在线圈中的电流方向c 到b ,根据右手螺旋定则,穿过圆环L 的磁通量向内减小,则根据楞次定律,在金属圆环中产生顺时针方向的感应电流,故D 正确.答案:AD主题2 电磁感应中的电路问题在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势.若回路闭合,则产生感应电流,感应电流引起热效应,所以电磁感应问题常常与电路知识综合考查.1.解决与电路相联系的电磁感应问题的基本方法.(1)明确哪部分导体或电路产生感应电动势,该导体或电路就是电源,其他部分是外电路.(2)用法拉第电磁感应定律确定感应电动势的大小,用楞次定律或右手定则确定感应电流的方向.(3)画等效电路图.分清内外电路,画出等效电路图是解决此类问题的关键.(4)运用闭合电路欧姆定律、串并联电路的特点、电功、电功率等公式求解.2.问题示例.图甲 图乙(1)图甲中若磁场增强,可判断感应电流方向为逆时针,则ΦB >ΦA ;若线圈内阻为r ,则U BA =ΔΦΔt ·R R +r. (2)图乙中,据右手定则判定电流流经AB 的方向为B →A ,则可判定ΦA >ΦB ,若导体棒的电阻为r ,则U AB =BLv R +r·R . 【典例2】 (多选)半径为a 的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B ,杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示.则( )A .θ=0时,杆产生的电动势为2BavB .θ=π3时,杆产生的电动势为3BavC .θ=0时,杆受的安培力大小为8B 2av (π+4)R 0D .θ=π3时,杆受的安培力大小为3B 2av (5π+3)R 0解析:θ=0时,杆产生的电动势E =BLv =2Bav ,故A 正确;当θ=π3时,根据几何关系得出此时导体棒的有效切割长度是a ,所以杆产生的电动势为Bav ,故B 错误;θ=0时,由于单位长度电阻均为R 0,所以电路中总电阻⎝⎛⎭⎪⎫2+π2aR 0.所以杆受的安培力大小是8B 2av (π+4)R 0,故C 正确;当θ=π3时,电路中总电阻是⎝ ⎛⎭⎪⎫518π+1aR 0,所以杆受到的安培力18B 2av (5π+18)R,故D 错误. 答案:AC针对训练2.(2016·全国Ⅱ卷)(多选)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P 、Q 分别于圆盘的边缘和铜轴接触,圆盘处于方向竖直向上的匀强磁场B 中,圆盘旋转时,关于流过电阻R 的电流,下列说法正确的是( )A .若圆盘转动的角速度恒定,则电流大小恒定B .若从上往下看,圆盘顺时针转动,则电流沿a 到b 的方向流动C .若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D .若圆盘转动的角速度变为原来的2倍,则电流在R 上的热功率也变为原来的2倍解析:铜盘转动产生的感应电动势为:E =12BL 2ω,B 、L 、ω不变,E 不变,电流I =E R=BL 2ω2R,电流大小恒定不变,由右手定则可知,回路中电流方向不变,若从上往下看,圆盘顺时针转动,由右手定则知,电流沿a 到b 的方向流动,故A 、B 正确;若圆盘转动方向不变,角速度大小发生变化,则电流方向不变,大小变化,故C 错误;若圆盘转动的角速度变为原来的2倍,回路电流变为原来2倍,根据P =I 2R ,电流在R 上的热功率也变为原来的4倍,故D 错误.答案:AB主题3 电磁感应中的动力学问题1.解决电磁感应中的动力学问题的一般思路.(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.(2)求回路中的电流.(3)分析研究导体的受力情况(包含安培力,用左手定则确定其方向).(4)根据牛顿第二定律或物体受力平衡列方程求解.2.受力情况、运动情况的动态分析.导体受力运动产生感应电动势→感应电流→通电导体受安培力作用→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,最终结果是加速度等于0,导体达到稳定运动状态.此类问题要画好受力图,抓住加速度a =0时,速度v 达到最值的特点.[典例❸] (2017·天津卷)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R .金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使磁感应强度随时间均匀减小,ab 始终保持静止,下列说法正确的是( )A .ab 中的感应电流方向由b 到aB .ab 中的感应电流逐渐减小C .ab 所受的安培力保持不变D .ab 所受的静摩擦力逐渐减小解析:导体棒ab 、电阻R 、导轨构成闭合回路,磁感应强度均匀减小(ΔB Δt=k 为一定值),则闭合回路中的磁通量减小,根据楞次定律,可知回路中产生顺时针方向的感应电流,ab中的电流方向由a 到b ,故A 错误;根据法拉第电磁感应定律,感应电动势E =ΔΦΔt =ΔB ·S Δt=k ·S ,回路面积S 不变,即感应电动势为定值,根据欧姆定律I =E R ,所以ab 中的电流大小不变,故B 错误;安培力F =BIL ,电流大小不变,磁感应强度减小,则安培力减小,故C 错误;导体棒处于静止状态,所受合力为零,对其受力分析,水平方向静摩擦力f 与安培力F 等大反向,安培力减小,则静摩擦力减小,故D 正确.