安徽省黄山市屯溪一中歙县中学休宁中学联考2015年高考数学模拟试卷文科

合集下载

2015年安徽省高考数学试题及答案(文科)【解析版】

2015年安徽省高考数学试题及答案(文科)【解析版】

2015年安徽省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(安徽卷)数学(文科)1.(5分)(2015?安徽)设i是虚数单位,则复数(1﹣i)(1+2i)=()A .3+3i B.﹣1+3i C.3+i D.﹣1+i【答案】C.【解析】复数(1﹣i)(1+2i)=1+2﹣i+2i=3+i.2.(5分)(2015?安徽)设全集U={1,2,3,4,5,6}A={1,2},B={2,3,4},则A∩(?R B)=()A .{1,2,5,6} B.{1} C.{2} D.{1,2,3,4}【答案】B.【解析】?R B={1,5,6};∴A∩(?R B)={1,2}∩{1,5,6}={1}.3.(5分)(2015?安徽)设p:x<3,q:﹣1<x<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C【解析】设p:x<3,q:﹣1<x<3,则p成立,不一定有q成立,但是q成立,必有p成立,所以p是q成立的必要不充分条件..4.(5分)(2015?安徽)下列函数中,既是偶函数又存在零点的是()A .y=lnx B.y=x2+1 C.y=sinx D.y=cosx【答案】D【解析】对于A,y=lnx定义域为(0,+∞),所以是非奇非偶的函数;对于B,是偶函数,但是不存在零点;对于C,sin(﹣x)=﹣sinx,是奇函数;对于D,cos(﹣x)=cosx,是偶函数并且有无数个零点;5.(5分)(2015?安徽)已知x,y满足约束条件,则z=﹣2x+y的最大值是()A .﹣1 B.﹣2 C.﹣5 D.1【答案】A.【解析】由已知不等式组表示的平面区域如图阴影部分,当直线y=2x+z经过A时使得z最大,由得到A(1,1),所以z的最大值为﹣2×1+1=﹣1;6.(5分)(2015?安徽)下列双曲线中,渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.x2﹣=1D.﹣y2=1【答案】A.【解析】由双曲线方程﹣=1(a>0,b>0)的渐近线方程为y=±x,由A可得渐近线方程为y=±2x,由B可得渐近线方程为y=±x,由C可得渐近线方程为y=x,由D可得渐近线方程为y=x.7.(5分)(2015?安徽)执行如图所示的程序框图(算法流程图),输出的n为()A .3 B.4 C.5 D.6【答案】B.【解析】模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.8.(5分)(2015?安徽)直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相切,则b=()A .﹣2或12 B.2或﹣12 C.﹣2或﹣12 D.2或12【答案】D.【解析】x2+y2﹣2x﹣2y+1=0可化为(x﹣1)2+(y﹣1)2=1∵直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相切,∴圆心(1,1)到直线的距离d==1,解得:b=2或12.9.(5分)(2015?安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A .1+B.1+2C.2+D.2【答案】C.【解析】可画出立体图形为∴三棱锥O﹣ABC,OE⊥底面ADC,EA=ED=1,OE=1,AB=BC=∴AB⊥BC,∴可判断;△OAB≌△OBC的直角三角形,S△OAC=S△ABC==1,S△OAB=S△OBC=×2=该四面体的表面积:2,10.(5分)(2015?安徽)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0 B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0 D.a>0,b>0,c>0,d<0【答案】A【解析】f(0)=d>0,排除D,当x→+∞时,y→+∞,∴a>0,排除C,函数的导数f′(x)=3ax2+2bx+c,则f′(x)=0有两个不同的正实根,则x1+x2=﹣>0且x1x2=>0,(a>0),∴b<0,c>0,二、填空题11.(3分)(2015?安徽)lg+2lg2﹣()﹣1=.【答案】-1.【解析】原式=lg5﹣lg2+2lg2﹣2=lg5+lg2﹣2=lg10﹣2=1﹣2=﹣1;12.(3分)(2015?安徽)在△ABC中,AB=,∠A=75°,∠B=45°,则AC= .【答案】2.【解析】∠A=75°,∠B=45°,则∠C=180°﹣75°﹣45°=60°,由正弦定理可得,=,即有AC==2.13.(3分)(2015?安徽)已知数列{a n}中,a1=1,a n=a n﹣1+(n≥2),则数列{a n}的前9项和等于.【答案】27.【解析】∵a n=a n﹣1+(n≥2),∴a n﹣a n﹣1=(n≥2),∴数列{a n}的公差d=,又a1=1,∴a n=1+(n﹣1)=,∴S9=9a1+?d=9+36×=27,14.(3分)(2015?安徽)在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.【答案】.【解析】由已知直线y=2a是平行于x轴的直线,函数y=|x﹣a|﹣1的图象是折线,所以直线y=2a过折线顶点时满足题意,所以2a=﹣1,解得a=﹣;15.(3分)(2015?安徽)△ABC是边长为2的等边三角形,已知向量满足=2,=2+,则下列结论中正确的是.(写出所有正确结论得序号)①为单位向量;②为单位向量;③;④∥;⑤(4+)⊥.【答案】①④⑤【解析】△ABC是边长为2的等边三角形,已知向量满足=2,=2+,则=,AB=2,所以||=1,即是单位向量;①正确;因为=2,所以,故||=2;故②错误;④正确;夹角为120°,故③错误;⑤(4+)?=4=4×1×2×cos120°+4=﹣4+4=0;故⑤正确.三、解答题16.(2015?安徽)已知函数f(x)=(sinx+cosx)2+cos2x(1)求f(x)最小正周期;(2)求f(x)在区间上的最大值和最小值.【解析】(1)∵函数f(x)=(sinx+cosx)2+cos2x=1+sin2x+cos2x=1+sin(2x+),∴它的最小正周期为=π.(2)在区间上,2x+∈[,],故当2x+=时,f(x)取得最小值为1+×(﹣)=0,当2x+=时,f(x)取得最大值为1+×1=1+.17.(2015?安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【解析】(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,解得a=0.006;(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=.18.(2015?安徽)已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.【解析】(1)∵数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.∴a1+a4=9,a1a4=8.解得a1=1,a4=8或a1=8,a4=1(舍),解得q=2,即数列{a n}的通项公式a n=2n﹣1;(2)S n==2n﹣1,∴b n===﹣,∴数列{b n}的前n项和T n=+…+﹣=﹣=1﹣19.(2015?安徽)如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P﹣ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.(1)【解析】由题设,AB=1,AC=2,∠BAC=60°,可得S△ABC==.因为PA⊥平面ABC,PA=1,所以V P﹣ABC=?S△ABC?PA=;(2)【解析】过B作BN⊥AC,垂足为N,过N作MN∥PA,交PA于点M,连接BM,由PA⊥平面ABC,知PA⊥AC,所以MN⊥AC,因为BN∩MN=N,所以AC⊥平面MBN.因为BM?平面MBN,所以AC⊥BM.在直角△BAN中,AN=AB?cos∠BAC=,从而NC=AC﹣AN=.由MN∥PA得==.20.(2015?安徽)设椭圆E的方程为=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM 的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,﹣b),N为线段AC的中点,证明:MN⊥AB.【解析】(1)设M(x,y),∵A(a,0)、B(0,b),点M在线段AB上且|BM|=2|MA|,∴=2,即(x﹣0,y﹣b)=2(a﹣x,0﹣y),解得x=a,y=b,即M(a,b),又∵直线OM的斜率为,∴=,∴a=b,c==2b,∴椭圆E的离心率e==;(2)证明:∵点C的坐标为(0,﹣b),N为线段AC的中点,∴N(,﹣),∴=(,﹣),又∵=(﹣a,b),∴?=(﹣a,b)?(,﹣)=﹣a2+=(5b2﹣a2),由(1)可知a2=5b2,故?=0,即MN⊥AB21.(2015?安徽)已知函数f(x)=(a>0,r>0)(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)在(0,+∞)内的极值.【解析】(1)∵函数f(x)=(a>0,r>0),∴x≠﹣r,即f(x)的定义域为(﹣∞,﹣r)∪(﹣r,+∞).又∵f(x)==,∴f′(x)==,∴当x<﹣r或x>r时,f′(x)<0;当﹣r<x<r时,f′(x)>0;因此,f(x)的单调递减区间为:(﹣∞,﹣r)、(r,+∞),递增区间为:(﹣r,r);(2)由(1)的解答可得f′(x)=0,f(x)在(0,r)上单调递增,在(r,+∞)上单调递减,∴x=r是f(x)的极大值点,∴f(x)在(0,+∞)内的极大值为f(r)====1002015年安徽省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(安徽卷)数学(文科)1.(5分)(2015?安徽)设i是虚数单位,则复数(1﹣i)(1+2i)=()A .3+3i B.﹣1+3i C.3+i D.﹣1+i2.(5分)(2015?安徽)设全集U={1,2,3,4,5,6}A={1,2},B={2,3,4},则A∩(?R B)=()A .{1,2,5,6} B.{1} C.{2} D.{1,2,3,4}3.(5分)(2015?安徽)设p:x<3,q:﹣1<x<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.(5分)(2015?安徽)下列函数中,既是偶函数又存在零点的是()A .y=lnx B.y=x2+1 C.y=sinx D.y=cosx5.(5分)(2015?安徽)已知x,y满足约束条件,则z=﹣2x+y的最大值是()A .﹣1 B.﹣2 C.﹣5 D.16.(5分)(2015?安徽)下列双曲线中,渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.x2﹣=1D.﹣y2=17.(5分)(2015?安徽)执行如图所示的程序框图(算法流程图),输出的n为()A .3 B.4 C.5 D.68.(5分)(2015?安徽)直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相切,则b=()A .﹣2或12 B.2或﹣12 C.﹣2或﹣12 D.2或129.(5分)(2015?安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A .1+B.1+2C.2+D.210.(5分)(2015?安徽)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A .a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0C .a<0,b<0,c<0,d>0D.a>0,b>0,c>0,d<0二、填空题11.(3分)(2015?安徽)lg+2lg2﹣()﹣1=.12.(3分)(2015?安徽)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=.13.(3分)(2015?安徽)已知数列{a n}中,a1=1,a n=a n﹣1+(n≥2),则数列{a n}的前9项和等于.14.(3分)(2015?安徽)在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.15.(3分)(2015?安徽)△ABC是边长为2的等边三角形,已知向量满足=2,=2+,则下列结论中正确的是.(写出所有正确结论得序号)①为单位向量;②为单位向量;③;④∥;⑤(4+)⊥.三、解答题16.(2015?安徽)已知函数f(x)=(sinx+cosx)2+cos2x(1)求f(x)最小正周期;(2)求f(x)在区间上的最大值和最小值.17.(2015?安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.18.(2015?安徽)已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.19.(2015?安徽)如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P﹣ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.20.(2015?安徽)设椭圆E的方程为=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM 的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,﹣b),N为线段AC的中点,证明:MN⊥AB.21.(2015?安徽)已知函数f(x)=(a>0,r>0)(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)在(0,+∞)内的极值.。

