概率论与数理统计教程知识点公式总结(手打公式非图片)

合集下载

概率论与数理统计公式总结(湖南大学)

概率论与数理统计公式总结(湖南大学)

概率论与数论统计第一部分 概率论※随机事件的运算定律交换律:A ∪B=B ∪A A ∩B=B ∩A结合律:A ∪(B ∪C)=(A ∪B)∪C A ∩(B ∩C)=(A ∩B)∩C分配率:A ∩(B ∪C)=(A ∩B)∪(A ∪C) A ∪(B ∩C)=(A ∩B)∪(A ∩C)对偶律:A ∪B=A ∩B A ∩B=A ∩B鄙人之愚见:如果碰到那种很难从正面理解的事件,试着从对立面翻译。

※条件概率与概率公式1. 条件概率公式:P (A |B )=P(AB)P(B)2. 乘法公式:P (A B C D …)=P (A )P (B |A )P (C |AB )P (D |ABC )3. 全概率公式:P (A )=∑P (B i )P(A|B i )∞i=14. 贝叶斯公式:P (B i |A )=P (B i )P(A|B i )∑P(A |B j )P(B j )∞i=1鄙人之愚见:除了第一个以外,其他的都太抽象,强烈建议不要去记他们,而是去做题,不然小心思维混乱。

我现在压根不明白他们是什么意思,但是如果做题的话就会无意中用到。

※离散型随机变量的常见分布1. 两点分布与二项分布X~B(n,p)2. 泊松分布若X~B(n,p),当n →∞,X~P(λ),λ=npP(λ)=λk e −λk!※连续型随机变量及其常见分布1. 概率密度函数是分布函数的导数,分布函数是概率密度函数的可变上限定积分。

2. 零概率事件并不都是不可能事件,几乎必然发生的事件也并不都是必然事件。

3.分布函数的定义域一定是从-∞→∞,值域一定是从0→1,右连续[P(X)=P(X+0)],且单调不减,自己做题要注意。

4.分布函数不仅仅只有离散型和连续型两种。

5.均匀分布:概率密度函数满足f (x )={1b−a (a ≤x ≤b )0 (其他)X~U(a,b)6. 指数分布:概率密度函数满足f(x){λe −λ(x ≥0)0(x <0)X~E(λ) λ>0 7. 正态分布:X~ N(μ,ϭ2)正态分布函数的标准化:一般的正态分布N(μ,ϭ2)的分布函数F(x)与标准正态分布N(0,1)的分布函数ϕ(x)之间有如下关系:F(x)=ϕ(x−μϭ)3ϭ原则:0.6826 0.9574 0.99738.对于一般的连续型随机变量,有如下定理设X 为连续型随机变量,f x (x )为X 的概率密度,若y=g(x)为严格单调的连续函数,且反函数x=h(y)有连续导数,则Y=g(x)为连续型随机变量,且概率密度为 f x (y)=f x [(h(y) ) * |h`(y)|]若g(x)分段严格单调,对应反函数h i (y) 则有f x (y)=∑f x i [(h i (y) ) * |h i `(y)|]※二维随机变量的联合分布与边缘分布1.二维随机变量的分布函数和概率密度函数依然拥有一维随机变量的那些性质,只是更麻烦些。

概率论与数理统计基础知识和公式整理

概率论与数理统计基础知识和公式整理

第1章随机事件与概率A B=不可能同时发生,称事件A与事件互不相容或者互斥。

基本事件是互不相容的。

=且B互为逆事件,或对A BΦ,则(P B-A{ωω21,P) (2=ω1()(|)n i i P A P A B ==∑对全概率公式可以利用课堂讲解过的概率树来描述和分析。

设事件B 1,B 2,…,B n 及1(|))(|i n j j P A B P P A B ==∑此公式即为贝叶斯公式。

1=i 2n第二章随机变量及其分布第三章多维随机变量及其分布的联合分布函数。

通过全平面上的区域来形}1z-)]n第四章随机变量的数字特征第五章大数定律和中心极限定理1(数理统计部分的知识都是从样本和样本统计量出发来分析总体的属性,例如:分析已知分布中的未知参数等)第六章数理统计的基本概念与抽样分布总体有相同分布的随机变量;观察之后,样本就是nk=2,3,.()},max{n n X X =常用统计量的基本性质~X N 221)~S χ-(X-第七章 参数估计,)mA θ=),,2∧m θ 即为参数n12,,,,)(;,)m i m P X θθθθ=∏=∂法的流程。

