单片机的基本构造

合集下载

单片机的构造

单片机的构造

单片机的构造
单片机是一种微型计算机,它通常由以下几个部分组成:
1.中央处理器(CPU):CPU是单片机的核心部分,用于
执行各种指令和控制单片机的各种操作。

它包括运算器和控制器,其中运算器是用于对数据进行运算和处理,控制器则是用于发布命令和协调整个单片机系统的操作。

2.存储器:单片机需要存储各种程序和数据,因此需要包
含各种存储器,例如程序存储器(ROM)用于存储程序代码、数据存储器(RAM)用于存储变量和临时数据、闪存存储器(Flash)用于存储程序和数据的更新等。

3.输入/输出接口:单片机需要与外部设备进行通信和控
制,因此需要包含各种输入/输出接口,例如通用输入/输出口(GPIO)用于连接外部设备、模拟输入/输出口用于连接模拟传感器和执行器、串口、SPI、I2C等通信接口用于与其他设备进行通信等。

4.定时器和中断控制器:为了实现定时和中断控制,单片
机还需要包含定时器和中断控制器。

其中定时器可以用来产生定时信号或计时,中断控制器则可以用来控制中断的响应和处理。

除了以上几个部分,单片机还可能包含其他功能模块,例如
模数转换器、数模转换器、调制解调器等,具体结构和功能会根据单片机的型号和应用场景有所不同。

单片机结构与原理

单片机结构与原理
5.1 单片机结构
5. 1. 1 标准型单片机的组成及结构
外部中断源
中断控制
程序 存储器
内部中断源
CPU
数据 存储器
总线控制
定时器2 定时器1 定时器0
计数器 输入
内部总线
振荡器
看门狗
SPI 串行端口
I/O端口
UART 串行端口
MISO MOSI CLK P0 P2 P1 P3 TXD RXD 地址/ 数据
5.5.1 复位和复位电路
复位是单片机的初始化操作,单片机在启动运 行时,都需要先复位,它的作用是使CPU和系统中 其他部件都处于一个确定的初始状态,并从这个状 态开始工作。
1. 内部复位信号的产生
RST/VPD
施密特触发器
内部复 位电路
89S51
图5.11复位电路原理图
2. 复位状态
复位后,PC初始化为0,于是单片机自动从0单 元开始执行程序。复位后片内各专用寄存器的 状态如表3-9所示,表中X为不定数 。
图5.8 P1口某位结构
5.4.3 P2口
1.P2口位电路结构 2.工作原理 P2口作输出 ,可作
为高8位地址线 1)P2口作为输入 2)作通用I/O口
图5.9 P2口某位结构来自5.4.4 P3口1.P3口位电路结构
2. 工作原理 1)作为通用I/O 2)作为第2功能引脚 (见书中表2-8)
(详见第7章)。
(2)GF1和GF0:通用标志位。用户用软件置、复位。
(3)PD:掉电方式位。若PD=1,进入掉电工作方式。
(4)IDL:待机方式位。若IDL=1,进入待机工作方式。
5.6.2 待机方式
1.待机方式的工作特点 2.单片机进入待机方式的方法 向PCON中写一个字节,使IDL=1 3.单片机终止待机方式的方法 通过硬件复位 通过中断方法