【解析】安徽省黄山市屯溪一中2015届高三上学期第二次月考数学(文)试卷Word版含解析

【解析】安徽省黄山市屯溪一中2015届高三上学期第二次月考数学(文)试卷Word版含解析

2014-2015学年安徽省黄山市屯溪一中高三(上)第二次月考数学试卷(文科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|﹣2<x<4},B={y|y≤﹣1},则A∪B=()A.(﹣2,﹣1] B. [﹣1,4) C.∅ D.(﹣∞,4)2.复数z满足(2+i)z=﹣3+i,则z=()A. 2+i B. 2﹣i C.﹣1﹣i D.﹣1+i3.给定下列两个命题:①“p∨q”为真是“¬p”为假的必要不充分条件;②“∃x∈R,使sinx>0”的否定是“∀x∈R,使sinx≤0”.其中说法正确的是()A.①真②假 B.①假②真 C.①和②都为假 D.①和②都为真4.已知向量,,若与共线,则m的值为()A. B. 2 C. D.﹣25.某三棱锥的三视图如图所示,该三棱锥的体积是()A. B. 4 C. 2 D.6.已知抛物线y2=8x的焦点与双曲线的一个焦点重合,则该双曲线的离心率为()A. B. C. D. 37.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是()A.图象关于点(﹣,0)中心对称 B.图象关于x=﹣轴对称C.在区间[﹣,﹣]单调递增 D.在[﹣,]单调递减8.若实数x,y满足则的取值范围是()A. B. C. D.9.已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是() A.(﹣∞,0] B.(﹣∞,1] C. [﹣2,1] D. [﹣2,0]10.甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为,则下列判断正确的是()A.;甲比乙成绩稳定 B.;乙比甲成绩稳定C.;甲比乙成绩稳定 D.;乙比甲成绩稳定二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置)11.直线x﹣y+m=0与圆x2+y2﹣4x+2y=0的相切,则m= .12.已知角,且,则cos(π﹣α)= .13.在执行如图的程序框图时,如果输入N=6,则输出S= .14.已知定义在R上的函数f(x﹣1)的对称中心为(1,0),且f(x+2)=﹣f(x),当x ∈(0,1]时,f(x)=2x﹣1,则f(x)在闭区间[﹣2014,2014]上的零点个数为.15.给出以下四个结论:①函数f(x)=的对称中心是(﹣,﹣);②若不等式mx2﹣mx+1>0对任意的x∈R都成立,则0<m<4;③已知点P(a,b)与点Q(1,0)在直线2x﹣3y+1=0两侧,则2a+1<3b;④若将函数f(x)=sin(2x﹣)的图象向右平移Φ(Φ>0)个单位后变为偶函数,则Φ的最小值是.其中正确的结论是.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内)16.在△ABC中,角A,B,C所对的边分别是a,b,c,且(a﹣c)(sinA+sinC)=(a﹣b)sinB.(1)求角C的大小;(2)若a=5,c=7,求△ABC的面积.17.从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm 之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(Ⅰ)求第七组的频率;(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm以上(含180cm)的人数;(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x,y,事件E={|x﹣y|≤5},事件F={|x﹣y|>15},求P(E∪F).18.如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F 在CE上.(1)求证:DE⊥BE;(2)求四棱锥E﹣ABCD的体积;(3)设点M在线段AB上,且AM=MB,试在线段CE上确定一点N,使得MN∥平面DAE.19.已知函数(a为实常数).(1)当a=0时,求函数f(x)的最小值;(2)若函数f(x)在[2,+∞)上是单调函数,求a的取值范围.20.如图,椭圆C:+=1(a>b>0)的右焦点为F,右顶点、上顶点分别为点A、B,且|AB|=|BF|.(Ⅰ)求椭圆C的离心率;(Ⅱ)若斜率为2的直线l过点(0,2),且l交椭圆C于P、Q两点,OP⊥OQ.求直线l 的方程及椭圆C的方程.21.已知数列{c n}的前n项和S n满足:S1=5,S n+1=2S n+3n,又设a n=S n﹣3n,b n=1+2log2a n(n ∈N*)(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)若T n=b1a1+b2a2+…+b n a n,且T n≥m恒成立,求T n和常数m的范围;(Ⅲ)证明:对任意的n∈N*,不等式••…•>.2014-2015学年安徽省黄山市屯溪一中高三(上)第二次月考数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|﹣2<x<4},B={y|y≤﹣1},则A∪B=()A.(﹣2,﹣1] B. [﹣1,4) C.∅ D.(﹣∞,4)考点:并集及其运算.专题:集合.分析:由A与B,求出两集合的并集即可.解答:解:∵A=(﹣2,4),B=(﹣∞,﹣1],∴A∩B=(﹣∞,4).故选:D.点评:此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.复数z满足(2+i)z=﹣3+i,则z=()A. 2+i B. 2﹣i C.﹣1﹣i D.﹣1+i考点:复数代数形式的乘除运算.专题:计算题.分析:利用复数的除法运算法则即可求得(2+i)z=﹣3+i中的复数z.解答:解:∵(2+i)z=﹣3+i,∴z====﹣1+i,故选D.点评:本题考查复数的除法运算,将复数z=的分母实数化是关键,也可以设出复数z=a+bi(a,b∈R),利用两复数相等求得,属于基础题.3.给定下列两个命题:①“p∨q”为真是“¬p”为假的必要不充分条件;②“∃x∈R,使sinx>0”的否定是“∀x∈R,使sinx≤0”.其中说法正确的是()A.①真②假 B.①假②真 C.①和②都为假 D.①和②都为真考点:命题的真假判断与应用.专题:简易逻辑.分析:①“p∨q”为真,则p,q中至少有一个为真,推不出“¬p”为假;反之成立,由充分必要条件即可判断;②由存在性命题的否定是全称性命题,即可判断.解答:解:①“p∨q”为真,则p,q中至少有一个为真,推不出“¬p”为假;若“¬p”为假,则p为真,“p∨q”为真,故“p∨q”为真是“¬p”为假的必要不充分条件,故①正确;②“∃x∈R,使sinx>0”的否定是“∀x∈R,使sinx≤0”.故②正确.故选:D.点评:本题考查简易逻辑的基础知识:充分必要条件的判断和命题的否定,属于基础题.4.已知向量,,若与共线,则m的值为()A. B. 2 C. D.﹣2考点:平行向量与共线向量;平面向量的坐标运算.分析:先由向量的坐标运算表示出与,再根据向量共线定理的坐标表示可得答案.解答:解:由题意可知=m(2,3)+4(﹣1,2)=(2m﹣4,3m+8)=(2,3)﹣2(﹣1,2)=(4,﹣1)∵与共线∴(2m﹣4)×(﹣1)=(3m+8)×4∴m=﹣2故选D.点评:本题主要考查向量的坐标运算和共线定理.属基础题.5.某三棱锥的三视图如图所示,该三棱锥的体积是()A. B. 4 C. 2 D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图可知:该三棱锥的侧面PBC⊥底面ABC,PD⊥交线BC,AE⊥BC,且AE=3,PD=2,CD=3,DB=1,CE=EB=2.据此即可计算出其体积.解答:解:由三视图可知:该三棱锥的侧面PBC⊥底面ABC,PD⊥交线BC,AE⊥BC,且AE=3,PD=2,CD=3,DB=1,CE=EB=2.∴V P﹣ABC===4.故选B.点评:由三视图正确恢复原几何体是解题的关键.6.已知抛物线y2=8x的焦点与双曲线的一个焦点重合,则该双曲线的离心率为()A. B. C. D. 3考点:双曲线的简单性质;抛物线的简单性质.专题:计算题;压轴题.分析:先求出抛物线y2=8x的焦点坐标,由此得到双曲线的一个焦点,从而求出a的值,进而得到该双曲线的离心率.解答:解:∵抛物线y2=8x的焦点是(2,0),∴c=2,a2=4﹣1=3,∴e=.故选B.点评:本题考查双曲线的性质和应用,解题时要抛物线的性质进行求解.7.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是()A.图象关于点(﹣,0)中心对称 B.图象关于x=﹣轴对称C.在区间[﹣,﹣]单调递增 D.在[﹣,]单调递减考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质;简易逻辑.分析:根据函数图象的平移变换法则“左加右减,上加下减”,易得到函数y=sin2x的图象向左平移个单位后,得到的图象对应的函数解析式,然后利用函数的对称性,单调性判断选项即可.解答:解:函数y=sin2x的图象向左平移个单位,得到的图象对应的函数为y=sin2(x+)=sin(2x+).