第八章 假设检验假设检验的基本步骤如下:1. 根据实际问题,提出原假设0H 及备择假设1H ;(可确定是单侧还是双侧假设检验)2. 依据实际条件构造检验统计量;(检验统计量不含任何未知参数且分布已知)3.对于给定显著性水平α,确定检验统计量的拒绝域;(拒绝域要与0H 为真时检验统计量的趋势相反)4.将样本值或者样本统计量的值代入检验统计量的表达式计算实际值,判断是否落入拒绝域,若落入拒绝域,则否定0H ,否则接受0H 。

(完整word版)概率论与数理统计(完整公式,知识点梳理)(word文档良心出品)

(完整word版)概率论与数理统计(完整公式,知识点梳理)(word文档良心出品)

则称随机变量 X 服从参数为 的泊松分布,记为 X ~ () 或
超几何分布 几何分布
者 P( )。
泊松分布为二项分布的极限分布(np=λ ,n→∞)。
P( X

k)

CMk

C nk N M
,
k

0,1,2, l
CNn
l min(M , n)
随机变量 X 服从参数为 n,N,M 的超几何分布,记为 H(n,N,M)。
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有
如下性质:
①每进行一次试验,必须发生且只能发生这一组中的一个事件;
(5)基本 事件、样本 空间和事 件
②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用 来表示。
基本事件的全体,称为试验的样本空间,用 表示。
概率论与数理统计完整版公式
第 1 章 随机事件及其概率
(1)排列 组合公式
Pmn

m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
Cmn

m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
(2)加法 和乘法原 理
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n
(15)全概 公式
(16)贝叶 斯公式
若事件 A 、B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互独

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)

f (x) ,对任意实数 x ,有
x
F (x) f (x)dx

则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度函
数或密度函数,简称概率密度。
密度函数具有下面 4 个性质:
1° f (x) 0 。
f (x)dx 1


P(X x) P(x X x dx) f (x)dx
第 1 章 随机事件及其概率
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行
(1)排列组合公 式
排列的可能数。
C
n m
m! n!(m n)!
从 m 个人中挑出 n 个人进
行组合的可能数。
加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由 m 种方法完成,
第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方
(1)pij≥0(i,j=1,2,…);
(2)
pij 1.
ij
对 于 二 维 随 机 向 量 (X,Y) , 如 果 存 在 非 负 函 数
f (x, y)( x , y ) ,使对任意一个其邻边分别平行
于坐标轴的矩形区域 D,即 D={(X,Y)|a<x<b,c<y<d}有
P{(X ,Y) D} f (x, y)dxdy,
为标准正态分布,记为 X ~ N (0,1) ,
其密度函数记为
(x)
1
x2
e2
2

x ,
分布函数为
(x) 1
x
t2
e 2 dt 。
2
( x) 是不可求积函数,其函数值,已

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母
A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø 为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
A B 如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:
A=B。
A、B 中至少有一个发生的事件:A B,或者 A+B。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可
(6)事件 的关系与
表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
j 1
此公式即为贝叶斯公式。
P(Bi ) ,( i 1,2 ,…,n ),通常叫先验概率。P(Bi / A) ,( i 1,2 ,…, n ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了
(17)伯努 利概型
“由果朔因”的推断。
我们作了 n 次试验,且满足 每次试验只有两种可能结果, A 发生或 A 不发生; n 次试验是重复进行的,即 A 发生的概率每次均一样; 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与
P( X k) q k1 p, k 1,2,3, ,其中 p≥0,q=1-p。
随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
1
概率论与数理统计 公式(全)
均匀分布
设随机变量 X 的值只落在[a,b]内,其密度函数 f (x) 在[a,b] 上为常数 1 ,即