51单片机的基本结构

51单片机的基本结构

51单片机的基本结构51单片机是一种高性能、低功耗的微控制器,是嵌入式系统中常用的一种芯片。

它具有集成度高、易编程、可编程性强等特点,在各种电子设备中广泛应用,包括家电、工业控制、汽车电子、智能仪器等领域。

51单片机的基本结构主要包括CPU、存储器、输入输出端口、定时计数器和串口通信等部分。

1.CPU51单片机的CPU是其核心部分,负责执行指令、进行运算处理。

它通常采用哈佛结构,即指令和数据分开存储。

51单片机的CPU主要由ALU (算术逻辑单元)、寄存器组、指令寄存器、程序计数器等部分组成,能够完成基本的运算和控制功能。

2.存储器51单片机的存储器包括ROM(只读存储器)和RAM(随机存储器)。

ROM用于存储程序代码和常量数据,是只读的;RAM用于存储变量数据和临时结果,是可读写的。

在51单片机中,通常ROM用于存储程序代码和初始化数据,RAM用于存储运行时数据和临时结果。

3.输入输出端口51单片机的输入输出端口用于与外部设备进行数据交换。

它可以通过不同的接口与外部设备连接,比如并行口、串行口、通用输入输出口等。

通过输入输出端口,51单片机可以与外部设备进行数据传输和通信,实现各种功能。

4.定时计数器51单片机的定时计数器可以用于计时和计数,通常用于控制时序和频率。

在51单片机中,定时计数器可以生成各种定时中断,实现定时控制功能。

定时计数器可以根据需要设定不同的时钟源和计数模式,实现灵活的定时控制。

5.串口通信51单片机的串口通信功能可以用于与外部设备进行串行通信,比如与PC机、外围设备等进行数据传输。

串口通信包括串行口和UART(通用异步收发器),可以通过串行口进行双向数据传输。

串口通信在51单片机中广泛应用于各种通信设备和控制系统中。

总的来说,51单片机的基本结构包括CPU、存储器、输入输出端口、定时计数器和串口通信等部分,通过这些部分的组合和协作,可以实现各种功能和应用。

在实际应用中,设计人员可以根据需要对这些部分进行配置和扩展,实现更丰富的功能和性能要求。

8位单片机结构

8位单片机结构

8位单片机结构8位单片机是一种常见的嵌入式微控制器,它具有8位宽的数据总线和地址总线,适用于各种控制和嵌入式系统。

本文将介绍8位单片机的结构,包括其组成部分和功能。

一、概述8位单片机由中央处理器(CPU)、存储器、输入输出(I/O)接口、定时器和串行通信接口等组成。

它可以执行各种指令,控制外围设备的操作,并处理数据。

二、中央处理器8位单片机的中央处理器通常采用精简指令集计算机(RISC)架构,具有较小的指令集和较短的指令周期。

它包括指令寄存器、程序计数器、算术逻辑单元(ALU)和状态寄存器等组件。

三、存储器8位单片机的存储器包括程序存储器和数据存储器。

程序存储器用于存储程序代码,数据存储器用于存储数据。

它们可以是闪存、EPROM、RAM等不同类型的存储器。

四、输入输出接口8位单片机的输入输出接口可以连接各种外围设备,如按键、LED、LCD、温度传感器等。

它们通过引脚与外围设备进行通信,并提供数据输入和输出的功能。

五、定时器8位单片机的定时器用于生成精确的时间延迟和定时事件。

它可以用于计时、脉冲宽度调制(PWM)、频率测量等应用。

定时器通常包括计数器和控制寄存器。

六、串行通信接口8位单片机的串行通信接口用于与其他设备进行通信,如串口通信、SPI(串行外围接口)通信、I2C(两线制串行通信)通信等。

它可以实现数据的发送和接收。

七、应用领域8位单片机广泛应用于各种控制和嵌入式系统,如家电控制、工业自动化、电子仪器、车载电子等。

它具有体积小、功耗低、成本低等优点,适合于资源受限的应用场景。

八、发展趋势随着技术的不断发展,8位单片机的性能不断提升,功能越来越强大。

同时,它也面临着来自32位单片机和ARM处理器等竞争对手的挑战。

总结:8位单片机是一种常见的嵌入式微控制器,具有8位宽的数据总线和地址总线。

它由中央处理器、存储器、输入输出接口、定时器和串行通信接口等组成。

它广泛应用于各种控制和嵌入式系统,并具有体积小、功耗低、成本低等优点。

单片机的基本组成

单片机的基本组成

单片机的基本组成单片机是一种集成电路,具有微处理器、存储器、输入输出接口以及时钟电路等基本组成部分。

它被广泛应用于各种电子设备中,如手机、电视、汽车等。

本文将从以下几个方面介绍单片机的基本组成。

一、微处理器微处理器是单片机的核心部件,它负责处理各种指令和数据。

微处理器通常由控制单元和算术逻辑单元组成。