对于A,当x=﹣时,y=sin(﹣)≠0.图象不关于点(﹣,0)中心对称,∴A不正确;对于B,当x=﹣时,y=sin0=0,图象不关于x=﹣轴对称,∴B不正确对于C,y=sin(2x+)的周期是π.当x=时,函数取得最大值,x=﹣时,函数取得最小值,∵[﹣,﹣]⊂[﹣,],∴在区间[﹣,﹣]单调递增,∴C正确;对于D,y=sin(2x+)的周期是π.当x=时,函数取得最大值,∴在[﹣,]单调递减不正确,∴D不正确;故选:C.点评:本题考查的知识点是函数图象的平移变换,其中熟练掌握图象的平移变换法则“左加右减,上加下减”,是解答本题的关键8.若实数x,y满足则的取值范围是()A. B. C. D.考点:简单线性规划的应用.专题:数形结合.分析:本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与原点(﹣1,﹣3)构成的直线的斜率范围.解答:解:不等式组满足表示的区域如图,则的几何意义是可行域内的点与点(﹣1,﹣3)构成的直线的斜率问题.当取得点A(0,4)时,则的值为7,当取得点B(3,0)时,则的取值为,所以答案为,故选C.点评:本题利用直线斜率的几何意义,求可行域中的点与原点的斜率.本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.9.已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是() A.(﹣∞,0] B.(﹣∞,1] C. [﹣2,1] D. [﹣2,0]考点:其他不等式的解法.专题:压轴题;不等式的解法及应用.分析:由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.解答:解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D点评:本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.10.甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为,则下列判断正确的是()A.;甲比乙成绩稳定 B.;乙比甲成绩稳定C.;甲比乙成绩稳定 D.;乙比甲成绩稳定考点:茎叶图.专题:计算题;概率与统计.分析:由茎叶图,得出5场比赛甲、乙的得分,再计算平均数与方差,即可得到结论.解答:解:5场比赛甲的得分为16、17、28、30、34,5场比赛乙的得分为15、26、28、28、33∴=(16+17+28+30+34)=25,=(15+26+28+28+33)=26=(81+64+9+25+81)=52,=(121+4+4+49)=35.6∴,乙比甲成绩稳定故选D.点评:本题考查茎叶图、平均数及标准差等知识,考查计算能力.属基础题二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置)11.直线x﹣y+m=0与圆x2+y2﹣4x+2y=0的相切,则m= ﹣3.考点:圆的切线方程.专题:计算题;直线与圆.分析:利用直线x﹣y+m=0与圆x2+y2﹣4x+2y=0的相切,圆心到直线的距离等于半径,即可求出m的值.解答:解:圆x2+y2﹣4x+2y=0的圆心坐标为(2,﹣1),半径为因为直线x﹣y+m=0与圆x2+y2﹣4x+2y=0的相切,所以=,所以m=﹣3.故答案为:﹣3.点评:本题考查直线与圆的位置关系的应用,考查计算能力,比较基础.12.已知角,且,则cos(π﹣α)= .考点:同角三角函数间的基本关系;诱导公式的作用.专题:三角函数的求值.分析:由α的范围及tanα的值小于0,判断出cosα小于0,将所求式子利用诱导公式化简后,利用同角三角函数间的基本关系切化弦后,将tanα代入即可求出cosα的值.解答:解:∵α∈(,),tanα=﹣<0,∴α∈(,π),∴cosα<0,∴cos(π﹣α)=﹣cosα==.故答案为:点评:此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.13.在执行如图的程序框图时,如果输入N=6,则输出S= .考点:程序框图.专题:算法和程序框图.分析:执行程序框图,写出每一次循环k,S的值,当有k=6,第6次执行循环体,有S=1++++++,此时k<N不成立,从而输出S的值.解答:解:执行程序框图,有N=6,k=1,S=1第1次执行循环体,S=1+,k<N成立,有k=2,第2次执行循环体,S=1++k<N成立,有k=3,第3次执行循环体,S=1+++k<N成立,有k=4,第4次执行循环体,S=1++++k<N成立,有k=5,第5次执行循环体,S=1+++++k<N成立,有k=6,第6次执行循环体,S=1++++++=k<N不成立,输出S的值,故答案为:.点评:本题主要考察程序框图和算法,属于基础题.14.已知定义在R上的函数f(x﹣1)的对称中心为(1,0),且f(x+2)=﹣f(x),当x ∈(0,1]时,f(x)=2x﹣1,则f(x)在闭区间[﹣2014,2014]上的零点个数为6043 .考点:函数的周期性;根的存在性及根的个数判断.专题:函数的性质及应用.分析:分析函数的周期性和对称性,进而画出函数在一个周期上的图象,分析一个周期内零点的个数,进而得到f(x)在闭区间[﹣2014,2014]上的零点个数.解答:解:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),故函数f(x)是T=4的周期函数,又∵函数f(x﹣1)的对称中心为(1,0),∴函数f(x)的对称中心为(0,0),即函数f(x)为奇函数,∵当x∈(0,1]时,f(x)=2x﹣1,∴在一个周期[﹣2,2)上的图象如下图所示:由图可得在一个周期[﹣2,2)上函数有6个零点,故每个周期[4k﹣2,4k+2),k∈Z上函数都有6个零点,[﹣2014,2014)上共有[2014﹣(﹣2014)]÷4=1007个周期,故[﹣2014,2014)共有6×1007=6042个零点,由f(2014)=0,故f(x)在闭区间[﹣2014,2014]上的零点个数为6043,故答案为:6043点评:本题考查函数图象的作法,函数的周期性,函数的对称性,函数的零点,熟练作出函数的图象是解决问题的关键,属中档题.15.给出以下四个结论:①函数f(x)=的对称中心是(﹣,﹣);②若不等式mx2﹣mx+1>0对任意的x∈R都成立,则0<m<4;③已知点P(a,b)与点Q(1,0)在直线2x﹣3y+1=0两侧,则2a+1<3b;④若将函数f(x)=sin(2x﹣)的图象向右平移Φ(Φ>0)个单位后变为偶函数,则Φ的最小值是.其中正确的结论是③④.考点:必要条件、充分条件与充要条件的判断.专题:函数的性质及应用.分析:①函数f(x)=的对称中心应该是(﹣,).②若不等式mx2﹣mx+1>0对任意的x∈R都成立,则m=0满足题意;m≠0,可得,解得0<m<4,即可判断出.③已知点P(a,b)与点Q(1,0)在直线2x﹣3y+1=0两侧,可得(2a﹣3b+1)(2﹣0+1)<0,解出即可.④若将函数f(x)=sin(2x﹣)的图象向右平移Φ(Φ>0)个单位化为f(x)=sin[2(x﹣Φ)﹣],变为偶函数,则﹣2Φ﹣=2kπ(k∈Z),解出即可.解答:解:①函数f(x)=的对称中心是(﹣,),因此不正确;②若不等式mx2﹣mx+1>0对任意的x∈R都成立,则m=0满足题意;m≠0,可得,解得0<m<4,因此m的取值范围是[0,4),因此不正确;③已知点P(a,b)与点Q(1,0)在直线2x﹣3y+1=0两侧,则(2a﹣3b+1)(2﹣0+1)<0,则2a+1<3b,正确;④若将函数f(x)=sin(2x﹣)的图象向右平移Φ(Φ>0)个单位化为f(x)=sin[2(x﹣Φ)﹣]变为偶函数,则﹣2Φ﹣=2kπ(k∈Z),当k=0时,﹣2Φ=﹣,可得Φ的最小值是.其中正确的结论是③④.故答案为:③④.点评:本题考查了分式函数的中心对称性、一元二次不等式恒成立问题、点与直线的位置关系、三角函数的平移变换及其奇偶性,考查了推理能力与计算能力,属于难题.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内)16.在△ABC中,角A,B,C所对的边分别是a,b,c,且(a﹣c)(sinA+sinC)=(a﹣b)sinB.(1)求角C的大小;(2)若a=5,c=7,求△ABC的面积.考点:余弦定理;正弦定理.专题:解三角形.分析:(1)由已知和正弦定理求得a2+b2﹣c2=ab,由此求得cosC=,从而求得C的值.(2)由(1)中a2﹣c2=ab﹣b2 求得b的值,再根据△ABC的面积为,运算求得结果.解答:解:(1)由已知和正弦定理得:(a+c)(a﹣c)=b(a﹣b)…(2分)故a2﹣c2=ab﹣b2,故a2+b2﹣c2=ab,故,…(4分)故C=60°…(6分)(2)由(1)中a2﹣c2=ab﹣b2,得25﹣49=5b﹣b2,得b2﹣5b﹣24=0,解得b=8或b=﹣3(舍),故b=8.…(9分)所以,△ ABC的面积为:.…(12分)点评:本题主要考查正弦定理和余弦定理的应用,已知三角函数值求角的大小,属于中档题.17.