答案:D针对训练3.(多选)两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图所示.除电阻R 外其余电阻不计.现将金属棒从弹簧原长位置由静止释放,则( )A .金属棒向下运动时,流过电阻R 的电流方向为a →bB .释放瞬间金属棒的加速度等于重力加速度gC .金属棒的速度为v 时,所受的安培力大小为F =B 2L 2v RD .电阻R 上产生的总热量等于金属棒重力势能的减少量解析:导体棒下落过程中切割磁感线,回路中形成电流,根据楞次定律判断电流的方向,流过电阻R 电流方向为b →a ,故A 错误;金属棒释放瞬间,速度为零,感应电流为零,由于弹簧处于原长状态,因此金属棒只受重力作用,故其加速度的大小为g ,故A 正确;当金属棒的速度为v 时,由F 安=BIL =B BLv R L =B 2l 2v R,故C 正确;当金属棒下落到最底端时,重力势能转化为弹性势能和焦耳热,所以R 上产生的总热量小于金属棒重力势能的减少量,故D 错误.答案:BC主题4 电磁感应中的能量问题1.能量转化.在电磁感应现象中,通过外力克服安培力做功,把机械能或其他形式的能转化为电能,克服安培力做多少功,就有多少其他形式的能转化为电能,即在电路中就产生多少电能.若电路是纯电阻电路,转化过来的电能全部转化为内能;若电路为非纯电阻电路,则电能一部分转化为内能,一部分转化为其他形式的能,比如:用电器有电动机,一部分转化为机械能.2.一般思路.(1)分析回路,分清电源和外电路.(2)分清哪些力做功,明确有哪些形式的能量发生转化.如:3.电能的三种求解思路.(1)利用克服安培力做功求解,电磁感应中产生的电能等于克服安培力所做的功.(2)利用能量守恒求解,相应的其他能量的减少量等于产生的电能.(3)利用电路特征来求解,通过电路中所消耗的电能来计算.【典例4】 如图所示,MN 、PQ 为足够长的平行金属导轨,间距L =0.2 m ,导轨平面与水平面间夹角θ=30°,N 、Q 间连接一个电阻R =0.1 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B =0.5 T .一根质量m =0.03 kg 的金属棒正在以v =1.2 m/s 的速度沿导轨匀速下滑,下滑过程中始终与导轨垂直,且与导轨接触良好.金属棒及导轨的电阻不计,g =10 m/s 2,sin 37°=0.60,cos 37°=0.80.求:(1)电阻R 中电流的大小;(2)金属棒与导轨间的滑动摩擦因数的大小;(3)对金属棒施加一个垂直于金属棒且沿导轨平面向上的恒定拉力F =0.2 N ,若金属棒继续下滑x =0.14 m 后速度恰好减为0,则在金属棒减速过程中电阻R 中产生的焦耳热为多少?解析:(1)感应电动势E =BLv =0.5×0.2×1.2 V =0.12 V ,感应电流I =E R =0.120.1A =1.2 A. (2)导体棒受到的安培力F 安=BIL =0.5×0.2×1.2 N =0.12 N.金属棒匀速下滑,根据平衡条件可知mg sin θ-f -F 安=0,且F N -mg cos θ=0,又f =μF N ,代入数据,解得μ=0.25.(3)从施加拉力F 到金属棒停下的过程中,由能量守恒定律,得(F -mg sin θ+μmg cos θ)x +Q =12mv 2, 代入数据,解得产生的焦耳热Q =1.04×10-2J.答案:(1)1.2 A (2)0.25 (3)1.04×10-2 J针对训练4.(2014·广东卷)如图所示,上下开口、内壁光滑的铜管P 和塑料管Q 竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块( )A .在P 和Q 中都做自由落体运动B .在两个下落过程中的机械能都守恒C .在P 中的下落时间比在Q 中的长D .落至底部时在P 中的速度比在Q 中的大解析:由于电磁感应,在铜管P 中还受到向上的磁场力,而在塑料管中只受到重力,即只在Q 中做自由落体运动,故选项A 、B 错误;而在P 中加速度较小,故选项C 正确而选项D 错误.答案:C统揽考情1.感应电流的产生条件、方向判断和电动势的简单计算,磁感应强度、磁通量、电动势、电压、电流随时间变化的图象,以及感应电动势、感应电流随线框位移变化的图象,是高频考点,以选择题为主.2.滑轨类问题、线框穿越有界匀强磁场、电磁感应中的能量转化等综合问题,能很好地考查考生的能力,备受命题专家的青睐.真题例析(2015·课标全国Ⅱ卷)如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c 金属框中无电流B .U b >U c 金属框中电流方向沿a →b →c →aC .U bc =-12Bl 2ω金属框中无电流 D .U bc =12Bl 2ω金属框中电流方向沿a →c →b →a 解析:当金属框绕ab 边以角速度ω逆时针转动时,穿过直角三角形金属框abc 的磁通量恒为0,所以没有感应电流,由右手定则可知,c 点电势高,U bc =-12Bl 2ω,故C 正确,A 、B 、D 错误.答案:C针对训练(2017·全国卷Ⅰ)扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM 的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是( )A BC D解析:感应电流产生的条件是闭合回路中的磁通量发生变化.