控制单元负责从存储器中获取指令,并根据指令控制执行的操作。

算术逻辑单元则负责执行各种运算和逻辑操作。

微处理器的性能通常由其主频、指令集和位数决定。

二、存储器存储器用于存储程序和数据。

单片机的存储器分为程序存储器和数据存储器两种。

程序存储器用于存储程序代码,常见的有闪存和EEPROM。

数据存储器则用于存储数据,包括RAM和寄存器。

RAM 是一种易失性存储器,用于临时存储数据。

而寄存器则是一种特殊的存储器,用于存储微处理器的状态和临时数据。

三、输入输出接口输入输出接口用于与外部设备进行数据交互。

单片机的输入输出接口可以连接各种传感器、执行器和其他外部设备。

常见的输入接口有模拟输入和数字输入,常见的输出接口有数字输出和模拟输出。

输入输出接口通常由引脚和相关电路组成,可以通过编程控制引脚的状态和电平,实现与外部设备的通信。

四、时钟电路时钟电路用于提供单片机的时钟信号,控制单片机的运行速度。

时钟信号可以是外部时钟源输入,也可以是内部时钟源产生。

时钟信号的频率决定了单片机的工作速度,常见的频率有8MHz、16MHz 等。

时钟电路还可以包括定时器和计数器,用于实现定时、计数等功能。

五、其他辅助电路除了上述基本组成部分,单片机还可能包括其他辅助电路,如复位电路、电源管理电路等。

复位电路用于在上电或复位时将单片机恢复到初始状态,以确保可靠的启动。

电源管理电路用于管理单片机的电源供给,包括电源开关、电源监测和电源管理等功能。

单片机的基本组成包括微处理器、存储器、输入输出接口、时钟电路以及其他辅助电路。

这些组成部分协同工作,实现了单片机的各种功能和应用。

单片机的结构及工作原理

单片机的结构及工作原理

单片机的结构及工作原理
单片机是一种集成电路芯片,它由CPU核心、存储器、I/O端口、定时器/计数器、中断控制器以及其他外围电路组成。

单片机的工作原理如下:
1. 开机复位:单片机通电后,会执行复位操作。

当复位信号触发时,CPU会跳转到预定的复位向量地址,开始执行复位操作。

2. 初始化:执行复位操作后,单片机会进行初始化。

这包括设置输入/输出端口的初始状态、初始化定时器和计数器等。

3. 执行指令:一旦初始化完成,单片机会开始执行存储器中的指令。

指令通常存储在Flash存储器中,单片机会按照程序计
数器(PC)的值逐条执行指令。

4. 控制流程:单片机执行程序时会根据条件跳转、循环、分支等控制流程操作来改变指令执行顺序。

5. 处理输入输出:单片机可以从外部设备(如传感器、键盘等)读取输入信号,并根据程序逻辑给出相应的输出信号。

6. 中断处理:单片机具有中断控制功能,可以在特定条件下立即中断当前程序,并执行中断服务程序。

中断通常用于及时响应外界事件。

7. 系统时钟:单片机需要一个时钟源来同步指令和数据的处理。

时钟源可以是外部晶振、内部振荡器或者其他时钟源,它们提供基准频率给单片机。

单片机的工作基于时钟信号和电压供应,控制执行指令、处理输入输出等任务。

通过程序设计和外部电路连接,单片机可以应用于各种领域,如家用电器、自动化控制、通信等。

(完整版)单片机的基本组成

(完整版)单片机的基本组成

单片机的基本组成在讲单片机的组成之前我们先来说一下大家都熟知的计算机一、计算机的经典结构在设计计算机时匈牙利籍数学家冯.诺依曼提出的“程序存储”和“二进制运算”的思想。

1、二进制运算决定了计算机的硬件结构。

二进制运算包括二进制算术运算和逻辑运算(逻辑运算的基础是逻辑代数,又称布尔代数)。

逻辑量只表示两种不同的状态,可以对应电子线路中的电阻高低、二极管、三极管的通断等。

因此,二进制运算决定了计算机可以由电子元器件,特别是集成电路组成。

2、程序存储决定了软件控制硬件工作。

因此,计算机的基本结构包括硬件和软件两部分。

计算机的工作原理:由输入设备将软件送入存储器,然后由控制器逐条取出存储器中的控制软件,并运行,再将运行结果送到输出设备。

3、计算机的经典结构根据以上思路,计算机由运算器、控制器、存储器和输入设备、输出设备组成。

图1.1.1 计算机经典结构图对经典结构中各部分有机组合,就构成了微型计算机。

由于各部分的具体电路(元器件及元器件的组合方式)不同,又形成了各种应用形态。

二、微型计算机(Microcomputer)组成及应用形态1、微型计算机组成将经典结构中的运算器、控制器组合在一起,再增加一些寄存器等,集成为一个芯片,这个芯片称为微处理器(Microcontroller),即CPU(Center Processing Unit )。