从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm 之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(Ⅰ)求第七组的频率;(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm以上(含180cm)的人数;(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x,y,事件E={|x﹣y|≤5},事件F={|x﹣y|>15},求P(E∪F).考点:列举法计算基本事件数及事件发生的概率;频率分布直方图.专题:概率与统计.分析:(Ⅰ)先由第六组的人数除以样本容量得到第六组的频率,然后用1减去出第七组外各组的频率和即可得到第七组的频率;(Ⅱ)因为过中位数的直线两侧的矩形的面积相等,经计算前三组的频率和小于0.5,后四组的频率和大于0.5,由此断定中位数位于第四组,设出中位数m,由0.04+0.08+0.2+(m ﹣170)×0.04=0.5即可求得中位数m的值;(Ⅲ)分别求出第六组和第八组的人数,利用列举法列出从身高属于第六组和第八组的所有男生中随机抽取两名男生的总的方法,再分别求出事件E和事件F的概率,最后利用互斥事件的概率加法公式进行计算.解答:解:(Ⅰ)第六组的频率为,所以第七组的频率为1﹣0.08﹣5×(0.008×2+0.016+0.04×2+0.06)=0.06;(Ⅱ)身高在第一组[155,160)的频率为0.008×5=0.04,身高在第二组[160,165)的频率为0.016×5=0.08,身高在第三组[165,170)的频率为0.04×5=0.2,身高在第四组[170,175)的频率为0.04×5=0.2,由于0.04+0.08+0.2=0.32<0.5,0.04+0.08+0.2+0.2=0.52>0.5估计这所学校的800名男生的身高的中位数为m,则170<m<175由0.04+0.08+0.2+(m﹣170)×0.04=0.5得m=174.5所以可估计这所学校的800名男生的身高的中位数为174.5由直方图得后三组频率为0.06+0.08+0.008×5=0.18,所以身高在180cm以上(含180cm)的人数为0.18×800=144人.(Ⅲ)第六组[180,185)的人数为4人,设为a,b,c,d,第八组[190,195]的人数为2人,设为A,B,则有ab,ac,ad,bc,bd,cd,aA,bA,cA,dA,aB,bB,cB,dB,AB共15种情况,因事件E={|x﹣y|≤5}发生当且仅当随机抽取的两名男生在同一组,所以事件E包含的基本事件为ab,ac,ad,bc,bd,cd,AB共7种情况,故.由于|x﹣y|max=195﹣180=15,所以事件F={|x﹣y|>15}是不可能事件,P(F)=0由于事件E和事件F是互斥事件,所以.点评:本题考查了频率分布直方图,考查了列举法求基本事件及事件发生的概率,解答此题的关键是明确频率直方图中各矩形的频率和等于1,中位数是频率分布直方图中,过该点的直线把各矩形面积均分的点的横坐标,此题是基础题.18.如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F 在CE上.(1)求证:DE⊥BE;(2)求四棱锥E﹣ABCD的体积;(3)设点M在线段AB上,且AM=MB,试在线段CE上确定一点N,使得MN∥平面DAE.考点:直线与平面垂直的性质;棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:计算题.分析:(1)根据BC的平行线DA⊥平面ABE,可得BC⊥平面ABE,从而AE⊥BC,再结合AE ⊥BF,利用线面垂直的判定定理得到AE⊥面BEC,从而AE⊥BE,再用一次线面垂直的判定定理得到BE⊥面DAE,所以DE⊥BE;(2)作EH⊥AB于H,根据面面垂直的性质可得EH⊥面ABCD,再在等腰Rt△AEB中结合已知条件的数据,算出,最后用锥体体积公式可求出四棱锥E﹣ABCD的体积;(3)设P是BE的中点,连接MP,FP.利用三角形中位线定理结合线面平行的判定,得到FP∥平面DAE且MP∥平面DAE,从而平面MPF∥面DAE,由此得到直线MF∥面DAE,可得点N就是点F.解答:解:(1)∵DA⊥平面ABE,BC∥DA∴BC⊥平面ABE,∵AE⊂平面ABE,∴AE⊥BC,又∵BF⊥平面ACE,AE⊂平面ACE,∴AE⊥BF…(2分)∵BC∩BF=B,∴AE⊥面BEC,又∵BE⊂平面BEC,∴AE⊥BE∵AD⊥BE,AE∩AD=A,∴BE⊥面DAE,∵DE⊂面DAE,∴DE⊥BE…(4分)(2)作EH⊥AB于H,∵DA⊥平面ABE,DA⊂面ABCD,∴面ABCD⊥面ABE,∵EH⊥AB,面ABCD∩面ABE=AB,∴EH⊥面ABCD∵AE⊥BE,AE=EB=BC=2,∴等腰Rt△AEB中,…(6分)因此,…(8分)(3)设P是BE的中点,连接MP,FP∵BE=BC,BF⊥CE,∴F是EC的中点…(10分)∵△ECB中,FP是中位线,∴FP∥BC∥DA∵DA⊂平面DAE,FP⊈平面DAE∴FP∥平面DAE,同理可得MP∥平面DAE,∵AE∩DA=A,∴平面MPF∥面DAE,因此,直线MF∥面DAE,可得点N就是点F所以CE的中点N满足MN∥平面DAE.…(12分)点评:本题以一个特殊的四棱锥为例,证明了线线垂直和线面平行,并且求了四棱锥的体积,着重考查了空间平行与垂直位置关系的证明和锥体体积公式等知识,属于基础题.19.已知函数(a为实常数).(1)当a=0时,求函数f(x)的最小值;(2)若函数f(x)在[2,+∞)上是单调函数,求a的取值范围.考点:导数在最大值、最小值问题中的应用.专题:计算题.分析:(1)利用导数,确定函数的单调性,从而确定函数f(x)的最小值;(2)先求导函数,再分别考虑导数大于0与小于0,分类讨论即可.当a≥0时,ax2+x﹣1在[2,+∞)上恒大于零,即f'(x)>0,符合要求;当a<0时,令g(x)=ax2+x﹣1,g (x)在[2,+∞)上只能恒小于零解答:解:(1)a=0时,…..(2分)当0<x<1时f'(x)<0,当x>1时f'(x)>0,…..(5分)∴f(x)min=f(1)=1….(7分)(2)当a≥0时,ax2+x﹣1在[2,+∞)上恒大于零,即f'(x)>0,符合要求;…(10分)当a<0时,令g(x)=ax2+x﹣1,g (x)在[2,+∞)上只能恒小于零故△=1+4a≤0或,解得:a≤∴a的取值范围是…(14分)点评:本题以函数为载体,考查导函数,考查函数的单调性,注意分类讨论.20.如图,椭圆C:+=1(a>b>0)的右焦点为F,右顶点、上顶点分别为点A、B,且|AB|=|BF|.(Ⅰ)求椭圆C的离心率;(Ⅱ)若斜率为2的直线l过点(0,2),且l交椭圆C于P、Q两点,OP⊥OQ.求直线l的方程及椭圆C的方程.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)利用|AB|=|BF|,求出a,c的关系,即可求椭圆C的离心率;(Ⅱ)直线l的方程为y﹣2=2(x﹣0),即2x﹣y+2=0与椭圆C:联立,OP⊥OQ,可得,利用韦达定理,即可求出椭圆C的方程.解答:解:(Ⅰ)由已知,即,4a2+4b2=5a2,4a2+4(a2﹣c2)=5a2,∴.…(5分)(Ⅱ)由(Ⅰ)知a2=4b2,∴椭圆C:.设P(x1,y1),Q(x2,y2),直线l的方程为y﹣2=2(x﹣0),即2x﹣y+2=0.由,即17x2+32x+16﹣4b2=0..,.…(9分)∵OP⊥OQ,∴,即x1x2+y1y2=0,x1x2+(2x1+2)(2x2+2)=0,5x1x2+4(x1+x2)+4=0.从而,解得b=1,∴椭圆C的方程为.…(13分)点评:本题考查椭圆方程,考查直线与椭圆的位置关系,考查韦达定理的运用,属于中档题.21.已知数列{c n}的前n项和S n满足:S1=5,S n+1=2S n+3n,又设a n=S n﹣3n,b n=1+2log2a n(n ∈N*)(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)若T n=b1a1+b2a2+…+b n a n,且T n≥m恒成立,求T n和常数m的范围;(Ⅲ)证明:对任意的n∈N*,不等式••…•>.考点:数列与不等式的综合;数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)由题意得S n+1﹣3n+1=2(S n﹣3n),又s1﹣31=2,数列{S n﹣3n}是首项为2,公比为2的等比数列,求得s n,即可求得结论;(Ⅱ)利用错位相减法求数列的和即可;(Ⅲ)利用放缩法==+≥2=,累乘即可得出结论.解答:解:(Ⅰ)∵S n+1=2S n+3n,∴S n+1﹣3n+1=2(S n﹣3n),又s1﹣31=2,∴数列{S n﹣3n}是首项为2,公比为2的等比数列,∴S n﹣3n=2n,∴S n=3n+2n,∴a n=S n﹣3n=2n,b n=1+2log2a n=1+2n.(Ⅱ)T n=b1a1+b2a2+…+b n a n=3•2+5•22+…+(2n﹣1)•2n﹣1+(2n+1)•2n,∴2T n=3•22+5•23+…+(2n﹣1)•2n+(2n+1)•2n+1∴﹣T n=6+2(22+23+…+2n)﹣(2n+1)•2n+1=6+2×﹣(2n+1)•2n+1=﹣1+(1﹣2n)•2n+1,∴T n=1+(2n﹣1)•2n+1∵T n=1+(2n﹣1)•2n+1≥5,∴要使T n≥m恒成立,只需m≤5即可.(Ⅲ)∵b n=1+2n.∴==+≥2=,∴••…•≥=.点评:本题主要考查利用构造法求数列的通项公式,错位相减法求数列的和及放缩法证明不等式成立问题,考查学生的运算求解能力,属于难题.。