(完整版)概率论与数理统计知识点总结(详细)

(完整版)概率论与数理统计知识点总结(详细)

《概率论与数理统计》第一章概率论的基本概念 (2)§2.样本空间、随机事件 (2)§4等可能概型(古典概型) (3)§5.条件概率 (4)§6.独立性 (4)第二章随机变量及其分布 (5)§1随机变量 (5)§2离散性随机变量及其分布律 (5)§3随机变量的分布函数 (6)§4连续性随机变量及其概率密度 (6)§5随机变量的函数的分布 (7)第三章多维随机变量 (7)§1二维随机变量 (7)§2边缘分布 (8)§3条件分布 (8)§4相互独立的随机变量 (9)§5两个随机变量的函数的分布 (9)第四章随机变量的数字特征 (10)§1.数学期望 (10)§2方差 (11)§3协方差及相关系数 (11)第五章 大数定律与中心极限定理 (12)§1. 大数定律 ...................................................................................... 12 §2中心极限定理 . (13)第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计超全公式总结

E (X )=∑∑x i p i jijxxn+∞ n n−λλkP (X = k ) = e , (k = 0,1,...)k !(a ≤ x ≤ b )1b − af (x ) =概率论与数理统计公式总结F (x ) = P (X ≤ x ) = ∑P (X = k )k ≤x分布函数 对离散型随机变量F ' (x ) = f (x )第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当 A 、B 互斥时, P(A+B)=P(A)+P(B)对连续型随机变量F (x ) = P (X ≤ x ) =∫−∞f (t )dt条件概率公式分布函数与密度函数的重要关系:P (A | B ) =P (AB )P (B )F (x ) = P (X ≤ x ) =∫−∞f (t )dt概率的乘法公式P (AB ) = P (B )P (A | B )= P (A )P (B | A )二元随机变量及其边缘分布分布规律的描述方法全概率公式:从原因计算结果P (A ) = ∑ P (B k )P (A | B k )k =1联合密度函数联合分布函数f (x , y ) ≥ 0f (x , y ) F (x , y )+∞ +∞Bayes 公式:从结果找原因∫−∞ ∫−∞f (x , y )dx dy = 1 0 ≤ F (x , y ) ≤ 1P (B k| A ) = P (B i )P (A | B i ) ∑P (B )P (A | B )F (x , y ) = P {X ≤ x ,Y ≤ y }f (x ) = ∫ f (x , y )d y 联合密度与边缘密度第二章kkk =1Xf Y (y ) = −∞+∞−∞f (x , y )dx二项分布(Bernoulli 分布)——X~B(n,p)P (X =k )=C k p k (1−p)n −k,(k =0,1,...n , ) 泊松分布——X~P(λ)概率密度函数离散型随机变量的独立性P {X = i ,Y = j } = P {X = i }P {Y = j }连续型随机变量的独立性f (x , y ) = f X (x ) f Y (y ) 第三章数学期望离散型随机变量,数学期望定义怎样计算概率P (a ≤ X ≤ b )b连续型随机变量,数学期望定义� E(a)=a ,其中 a 为常数P (a ≤ X ≤ b ) = ∫af (x )d x均匀分布 X~U(a,b)指数分布 X~Exp (θ)• E(a+bX)=a+bE(X),其中 a 、b 为常数 � E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量 g(X)的数学期望常用公式+∞∫−∞ f (x )dx = 1+∞E (X ) = ∑x k ⋅P kk =−∞+∞E (X ) = ∫−∞x ⋅ f (x )dxE (g (X )) = ∑ g (x k ) p kk∫Y / nD (X +Y ) = D (X ) + D (Y ) + 2E {(X − E (X ))(Y − E (Y ))} X ~ N (µ,σ2 )i σ 12 σ E (X Y ) = ∑∑x i y j p i jij2σ22−(x −µ) e 12πσf (x ) =不相关不一定独立第四章 正态分布E (X ) = µ,D (X ) = σ2方 差 定义式常用计算式常用公式当 X 、Y 相互独立时:标准正态分布的概率计算 标准正态分布的概率计算公式P (Z ≤ a ) = P (Z < a ) = Φ(a )P (Z ≥ a ) = P (Z > a ) = 1− Φ(a )P (a ≤ Z ≤ b ) = Φ(b ) − Φ(a )P (−a ≤ Z ≤ a ) = Φ(a ) − Φ(−a ) = 2Φ(a ) −1一般正态分布的概率计算一般正态分布的概率计算公式 P (X ≤ a ) = P (X < a ) = Φ(a − µσ ) a − µ方差的性质P (X ≥ a ) = P (X > a ) = 1− Φ( σ)D(a)=0,其中 a 为常数P (a ≤ X ≤ b ) = Φ(b − µ− Φ(a − µD(a+bX)=b2D(X),其中 a 、b 为常数当 X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数E {[X − E (X )][Y − E (Y )]}= E (XY ) − E (X )E (Y )第 五 章卡方分布σ ) σ)n若X ~ N (0,1),则∑ X 2 ~ χ2(n )i =121n2 2协方差的性质若Y ~ N (µ,σ ),t 分布则 2 ∑(Y i− µ) i =1 ~ χ (n )若X ~ N (0,1), Y ~ χ2(n ),则X ~ t (n )独立与相关独立必定不相关 Cov (aX ,bY ) = abCov (X ,Y )若U ~ χ2 (n ), F 分布正态总体条件下 样本均值的分布:V ~ χ2(n ),则U / n 1 V / n 2~ F (n 1,n 2 )相关必定不独立2X ~ N (µ,)nX − µ~ N (0,1)σ/ n 2− E (X )) ⋅ f (x )dx x +∞−∞∫ D (X ) =( E (XY ) = ∫ ∫ xyf (x , y )dxdy σX ~ N (µ,σ2 ) ⇔ Z = X − µ~ N (0,1)D (X )D (Y )XY ρ =C ov (X ,Y )Cov (X +Y , Z ) = Cov (X , Z ) + Cov (Y , Z )C ov (X , X ) = E (X 2 ) − (E (X ))2 =D (X )Cov (X ,Y ) = E (XY ) − E (X )E (Y )D (X +Y ) = D (X ) + D (Y )D (X ) =E (X 2 ) − [E (X )]2当X 与Y 独立时,E (XY ) = E (X )E (Y )Φ(a ) = 1− Φ(−a ) E (X +Y ) = E (X ) + E (Y )E (X ) = ∫ ∫ xf (x , y )dxdyn ⎠ n ⎠ n ⎠σ2 1 + 2 n 1 n 2 σ2 σ / n(x 1 − x 2 )± z α/ 2 2 2 ⎜ χ χ ⎛ ⎜ ⎟12x ± z样本方差的分布:正态总体方差的区间估计 两个正态总体均值差的置信区间(n −1)S 2 ~ χ2 (n −1) X − µ~ t (n −1) 大样本或正态小样本且方差已知σ2两个正态总体的方差之比⎛⎜ ⎜ ⎝S 2 / S 2两个正态总体方差比的置信区间1 2~ F (n 1 −1,σ2 /σ2n 2 −1)2 / S 2 , 2 / S 2⎞ ⎝ F α/ 2 (n 1 −1,n 2 −1) F α/ 2 (n 1 −1,n 2 −1) ⎠第六章点估计:参数的估计值为一个常数矩估计 最大似然估计n似然函数第七章假设检验的步骤1 根据具体问题提出原假设 H0 和备择假设 H12 根据假设选择检验统计量,并计算检验统计值3 看检验统计值是否落在拒绝域,若落在拒绝域则L = Π i =1f (x i ;θ)L = Π i =1p (x i ;θ)拒绝原假设,否则就不拒绝原假设。

概率论与统计学公式总结【已整理 可直接打印】

概率论与统计学公式总结【已整理可直接打印】1. 概率公式概率 P(A) = n(A) / n(S),其中 n(A) 表示事件 A 发生的次数,n(S) 表示样本空间中所有可能事件发生的次数。