在A 图中系统振动时在磁场中的部分有时多有时少,磁通量发生变化,产生感应电流,受到安培力,阻碍系统的振动,故A正确;而BCD三个图均无此现象,故错误.答案:A1.(2016·江苏卷)(多选)电吉他中电拾音器的基本结构如图所示,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发生声音,下列说法正确的有( )A.选用铜质弦,电吉他仍能正常工作B.取走磁体,电吉他将不能正常工作C.增加线圈匝数可以增大线圈中的感应电动势D.磁振动过程中,线圈中的电流方向不断变化解析:铜不可以被磁化,则选用铜质弦,电吉他不能正常工作,故A错误;取走磁体,就没有磁场,振弦不能切割磁感线产生电流,电吉他将不能正常工作,故B正确;根据E=n ΔΦΔt可知,增加线圈匝数可以增大线圈中的感应电动势,故C正确;磁振动过程中,磁场方向不变,但磁通量有时变大,有时变小,则线圈中的电流方向不断变化,故D正确.答案:BCD2.(2017·全国卷Ⅲ)如图,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直.金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面.现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是( )A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向解析:因为PQ 突然向右运动,由右手定则可知,PQRS 中有沿逆时针方向的感应电流,穿过T 中的磁通量减小,由楞次定律可知,T 中有沿顺时针方向的感应电流,D 正确,ABC 错误.答案:D3.(2016·浙江卷)如图所示,a 、b 两个闭合正方形线圈用同样的导线制成,匝数均为10 匝,边长l a =3l b ,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( )A .两线圈内产生顺时针方向的感应电流B .a 、b 线圈中感应电动势之比为9∶1C .a 、b 线圈中感应电流之比为3∶4D .a 、b 线圈中电功率之比为3∶1解析:根据楞次定律可知,原磁场向里增大,则感应电流的磁场与原磁场方向相反,因此感应电流为逆时针,故A 错误;根据法拉第电磁感应定律可知,E =n ΔΦΔt =n ΔBS Δt , 而S =l 2, 因此电动势之比为9∶1,故B 正确;线圈中电阻R =ρL g,而导线长度L =n ×4l ,故电阻之比为3∶1, 由欧姆定律可知I =E R ,则电流之比为3∶1, 故C 错误;电功率P =E 2R ,电动势之比为9∶1,电阻之比为3∶1,则电功率之比为27∶1,故D 错误.答案:B4.(2017·全国卷Ⅱ)(多选)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m 、总电阻为0.005 Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界平行,如图(a)所示.已知导线框一直向右做匀速直线运动,cd 边于t =0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是( )图(a) 图(b)A .磁感应强度的大小为0.5 TB .导线框运动速度的大小为0.5 m/sC .磁感应强度的方向垂直于纸面向外D .在t =0.4 s 至t =0.6 s 这段时间内,导线框所受的安培力大小为0.1 N解析:由E-t 图象可知,线框经过0.2 s 全部进入磁场,则速度v =l t =0.10.2m/s =0.5 m/s ,选项B 正确;E =0.01 V ,根据E =BLv 可知,B =0.2 T ,选项A 错误;根据楞次定律可知,磁感应强度的方向垂直于纸面向外,选项C 正确;在t =0.4 s 至t =0.6 s 这段时间内,导线框中的感应电流I =E R =0.010.005A =2 A ,所受的安培力大小为F =BIL =0.04 N ,选项D 错误;故选BC.答案:BC5.(2015·课标全国Ⅰ卷)如图,一长为10 cm 的金属棒ab 用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1 T ,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘,金属棒通过开关与一电动势为12 V 的电池相连,电路总电阻为2 Ω.已知开关断开时两弹簧的伸长量均为0.5 cm ;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3 cm ,重力加速度大小取10 m/s 2.判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量.解析:金属棒通电后,闭合回路电流I =U R =122A =6 A. 导体棒受到安培力F =BIL =0.06 N.根据安培定则可判断金属棒受到安培力方向竖直向下,开关闭合前:2×k ×0.5×10-2=mg ,开关闭合后:2×k ×(0.5+0.3)×10-2=mg +F .则m =0.01 kg.答案:安培力方向竖直向下 0.01 kg。

相关文档
最新文档