届安徽省高考文科数学模拟试卷.docx

届安徽省高考文科数学模拟试卷.docx

2015届安徽省高考文科数学模拟试卷一、选择题:本大题共10小题,每小题5分,共50分.1.命题“对任何实数x ,都有0222>+-x x ”的否定是( ) A .对任何实数x ,都有0222≤+-x x B .存在一个实数x ,使0222>+-x x C .存在一个实数x ,使0222≤+-x x D .存在一个实数x ,使0222<+-x x2.已知集合}02|{≥-=x x A ,|{x B =0<x 2log <2},则)(B A C R ⋂是( ) A .|{x 2<x <4} B .}2|{≥x x C .}42|{<≤x x D .2|{<x x 或}4≥x3.复数201531i i z -=的共轭复数在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限4.若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的( )条件A.充分不必要 B .必要不充分 C .充要 D .既不充分也不必要5.某程序框图如图所示,若该程序运行后输出的值是20154009,则=a ( )A. 2013B. 2014C. 2015D. 20166 从正方形ABCD 的四条边及两条对角线共6条线段中任取2条线段(每条线段被取到的可能性相等),则其中一条线段长度是另一条线段长度的2倍的概率是( )A .53B .154C .32D . 1587.已知函数))(2sin()(πϕϕ<+=x x f 的图像向左平移6π个单位后得到()cos(2)6g x x π=+的图像,则ϕ的值为( )A .23π-B .3π-C .3πD .23π8.函数1|log |3)(31-=x x f x 的零点个数为( )A .0B .1C .2D .4 9.已知数列{}n a 的通项公式21log ()2n n a n n +=∈+N *,设{}n a 的前n 项和为n S ,则使6-<n S成立的自然数n ( ) A .有最大值126 B .有最小值126C .有最大值127D .有最小值12710.已知函数)(x f y =是R 上的减函数,且函数)2(+=x f y 的图象关于点A )0,2(-对称.设动点M ),(y x ,若实数y x ,满足不等式 0)6()248(22≥-++-x y f y x f 恒成立,则OM OA ⋅的取值范围是( )A .),(∞+-∞B .]4,2[C .]2,4[--D .]4,8[--第Ⅱ卷 非选择题(共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.若直线0x y a -+=与圆222x y +=相切,则a 的值为_________ 12.如下图是某一几何体的三视图,则这个几何体的体积是_________13.如图,在锐角 ABC △中,2=AB ,30ABC ∠=o,AD 是边BC 上的高,则AD AC⋅u u u r u u u r的值等于_________14.探照灯反光镜的纵断面是抛物线的一部分,光源在抛物线的焦点处,已知灯口直径是60cm ,灯深是cm 45,则光源到反光镜顶点的距离是_________cm15.设函数()y f x =的定义域为D ,如果存在非零常数T ,对于任意x D ∈,都有()()f x T T f x +=⋅,则称函数()y f x =是“准周期函数”,非零常数T 为函数()y f x =的“准周期”.现有下面五个关于“准周期函数”的结论: ①()y f x =的准周期为-1,那么它是周期为2的周期函数; ②函数()f x x =是“准周期函数”;③函数-()2xf x =不是“准周期函数”;④若()()1f x f x +=-,则()y f x =不是“准周期函数”;⑤如果函数()cos f x x ω=是“准周期函数”,那么,k k ωπ=∈Z . 其中正确结论的序号是 .(写出所有..满足条件的结论序号) 三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本题满分12分)已知函数)sin()23sin(22cos 3)(x x x x f -++=ππ,其中R x ∈. (1)求)(x f 最小正周期;(2)在锐角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知()3f A =-,3a =,求BC 边上的高h 的最大值. 17.(本题满分12分)学生体质与健康调研是国民体质监测的重要组成部分,是学校体育卫生的重要基础工作。