2. 条件概率公式事件 B 在事件 A 已经发生的条件下发生的概率,表示为P(B|A),计算公式为P(B|A) = P(A∩B) / P(A),其中P(A∩B) 表示事件 A 和事件 B 同时发生的概率。

3. 独立事件公式如果事件 A 和事件 B 相互独立,则事件 A 发生与否不会对事件 B 发生的概率产生影响,表示为P(A∩B) = P(A) * P(B)。

4. 期望值公式离散型随机变量 X 的期望值E(X) = ΣxP(X=x),其中 x 表示可能的取值,P(X=x) 表示 X 取值为 x 的概率。

5. 方差公式离散型随机变量 X 的方差Var(X) = Σ(x-E(X))^2 * P(X=x),其中 x 表示可能的取值,E(X) 表示随机变量 X 的期望值。

6. 正态分布公式正态分布的概率密度函数为f(x) = (1 / (σ * √(2π))) * exp(-(x-µ)^2 / (2σ^2)),其中 µ表示均值,σ 表示标准差。

7. 中心极限定理对于一个总体中的任意样本,样本均值的分布接近正态分布,当样本容量足够大时,均值的分布越接近正态分布。

8. 置信区间公式无偏样本的均值x的置信水平为 1-α 的置信区间为 [x - Z * (σ/√n), x + Z * (σ/√n)],其中x表示样本均值,Z 表示标准正态分布的分位数,σ 表示总体标准差,n 表示样本容量。

9. 假设检验公式在给定总体参数假设的条件下,进行样本均值的假设检验,计算统计量的值,与临界值进行比较,判断是否拒绝原假设。

10. 线性回归公式通过最小二乘法确定线性回归方程,表示为y = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ,其中 y 表示因变量,x₁, x₂, ..., xₙ 表示自变量,β₀, β₁, β₂, ..., βₙ 表示回归系数。

概率论与数理统计知识点总结

(2)定理法:
当Y=g(X)严格单调并且可导时:
其中h’(y)是g(x)的反函数
第三章 二维随机变量及其分布
(1)联合分布
离散型
如果二维随机向量 (X,Y)的所有可能取值为至多可列个有序对(x,y),则称 为离散型随机量。
设 =(X,Y)的所有可能取值为 ,且事件{ = }的概率为pij,,称
为 =(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示:
设离散型随机变量 的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为
P(X=xk)=pk,k=1,2,…,
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:
(1) , ,(2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有
-A称为事件A的逆事件,或称A的对立事件,记为 。它表示A不发生的事件。互斥未必对立。
②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C
分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
德摩根率: ,
(7)概率的公理化定义
设 为样本空间, 为事件,对每一个事件 都有一个实数P(A),若满足下列三个条件:
泊松分布
设随机变量 的分布律为
, , ,
则称随机变量 服从参数为 的泊松分布,记为 或者P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
几何分布
,其中p≥0,q=1-p。
随机变量X服从参数为p的几何分布,记为G(p)。

概率论与数理统计完整公式以及各知识点梳理精编版


x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
5° P(X x) F(x) F(x 0) 。
对于离散型随机变量, F(x) pk ; xk x
x
对于连续型随机变量, F (x) f (x)dx 。
0-1 分布
P(X=1)=p, P(X=0)=q
用 p 表示每次试验 A 发生的概率,则 A 发生的概率为1 p q ,用 Pn(k) 表
示 n 重伯努利试验中 A 出现 k(0 k n) 次的概率,
C Pn(k)
k n
pk qnk