这样微型计算机就由CPU、存储器、输入/输出(I/O)接口组成。

再配以输入/输出(I/O)设备和软件,就构成了微型计算机应用系统,简称微型计算机。

图1.1.2 微型计算机系统结构图2、应用形态(1)系统机(多版机)微处理器CPU、存储器、I/O端口电路和总线接口等组装在一块主板上,再通过系统总线和外设适配卡连接键盘、显示器、打印机等,再配上系统软件就构成了一个完整的计算机系统。

图1.1.3 微型计算机结构图这就是办公室、家庭使用的PC机的典型形态。

由于较大的存储容量(存储器、硬盘、软盘、光盘等),输入、输出设备齐全,而且软件丰富(系统软件和应用软件),能够进行海量计算和应用系统开发。

单片机内部主要部件

单片机内部主要部件

1.2 单片机内部主要部件单片机内部电路比较复杂,MCS-51系列的8051型号单片机的内部电路根据功能可以分为CPU、RAM、ROM/EPROM、并行口、串行口、定时/计数器、中断系统及特殊功能寄存器(SFR)等8个主要部件,如图1-2-1所示。

这些部件通过片内的单一总线相连,采用CPU加外围芯片的结构模式,各个功能单元都采用特殊功能寄存器集中控制的方式。

其他公司的51系列单片机与8051结构类似,只是根据用户需要增加了特殊的部件,如A/D转换器等。

在设计程序过程中,寄存器的使用非常频繁。

本节内容在了解单片机内部的组成机构基础上,重点介绍单片机内部常用的寄存器的作用。

图1-2-1 MCS-51架构1.2.1中央处理器(CPU)中央处理器是单片机的核心,主要功能是产生各种控制信号,根据程序中每一条指令的具体功能,控制寄存器和输入/输出端口的数据传送,进行数据的算术运算、逻辑运算以及位操作等处理。

MCS-51系列单片机的CPU字长是8位,能处理8位二进制数或代码,也可处理一位二进制数据。

单片机的CPU从功能上一般可以分为运算器和控制器两部分。

一、控制器控制器由程序计数器PC、指令寄存器、指令译码器、定时控制与条件转移逻辑电路等组成。

其功能是对来自存储器中的指令进行译码,通过定时电路,在规定的时刻发出各种操作所需的全部内部和外部的控制信号,使各部分协调工作,完成指令所规定的功能。

各部分功能部件简述如下。

1.程序计数器PC(Program Counter)程序计数器是一个16位的专用寄存器,用来存放下一条指令的地址,具有自动加1的功能。

当CPU要取指令时,PC的内容送地址总线上,从存储器中去取出一个指令码后,PC 内容自动加1,指向下一个指令码,以保证程序按顺序执行。

PC是用来指示程序的执行位置,在顺序执行程序时,单片机每执行一条指令,PC就自动加1,以指示出下一条要取的指令的存储单元的16位地址。

也就是说,CPU总是把PC 的内容作为地址,根据该地址从存储器中取出指令码或包含在指令中的操作数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机的基本构造
单片机的基本构造主要包括以下几个部分:
1.中央处理器:中央处理器或CPU是单片机的大脑。

它由算术逻辑单元(ALU)和控制单元(CU)组成。

CPU读取、解码和执行指令以执行算术、逻辑和数据传输操作。

2.存储单元:任何计算系统都需要两种类型的存储器:程序存储器和数据存储器。

程序存储器,顾名思义,包含程序,即要由CPU执行的指令。

另一方面,数据存储器需要在执行指令时存储临时数据。

通常,程序存储器是只读存储器或ROM,数据存储器是随机存取存储器或RAM。

3.输入/输出端口:单片机与外部世界的接口由I/O端口或输入/输出端口提供。

开关、键盘等输入设备以二进制数据的形式从用户向CPU提供信息。

CPU在接收到来自输入设备的数据后,执行适当的指令并通过LED、显示器、打印机等输出设备做出响应。

此外,单片机还可能包括其他一些部件,如时钟电路、复位电路等。

具体来说,单片机是在一块集成电路芯片上装有CPU和程序存储器、数据存储器、输入/输出接口电路、定时/计数器、中断控制器、模/数转换器、数/模转换器、调制解调器以及其他部件等的系统。

以上信息仅供参考,建议咨询专业人士获取更多有关单片机的构造方面的知识。

相关文档
最新文档