2015年安徽高考数学文科试卷带详解

2015年安徽高考数学文科试卷带详解

2015年普通高等学校招生全国统一考试数学安徽卷(文科)一、选择题.1. 设i 是虚数单位,则复数(1i)(12i)()-+=A. 3+3iB. -1+3iC. 3+iD. -1+i 【参考答案】 C【测量目标】 复数的四则运算.【试题解析】 因为(1-i)(1+2i)=1+2i-i-22i =3+i, 所以选C. 2. 设全集{1,2,3,4,5,6},={1,2},{2,3,4}U A B ==,则()()U A B = ð A. {1, 2, 5, 6} B. {1} C. {2} D. {1, 2, 3, 4}【参考答案】 B【测量目标】 集合的运算.【试题解析】 因为U B ð={1, 5, 6}, 所以()U A B ð={1}. 故选B. 3. 设p :x <3, q : -1<x <3, 则p 是q 成立的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件 【参考答案】 C【测量目标】 充要条件的判断.【试题解析】 因为p : x <3, q : -1<x <3, 所以,q p ⇒但是p 不能推出q , 所以p 是q 成立的必要不充分条件,故选C. 4. 下列函数中,既是偶函数又存在零点的是( )A. y =㏑xB. 2y x =+1 C. y =sin x D. y =cos x【参考答案】 D【测量目标】 函数的奇偶性;零点.【试题解析】 对选项A : y =㏑x 的定义域为(0,+∞),不具有奇偶性,排除A; 对选项B :2y x =+1是偶函数,但2y x =+1=0无解,即不存在零点,排除B; 对选项C :y =sin x 是奇函数,排除C; 对选项D :y =cos x =0,2x k k π⇒=+π∈Z , 所以D 正确.5. 已知,x y 满足约束条件0401x y x y y -⎧⎪+-⎨⎪⎩≥≤≥,则2z x y =-+的最大值是( )A.-1B.-2C.-5D. 1 【参考答案】 A【测量目标】 简单的线性规划.【试题解析】 根据题意作出约束条件确定的可行域,第5题图由22z x y y x z =-+⇒=+,可知在图中点(1,1)处,2z x y =-+取到最大值-1,故选A.6. 下列双曲线中,渐近线方程为2y x =±的是( )A. 2214y x -= B. 2214x y -= C. 2212y x -= D. 2212x y -= 【参考答案】 A【测量目标】 渐近线方程.【试题解析】 由双曲线的渐近线的公式知道选项A 的渐近线方程为2y x =±,故选A. 7. 执行如图所示的程序框图(算法流程图),输出的n 为( ) A. 3 B. 4 C. 5 D. 6第7题图【参考答案】 B【测量目标】 程序框图.【试题解析】 执行第一次循环体:3,22a n ==,此时 1.414 1.5 1.4140.086a -=-=; 执行第二次循环体:7,35a n ==,此时 1.414 1.4 1.4140.0140.005a -=-=≥; 执行第三次循环体:17,412a n ==,此时 1.4140.005a -<,不满足判断条件,输出 4n =, 故选B.8. 直线34x y b +=与圆222210x y x y +--+=相切,则b =( ) A. -2或12 B. 2或-12 C. -2或-12 D. 2或12【参考答案】 D【测量目标】 直线与圆的位置关系;点到直线的距离公式.【试题解析】 把圆的方程化为标准形式:22(1)(1)1x y -+-=,则圆心(1,1),半径为1,又直线与圆相切,所以223+4=1=2123+4b b -⇒或. 故选D.9. 一个四面体的三视图如图所示,则该四面体的表面积是( ) A. 13+ B. 122+ C. 23+ D. 22第9题图【参考答案】 C【测量目标】 几何体的三视图;锥体的表面积.【试题解析】 由给出的三视图可知该几何体的直观图如下所示.第9题图其中侧面P AC ⊥底面ABC ,且PAC ABC △≌△, 由三视图中所给数据可知:P A=PC=AB=BC =2, 取AC 中点O ,连接PO, BO , 则Rt POB △中,PO=BO =1⇒PB =2, 所以面积S 可计算为1612222123222S =⨯⨯⨯+⨯⨯⨯=+. 故选C.10. 函数32()f x ax bx cx d =+++的图象如图所示,则下列结论成立的是( )第10题图A. 0,0,0,0a b c d ><>>B. 0,0,0,0a b c d ><<>C. 0,0,0,0a b c d <<<>D. 0,0,0,0a b c d >>>< 【参考答案】 A【测量目标】 函数的图形与性质.【试题解析】 由函数()f x 的图象可知0a >,令'200.()3+2x d f x ax bx c =⇒>=+,可知12,x x 是'()0f x =的两个根,由图可知120,0x x >>. 所以由韦达定理得12122003003b x x b ac c x x a ⎧+=->⎪<⎧⎪⇒⎨⎨>⎩⎪=>⎪⎩, 故选A.二、填空题.11. lg52+2lg2-11()2-=________ . 【参考答案】-1【测量目标】 指数幂运算;对数运算.【试题解析】 原式=lg5-lg2+2lg2-2=lg5+lg2-2=-1 . 12. 在ABC △中,AB =6, 75,45A B ∠=∠= , 则AC =________ .【参考答案】 2【测量目标】 正弦定理. 【试题解析】 由正弦定理可知:6sin[180(7545)]sin 45sin 60sin 45AB AC AC=⇒=-+,所以2AC =.13. 已知数列{n a }中,1111,(2)2n n a a a n -==+≥,则数列{n a }的前9项和等于_____.【参考答案】 27【测量目标】 等差数列的定义与前n 项和. 【试题解析】 由11(2)2n n a a n --=≥知道数列{n a }是以1为首项,12为公差的等差数列.则其通项公式为12n n a +=,所以前9项和9919[1]2272S ++==. 14. 在平面直角坐标系xOy 中,若直线2y a =与函数1y x a =--的图象只有一个交点,则a 的值为________. 【参考答案】 12-【测量目标】 函数与方程;函数的图象.【试题解析】 在同一坐标系内,作出所给直线与函数的大致图象如图,则1212a a =-⇒=-.第14题图15. ABC △是边长为2的等边三角形,已知向量、a b 满足22AB AC ==+,a a b , 则下列结论中正确的是________.(写出所有正确结论的序号)① a 为单位向量; ② b 为单位向量; ③ ⊥a b ; ④ BC ∥b ; ⑤ (4)BC +⊥a b .【参考答案】 ①④⑤【测量目标】 平面向量的基本概念和性质.【试题解析】 由题意可知:等边三角形ABC 的边长为2,2AB = a ,则22AB ==a ,所以a =1, 故①正确;+2,AC AB BC BC BC ==∴=a +b 2⇒=b , 故②错误,④正确;=2AB BC =∴ ,,与a b a b的夹角为120,故③错误; 1(4)(4)412()+4=02BC +⋅=+⋅=⨯⨯⨯- a b a b b ,(4)BC ∴+⊥ a b , 故⑤正确.三、解答题.16. 已知函数2()(sin cos )+cos2f x x x x =+ (1)求()f x 的最小正周期; (2)求()f x 在区间[0,2π]上的最大值和最小值.【参考答案】 (1)π; (2)最大值为21+,最小值为0. 【测量目标】 (1)三角函数的性质; (2)三角函数在区间上的最值. 【试题解析】(1)化简可得()2sin(2)14f x x π=++,则()f x 最小正周期22T π==π;(2)52[0,],2[,],sin(2)[,1]244442x x x πππππ∈∴+∈∴+∈- , 故()2sin(2)14f x x π=++的最大值为21+,最小值为0.17. 某企业为了解下属某部门对本企业职工的服务情况,随机访问了50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为 [40,50], [50,60], [60,70], … ,[80,90],[90,100].第17题图(1)求频率分布图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40, 60]的受访职工中,随机抽取2人,求此2人评分都在[40, 50]的概率. 【测量目标】 (1)频率分布直方图; (2)古典概型;(3)随机事件的概率.【试题解析】 (1)由频率分布直方图可知:(0.004+a +0.018+0.022×2+0.028)×10=1,解得0.006a =.(2)由分布直方图可知,评分不低于80的人数为(0.022+0.018)×10×50=20(人), 所以评分不低于80分的概率为25. (3)在[40, 50]、[50,60]内的人数分别为:0.004×10×50=2,0.006×10×50=3,故在[40,60]内的受访职工中随机抽取2人,此2人评分均在[40,50]之间的概率为:2225C 1C 10P ==. 18. 已知数列{n a }是递增的等比数列,且14239,8a a a a +==.(1)求数列{n a }的通项公式;(2)设n S 为数列{n a }的前n 项和,1+1n n n n a b S S +=,求数列{n b }的前n 项和n T .【测量目标】(1)等比数列的通项公式;(2)裂项相消法求和. 【试题解析】 (1){n a }是递增的等比数列,且14239,8a a a a +==,14134144114918288a a a a a a q q a a a a +=⎧=⎧⎪<⇒⇒==⇒=⎨⎨=⎩⎪=⎩ , 1112n n n a a q --∴==. (2)由(1)可知1(1)1221112n nn n a q S q --===---,11211(21)(21)2121n n n n n n b ++∴==-----, +1111111113377152121n n n T ∴=-+-+-++--- =11121n +-=-112221n n ++--.19. 如图三棱锥P -ABC 中,P A ⊥平面ABC , P A =1,AB =1,AC =2,60BAC ∠=. (1)求三棱锥P -ABC 的体积;(2)证明:在线段PC 上存在点M , 使得AC ⊥BM , 并求PMMC的值.第19题图【测量目标】(1)三棱锥的体积公式; (2)线面垂直的判定定理和性质.【试题解析】 (1)在ABC △中, AB =1, AC =2, 60BAC ∠=, 113s i n 12s i n 60222ABC S AB AC BAC ∴=⋅⋅∠=⨯⨯⨯= △. 又因为P A ⊥面ABC , -113313326P A B C A B C V P A S ∴=⋅=⨯⨯=△. (2)过点B 作BN 垂直AC 于点N , 过N 作NM P A 交PC 于M , 则有第19题图=M N A B C M N A C A C B M NM N B NN A C A B C B M B M N⊥⊥⊥⎧⎧⎧⇒⇒⎨⎨⎨⊂⊂⎩⎩⎩ 面面面面 AC BM ⇒⊥. 此时M 即为所要找的点,在ABN △中,131====243CM CN PM AN PC AC MC ⇒⇒. 20. 设椭圆E 的方程为22221(0)x y a b a b+=>>,点O 为坐标原点,点A 的坐标为(,0a ),点B 的坐标为(0, b ),点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,)b -,N 为线段AC 的中点,证明:MN AB ⊥. 【测量目标】 (1)椭圆的离心率;(2)直线与椭圆的位置关系.【试题解析】 (1)212,(,0),(0,),(,)33BM MA A a B b M a b =∴ ,又OM 的斜率为510,222222215114253=21055553bb ac c e a a a a -∴=⇒=⇒=⇒=⇒. (2)由题意可知N 点的坐标为(,22a b -),11553262326MN b b b b K a a a a +∴===-, 225,1.A B M N A B bb K K K MN AB aa =∴⋅=-=-∴⊥-, 21. 已知函数2()(0,0)()ax f x a r x r =>>+(1)求()f x 的定义域,并讨论()f x 的单调性; (2)若400ar=,求()f x 在(0,)+∞内的极值.【测量目标】 (1)导数在函数单调性中的应用; (2)函数的极值.【试题解析】(1)由题意可知x r ≠-,所以函数的定义域为,)(,)r r --+ (-∞∞. 222'44()2()()()()()a x r ax x r a x r f x x r x r +-+--==++, 0,0,a r >> 令'()0(,)()f x x r r f x >⇒∈-∴的单调递增区间为(,)r r -;令'()0(,)f x x r <⇒∈--∞和(,)r +∞,()f x ∴的单调递减区间为(,)r --∞和(,)r +∞. (2)由(1)可知()f x 在(0,)+∞内的极大值为2()10044ar af r r r===. 且()f x 在(0,)+∞内无极小值.。

2015年安徽省黄山市高考一模数学试卷(文科)【解析版】

2015年安徽省黄山市高考一模数学试卷(文科)【解析版】

D.x<﹣1 或 0<x<l (x>2)在 x=x0 处有最小值,则 xo=( C.4 D.3 的图象经过点(0,1 等差数列{an}的通项公式是 an=1﹣2n, 其前 n 项和为 Sn, 则数列{ 的前 11 项和为( A.﹣45 ) B.﹣50 C.﹣55 D.﹣66
7. (5 分)如图是某几何体的三视图,其中正视图是腰长为 2 的等腰三角形,俯 视图是半径为 1 的半圆,则该几何体的体积是( )
第 1 页(共 18 页)
A.
B.
C.
D.
8. (5 分)已知函数 f(x)=|2x﹣1|,a<b<c,且 f(a)>f(c)>f(b) ,则下 列结论中成立的是( A.a<0,b<0,c<0 C.2﹣a<2c 9. (5 分)已知平面上的向量 + ,则| |的最小值是( B.2 、 满足| ) C. D.3 ) B.a<0,b≥0,c>0 D.2a+2c<2 |2+| |2=4,| |=2,设向量 =2
第 3 页(共 18 页)
P(K2≥k) k
0.15
0.10
0.05
0.025 0.010 0.005
0.001
2.072 2.706 3.841 5.024 6.635 7.879 10.828
18. (12 分)在等差数列{an}中,a2+a7=﹣23,a3+a8=﹣29. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设数列{an+bn}是首项为 1,公比为 c 的等比数列,求{bn}的前 n 项和 Sn. 19. (13 分)在正方体 ABCD﹣A'B'C'D'中,棱 AB,BB',B'C',C'D'的中点分别 是 E,F,G,H,如图所示. (Ⅰ)求证:AD'∥平面 EFG; (Ⅱ)求证:A'C⊥平面 EFG; (Ⅲ)判断点 A,D',H,F 是否共面?并说明理由.