k

0,1,2,, n

第二章 随机变量及其分布
(1)离散 型随机变 量的分布

设离散型随机变量 X 的可能取值为 Xk(k=1,2,…)且取各个值的概率,即事
1° f (x) 0 。

f (x)dx 1


(3)离散 与连续型 随机变量 的关系
P(X x) P(x X x dx) f (x)dx
积分元 f (x)dx 在连续型随机变量理论中所起的作用与 P( X xk) pk 在离
散型随机变量理论中所起的作用相类似。
表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
1
……………………………………………………………最新资料推荐…………………………………………………
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发生,
称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
来自二:概率的定义及其确定方法
定义设Ω为一个样本空间, ℱ 为Ω的某些子集组成的一个事件域, 如果对任意时间 A∈ℱ , 定义在ℱ 上的一个实值函数 P(A)满足:(1)非负性公理(2)正则性公理(3)可列可加性 公理。则称 P(A)为事件 A 的概率,称三元素(Ω,ℱ ,P)为概率空间。
三:概率的性质
概率论与数理统计教程期中总结
第一章随机事件和概率
一:随机运算及其事件
在一定的条件下,并不总是出现相同结果的现象称为随机现象。确定性现象:只有一个 结果的现象称为确定性现象。 随机现象的一切可能基本结果组成的集合称为样本空间,记为Ω = {ω},其中ω表示基 本结果,又称为样本点。将样本点的个数有限个或可列个的情况归为一类,称为离散样本空 间;将样本点个数不可列或无限个的情况归为另一类,称为连续样本空间。 随机现象的某些样本点组成的集合称为随机事件,简称事件,常用大写字母表示。由样 本空间Ω中的单个元素称为基本事件, 而样本空间Ω的最大子集称为必然事件, 样本空间Ω的 最小子集称为不可能事件。 用来表示随机现象结果的变量称为随机变量,常用大写字母 X,Y,Z 表示 事件的关系包含: 若事件 A 发生必然导致事件 B 发生, 则称 B 包含 A, 记为 BA 或 AB。 相等:若 AB 且 AB 则称事件 A 与事件 B 相等,记为 A=B。互不相容:如果 A,B 两事 件不能同时发生, 即 AB=Φ , 则称事件 A 与事件 B 是互不相容事件或互斥事件。 交: A∩B; 并: A∪B; 差: A-B。 对立事件: 事件 A 的对立事件, 记为������。 交换律: A∪B=B∪A, AB=BA; 结合律:A∪(B∪ C)=(A∪B)∪C=A∪B∪C;分配律:A∪(B∩C)=(A∪B)∩(A∪C);德摩 根律:������ ∪ ������ = ������ ∩ ������������ ∩ ������ = ������ ∪ ������。 事件域: 设Ω为一样本空间, ℱ 为Ω的某些子集所组成的集合类, 如果ℱ 满足: (1) Ω ∈ ℱ, ∞ (2) 若A ∈ ℱ, 则对立事件������ ∈ ℱ (3) 若������������ ∈ ℱ,n = 1,2, … ,则可列并 ������ =1 ������������ ∈ ℱ.则称ℱ 为 一个事件域。
二:随机变量的数学期望
设离散随机变量 X 的分布列为������������ = ������ ������������ = P X = ������������ ,i=1,2,3,…,n,…。如果 ������ ������ ������ =1 ������������ ������ ������������ < ∞,则称 E(X)= ������ =1 ������������ ������ ������������ 为随机变量 X 的数学期望,或称该分布列的数 ∞ 学期望, 简称期望或均值。 设连续随机变量 X 的密度函数为 p (x) .如果E X = ∫−∞ |������|������(������)������������ < ∞ ∞,则称E X = ∫−∞ ������������(������)������������为 X 的数学期望,或称为该分布 p(x)的数学期望,简称期望 或均值。 若随机变量 X 的分布用分布列p xi 或用密度函数p(x)表示,则 X 的某一函数 g(X) i g xi p xi ,在离散场合 的数学期望为E ������ ������ = ∞ 。 性质 1) 若 c 是常数, 则 E(c)=c。 2) ∫−∞ g x p x ,在连续场合 对任意常数 a,有 E(aX)=aE(X)。3)对任意两个函数������1 ������ 和������2 ������ 有,E ������1 ������ ± ������2 ������ E ������1 ������ ± E ������2 ������ 。 =
3) 设������1 , ������2 , … , ������������ 为样本空间Ω的一个分割即������1 , ������2 , … , ������������ 互不相容, 且 ������ ������ =1 ������������ = Ω,如果 ������ P(������������ )>0,则对任一事件 A 有 P(A)= ������ =1 ������ ������������ ������(������|������������ ). 4)贝叶斯公式设������1 , ������2 , … , ������������ 是样本空间的一个分割,即������1 , ������2 , … , ������������ 互不相容,且 ������ ������ =1 ������������ = Ω,若 P(A)>0,P(������������ )>0 ,则 P ������������ ������ =