2015年安徽省高考数学试题及答案(文科)【解析版】

2015年安徽省高考数学试题及答案(文科)【解析版】

2015年安徽省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(安徽卷)数学(文科)1.(5分)(2015•安徽)设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i【答案】C.【解析】复数(1﹣i)(1+2i)=1+2﹣i+2i=3+i.2.(5分)(2015•安徽)设全集U={1,2,3,4,5,6}A={1,2},B={2,3,4},则A∩(∁R B)=()A.{1,2,5,6} B.{1} C.{2} D.{1,2,3,4}【答案】B.【解析】∁R B={1,5,6};∴A∩(∁R B)={1,2}∩{1,5,6}={1}.3.(5分)(2015•安徽)设p:x<3,q:﹣1<x<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C【解析】设p:x<3,q:﹣1<x<3,则p成立,不一定有q成立,但是q成立,必有p成立,所以p是q成立的必要不充分条件..4.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=lnx B.y=x2+1 C.y=sinx D.y=cosx【答案】D【解析】对于A,y=lnx定义域为(0,+∞),所以是非奇非偶的函数;对于B,是偶函数,但是不存在零点;对于C,sin(﹣x)=﹣sinx,是奇函数;对于D,cos(﹣x)=cosx,是偶函数并且有无数个零点;5.(5分)(2015•安徽)已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.1【答案】A.【解析】由已知不等式组表示的平面区域如图阴影部分,当直线y=2x+z经过A时使得z最大,由得到A(1,1),所以z的最大值为﹣2×1+1=﹣1;6.(5分)(2015•安徽)下列双曲线中,渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.x2﹣=1D.﹣y2=1【答案】A.【解析】由双曲线方程﹣=1(a>0,b>0)的渐近线方程为y=±x,由A可得渐近线方程为y=±2x,由B可得渐近线方程为y=±x,由C可得渐近线方程为y=x,由D可得渐近线方程为y=x.7.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为()A.3B.4C.5D.6【答案】B.【解析】模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.8.(5分)(2015•安徽)直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相切,则b=()A.﹣2或12 B.2或﹣12 C.﹣2或﹣12 D.2或12【答案】D.【解析】x2+y2﹣2x﹣2y+1=0可化为(x﹣1)2+(y﹣1)2=1∵直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相切,∴圆心(1,1)到直线的距离d==1,解得:b=2或12.9.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.2【答案】C.【解析】可画出立体图形为∴三棱锥O﹣ABC,OE⊥底面ADC,EA=ED=1,OE=1,AB=BC=∴AB⊥BC,∴可判断;△OAB≌△OBC的直角三角形,S△OAC=S△ABC==1,S△OAB=S△OBC=×2=该四面体的表面积:2,10.(5分)(2015•安徽)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0 B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0 D.a>0,b>0,c>0,d<0【答案】A【解析】f(0)=d>0,排除D,当x→+∞时,y→+∞,∴a>0,排除C,函数的导数f′(x)=3ax2+2bx+c,则f′(x)=0有两个不同的正实根,则x1+x2=﹣>0且x1x2=>0,(a>0),∴b<0,c>0,二、填空题11.(3分)(2015•安徽)lg+2lg2﹣()﹣1=.【答案】-1.【解析】原式=lg5﹣lg2+2lg2﹣2=lg5+lg2﹣2=lg10﹣2=1﹣2=﹣1;12.(3分)(2015•安徽)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=.【答案】2.【解析】∠A=75°,∠B=45°,则∠C=180°﹣75°﹣45°=60°,由正弦定理可得,=,即有AC==2.13.(3分)(2015•安徽)已知数列{a n}中,a1=1,a n=a n﹣1+(n≥2),则数列{a n}的前9项和等于.【答案】27.【解析】∵a n=a n﹣1+(n≥2),∴a n﹣a n﹣1=(n≥2),∴数列{a n}的公差d=,又a1=1,∴a n=1+(n﹣1)=,∴S9=9a1+•d=9+36×=27,14.(3分)(2015•安徽)在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.【答案】.【解析】由已知直线y=2a是平行于x轴的直线,函数y=|x﹣a|﹣1的图象是折线,所以直线y=2a过折线顶点时满足题意,所以2a=﹣1,解得a=﹣;15.(3分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量满足=2,=2+,则下列结论中正确的是.(写出所有正确结论得序号)①为单位向量;②为单位向量;③;④∥;⑤(4+)⊥.【答案】①④⑤【解析】△ABC是边长为2的等边三角形,已知向量满足=2,=2+,则=,AB=2,所以||=1,即是单位向量;①正确;因为=2,所以,故||=2;故②错误;④正确;夹角为120°,故③错误;⑤(4+)•=4=4×1×2×cos120°+4=﹣4+4=0;故⑤正确.三、解答题16.(2015•安徽)已知函数f(x)=(sinx+cosx)2+cos2x(1)求f(x)最小正周期;(2)求f(x)在区间上的最大值和最小值.【解析】(1)∵函数f(x)=(sinx+cosx)2+cos2x=1+sin2x+cos2x=1+sin(2x+),∴它的最小正周期为=π.(2)在区间上,2x+∈[,],故当2x+=时,f(x)取得最小值为1+×(﹣)=0,当2x+=时,f(x)取得最大值为1+×1=1+.17.(2015•安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【解析】(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,解得a=0.006;(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=.18.(2015•安徽)已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.【解析】(1)∵数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.∴a1+a4=9,a1a4=8.解得a1=1,a4=8或a1=8,a4=1(舍),解得q=2,即数列{a n}的通项公式a n=2n﹣1;(2)S n==2n﹣1,∴b n===﹣,∴数列{b n}的前n项和T n=+…+﹣=﹣=1﹣19.(2015•安徽)如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P﹣ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.(1)【解析】由题设,AB=1,AC=2,∠BAC=60°,可得S△ABC==.因为PA⊥平面ABC,PA=1,所以V P﹣ABC=•S△ABC•PA=;(2)【解析】过B作BN⊥AC,垂足为N,过N作MN∥PA,交PA于点M,连接BM,由PA⊥平面ABC,知PA⊥AC,所以MN⊥AC,因为BN∩MN=N,所以AC⊥平面MBN.因为BM⊂平面MBN,所以AC⊥BM.在直角△BAN中,AN=AB•cos∠BAC=,从而NC=AC﹣AN=.由MN∥PA得==.20.(2015•安徽)设椭圆E的方程为=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,﹣b),N为线段AC的中点,证明:MN⊥AB.【解析】(1)设M(x,y),∵A(a,0)、B(0,b),点M在线段AB上且|BM|=2|MA|,∴=2,即(x﹣0,y﹣b)=2(a﹣x,0﹣y),解得x=a,y=b,即M(a,b),又∵直线OM的斜率为,∴=,∴a=b,c==2b,∴椭圆E的离心率e==;(2)证明:∵点C的坐标为(0,﹣b),N为线段AC的中点,∴N(,﹣),∴=(,﹣),又∵=(﹣a,b),∴•=(﹣a,b)•(,﹣)=﹣a2+=(5b2﹣a2),由(1)可知a2=5b2,故•=0,即MN⊥AB21.(2015•安徽)已知函数f(x)=(a>0,r>0)(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)在(0,+∞)内的极值.【解析】(1)∵函数f(x)=(a>0,r>0),∴x≠﹣r,即f(x)的定义域为(﹣∞,﹣r)∪(﹣r,+∞).又∵f(x)==,∴f′(x)==,∴当x<﹣r或x>r时,f′(x)<0;当﹣r<x<r时,f′(x)>0;因此,f(x)的单调递减区间为:(﹣∞,﹣r)、(r,+∞),递增区间为:(﹣r,r);(2)由(1)的解答可得f′(x)=0,f(x)在(0,r)上单调递增,在(r,+∞)上单调递减,∴x=r是f(x)的极大值点,∴f(x)在(0,+∞)内的极大值为f(r)====1002015年安徽省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(安徽卷)数学(文科)1.(5分)(2015•安徽)设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i2.(5分)(2015•安徽)设全集U={1,2,3,4,5,6}A={1,2},B={2,3,4},则A∩(∁R B)=()A.{1,2,5,6} B.{1} C.{2} D.{1,2,3,4}3.(5分)(2015•安徽)设p:x<3,q:﹣1<x<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=lnx B.y=x2+1 C.y=sinx D.y=cosx5.(5分)(2015•安徽)已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.16.(5分)(2015•安徽)下列双曲线中,渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.x2﹣=1D.﹣y2=17.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为()A.3B.4C.5D.68.(5分)(2015•安徽)直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相切,则b=()A.﹣2或12 B.2或﹣12 C.﹣2或﹣12 D.2或129.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.210.(5分)(2015•安徽)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c >0,d>0 B.a>0,b<0,c <0,d>0C.a<0,b<0,c <0,d>0 D.a>0,b>0,c >0,d<0二、填空题11.(3分)(2015•安徽)lg+2lg2﹣()﹣1=.12.(3分)(2015•安徽)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=.13.(3分)(2015•安徽)已知数列{a n}中,a1=1,a n=a n﹣1+(n≥2),则数列{a n}的前9项和等于.14.(3分)(2015•安徽)在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.15.(3分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量满足=2,=2+,则下列结论中正确的是.(写出所有正确结论得序号)①为单位向量;②为单位向量;③;④∥;⑤(4+)⊥.三、解答题16.(2015•安徽)已知函数f(x)=(sinx+cosx)2+cos2x(1)求f(x)最小正周期;(2)求f(x)在区间上的最大值和最小值.17.(2015•安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.18.(2015•安徽)已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.19.(2015•安徽)如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P﹣ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.20.(2015•安徽)设椭圆E的方程为=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,﹣b),N为线段AC的中点,证明:MN⊥AB.21.(2015•安徽)已知函数f(x)=(a>0,r>0)(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)在(0,+∞)内的极值.。