期望
p np λ ������ ������
方差
p(1 − p) np(1 − p) λ nM(N − M)(N − n) ������ 2 (������ − 1) 1−p ������2 ������ 1−p ������2 σ2 (b − a)2 12 1 ������2 α ������2 2n
1) P ∅ = 0; 2)有限可加性:若有限个事件������������ ,i∈N,互不相容,则有
������ ������
P
������ =1
������������ =
������ =1
������(������������ )
3)对任意时间·任一事件 A,有P ������ = 1 − P(A) 4)若 A⊃B,则 P(A-B)=P(A)-P(B)。 5)对任意两个事件 A,B,有 P(A-B)=P(A)-P(AB) 6)对任意两个事件 A,B,有 P(A∪B)=P(A)+P(B)-P(AB) 7)若 P 为事件域ℱ 上的概率,则 P 既是下连续的,又是上连续的 8)若 P 是ℱ 上满足 P(Ω)=1 的非负集合函数,则它具有可列可加性的充要条件是(1) 它是有限可加的:(2)它是下连续的。
������ ������ =1 ������
������ ������������ ������ (������ |������������ )
������������ ������ (������ |������������ )
, i=1,2,…,n.
五:独立性
定义如果式 P(AB)=P(A)P(B)成立,则称事件 A 与 B 相互独立,简称 A 与 B 独立.否则 称 A 与 B 不独立或相依. 试验的独立性设有两个试验 E 和 F,假如试验 E 的任一结果(事件)与试验 F 的任一结 果(事件)都是相互独立的事件,则称这两个试验相互独立.如果在 n 重独立重复试验中, 每次试验的可能结果为两个:A 或������,则称这种试验为 n 重伯努利试验. -----------------------------------------------------------------------------------------------------------------
三:随机变量的方差与标准差
若随机变量������ 2 的数学期望为 E(������ 2 )存在在,则称偏差平方 ������ − ������������ 2 的数学期望 ������ ������ − ������������ 2 为随机变量 X(或相应分布)的方差,记为Var X = ������ ������ − ������ (������) 2 = i ������������ − ������ (������) p xi ,在离散场合 ,称方差的正平方根 Var X 为随机变量 X(或相应分 ∞ ∫−∞ ������ − ������ (������) p x dx,在连续场合 布)的标准差。性质:1)Var X = E ������ 2 − [������ ������ ]2 。2)常数的方差为 0.即 Var(c)=0, 其中 c 是常数。3)若 a,b 是常数,则Var(aX + b) = ������2 ������������������(������). 切比雪夫不等式设随机变量 X 的数学期望和方差都存在,则对任一常数ε > 0有
四:条件概率
定义设 A 与 B 是样本空间Ω中的两事件,若 P(B)>0,则称P A B =
������ (������������ ) ������ (������ )
为“在 B 发生下 A
的条件概率”,简称条件概率。 性质 1)条件概率是概率,即若设 P(B)>0,则(1)P(A|B)≥0,A∈ℱ(2)P(Ω|B)=1(3) ∞ 若ℱ 中的������1 , ������2 , … , ������������ , …互不相容,则 P( ∞ ������ =1 ������������ ������ = ������ =1 ������ (������������ |������). 2)若 P(B)>0,则 P(AB)=P(B)P(A|B).
四:常用概率分布及其数学期望和方差 分布 分布列������������ 分布密度������(������)
0-1 分布 二项分布 b(n, p) 泊松分布 P(λ) 超几何分布 h(n, N, M) ������������ = ������������ = (1 − ������)1−������ , k=0,1 ������ ������ ������ (1 − ������)������ , ������ = 0,1, … , ������ ������ ������������ = ������ ������������ = ������ ������������ −������ ������ , k = 0,1, … ������! ������ − ������ ������ − ������ , k = 0,1, … , r ������ ������ = ������������������ ������, ������ ������
相关文档
最新文档