安徽省示范高中2015届高三第一次联考数学文试题 Word版含解析

安徽省示范高中2015届高三第一次联考数学文试题 Word版含解析

安徽省示范高中2015届高三第一次联考数学(文科)【试卷综析】试卷贴近中学教学实际,在坚持对五个能力、两个意识考查的同时,注重对数学思想与方法的考查,体现了数学的基础性、应用性和工具性的学科特色.以支撑学科知识体系的重点内容为考点来挑选合理背景,考查更加科学.试卷从多视角、多维度、多层次地考查数学思维品质,考查考生对数学本质的理解,考查考生的数学素养和学习潜能.第一卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】 (1)设是虚数单位,z 是Z 的共轭复数,若12ii z+=-,则z 的虚部是 A.15 B. 35 C. 35- D. 35i 【知识点】复数代数形式的乘除运算.L4 【答案解析】C 解析:设,z a bi =+由12i i z +=-可得:12i i a bi +=-+,解得13,55a b ==,所以1355z i =-,则z 的虚部是35-,故选C. 【思路点拨】利用复数代数形式的乘除运算解出z ,再作出判断即可.【题文】 (2)双曲线2212x y -=-的离心率为A.3 B. 2C. D.32【知识点】双曲线及其几何性质.H6【答案解析】C 解析:由2212x y -=-转化成标准形式为2212x y -=,易知1,a b =c e 故选C.【思路点拨】先把原式转化为标准形式找出a,b,c,然后求出离心率即可.【题文】 (3)已知,m n 为不同的直线,,αβ为不同的平面,则下列说法正确的是 A. ,////m n m n αα⊂⇒ B. ,m n m n αα⊂⊥⇒⊥ C. ,,////m n m n αβαβ⊂⊂⇒ D. ,n n βααβ⊂⊥⇒⊥【知识点】空间中直线与平面之间的位置关系.G4 G5【答案解析】D 解析:A 选项可能有n α⊂,B 选项也可能有n α⊂,C 选项两平面可能相交,故选D. 【思路点拨】分别根据线面平行和线面垂直的性质和定义进行判断即可. 题文】(4)执行如图所示的程序框图,输出的k 值为A.2B.3C.4D.5 【知识点】程序框图.L1【答案解析】B 解析:k=0时,5cos cos 02A p ==;k=1时,5cos cos 02A p ==;k=2时,5cos 08p <;k=3时,5cos016p<;故选B. 【思路点拨】本题考查了程序框图中的当型循环结构,当型循环结构是先判断再执行,满足条件进入循环体,不满足条件算法结束.【题文】(5)若x y 、满足202200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩则z y x =-的最大值为A.2B.-2C.1D.-1【知识点】简单线性规划.E5【答案解析】A 解析:线性可行域如图所示,三个顶点坐标分别为(0,2),(2,0),(-1,0),通过上顶点时Z 值最大。

2015年安徽高考文科数学模拟试题

2015年安徽高考文科数学模拟试题

高三模拟试题数 学(文科)满分:150分 考试时间:120分钟第Ⅰ卷(选择题 满分50分一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数31ii++(i 是虚数单位)的虚部是( )A .2B .1-C .2iD .i -2.已知集合{3,2,0,1,2}A =--,集合{|20}B x x =+<,则()R A C B ⋂=( ) A .{3,2,0}-- B .{0,1,2} C . {2,0,1,2}- D .{3,2,0,1,2}-- 3.已知向量(2,1),(1,)x ==a b ,若23-+a b a b 与共线,则x =( ) A .2 B .12 C .12- D .2- 4.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为( )A .4πB .32π C .3π D .2π 5.将函数()sin 2f x x =的图象向右平移6π个单位,得到函数()y g x =的图象,则它的一个对称中心是( )A .(,0)2π-B . (,0)6π-C . (,0)6πD . (,0)3π.2:2x x ++正视图 侧视图俯视图A .94B .6C .9D .369.已知变量,x y 满足约束条件102210x y x y x y +-≥⎧⎪-≤⎨⎪-+≥⎩,设22z x y =+,则z 的最小值是( )A.12B. 2C. 1D. 13 10. 定义在R 上的奇函数()f x ,当0≥x 时,⎪⎩⎪⎨⎧+∞∈--∈+=),1[|,3|1)1,0[),1(log )(21x x x x x f ,则函数)10()()(<<-=a a x f x F 的所有零点之和为( )A .12-aB .12--aC .a --21D .a21-第Ⅱ卷(非选择题 满分100分)二、填空题:(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置)11. 命题“若12<x ,则11<<-x ”的逆否命题是_______________________.12.函数()f x =的定义域是 . 13.抛物线22y x =-的焦点坐标是__________.14.若23mx m ≥-恒成立,则实数m 的取值范围为__________. 15.某学生对函数()cos f x x x =的性质进行研究,得出如下的结论: ①函数()f x 在[,0]π-上单调递增,在[0,]π上单调递减; ②点(,0)2π是函数()y f x =图象的一个对称中心;③函数()y f x =图象关于直线x π=对称;④存在常数0M >,使|()|||f x M x ≤对一切实数x 均成立;⑤设函数()y f x =在(0,)+∞内的全部极值点按从小到大的顺序排列为12,,x x 则212x x ππ<-<.其中正确的结论是__________.三、解答题:(本大题共6小题,共75分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省黄山市屯溪一中、歙县中学、休宁中学联考2015年高考)文科(数学模拟试卷.安徽省黄山市屯溪一中、歙县中学、休宁中学联考2015年高考数学模拟试卷(文科)一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设i是虚数单位,则复数在复平面内对应的)点位于(第二.第一象限. B A 第四C.第三象限象限 D.象限复数的代数表示法及其几何意义.考点:计算题;数系的扩充和复数.专题:先化简复数,再得出点的坐标,即可得出分析:结论.,对应复平面上的)(解:解答:=i1+i=1+i ﹣点为(﹣1,1),在第二象限,故选:B.点评:本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.设U=R,M={x|x﹣x≤0},函数的定2)M∩N=(义域为N,则{1}..A D交集及其运算.考点: M∩N.再计算分析:先分别计算出集合M,N,,≤1}x解:∵解答: M={x|x﹣x≤0}={x|0≤2 1},N={x|x<|f,都有∴M∩N=上的两个函数,若对任意的x∈)在上是(x)和f(xg,则称))﹣(xg(x|≤1=xx“密切函数”,称为“密切区间”,设f()2在上是“密切函数”,3﹣(﹣3x+4与gx)=2x 则它的“密切区间”可以是().A .B C. D .考点:函数的值域.专题:计算题;压轴题;新定义.分析:根据“密切函数”的定义列出绝对值不等式|x﹣3x+4﹣(2x﹣3)|≤1,求出解集即可得到2它的“密切区间”.解答:解:因为f(x)与g(x)在上是“密切函数”,则|f(x)﹣g(x)|≤1即|x﹣3x+4﹣(2x ﹣3)|≤12即|x﹣5x+7|≤1,2化简得﹣1≤x﹣5x+7≤1,因为x﹣5x+7的△<022即与x轴没有交点,由开口向上得到x﹣5x+7>02>﹣1恒成立;所以由x﹣5x+7≤1解得2≤x≤3,所以它的“密2切区间”是故选B点评:考查学生会根据题中新定义的概念列出不等式得到解集,要求学生会解绝对值不等式.二、填空题:(本大题共5小题,每小题5分,共25分.)11.已知函数f(x)的导函数为f′(x),且满足f(x)=3x+2xf′(2),则f′(5)=6.2导数的运算.考点:计算题.专题:)看出常数利用导数的运算法则′(2 将f分析:,)f′(xf′(2)代入求出求出f′(x),令x=2 .5)令x=5求出f′( 2)x)=6x+2f′(′(解答:解:f x=2得令12 ﹣=′(2)f24 ﹣x)=6x∴f′(24=6 =30)﹣∴f′(56故答案为:本题考查导数的运算法则、考查通过赋值点评:求出导函数值.°,则边C=60,的面积为.若△ABC,BC=212.2的长度等于AB考点:正弦定理.解三角形.专题:利用三角形面积公式列出关系式,把已知分析:的值,再利用余的值代入求出b面积,a,sinC c的值即可.弦定理求出,BC=a=2解:∵△ABC的面积为,解答:°,C=60 ,即b=2,absinC=∴,4=4=ac+b﹣2abcosC=4+4﹣由余弦定理得:222,则AB=c=22故答案为:此题考查了余弦定理,三角形面积公式,点评:熟练掌握余弦定理是解本题的关键.,则输b=113.阅读下面的流程图,若输入a=6,出的结果是2.考点:设计程序框图解决实际问题.专题:操作型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量x的值,模拟程序的运行,并将运行过程的各变量的值列表进行分析,不难得到最终输出的结果.解答:解:程序在运行过程中各变量的值如下表示:a b x 是否继续循环循环前 6 1∥第一圈∥5 是第二圈 4 6 2 否故输出的结果为:2故答案为:2.根据流程图(或伪代码)写程序的运行结点评:果,是算法这一模块最重要的题型,其处理方法,从流程图(或是::①分析流程图(或伪代码)伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,②建立数也可使用表格对数据进行分析管理)?学模型,根据第一步分析的结果,选择恰当的数学模型③解模.上的一点,是曲线y=1nx+14.已知M的锐处的切线的倾斜角是均不小于M若曲线在的取值范围是a≤2角,则实数a.考点:利用导数研究曲线上某点切线方程;直线的倾斜角.专题:计算题;导数的概念及应用.分析:曲线在M处的切线的倾斜角是均不小于的锐角,则曲线在M点处的切线的不小于1,即曲线在M点处的导函数值不小于1,根据函数的解析式,求出导函数的解析式,构造关于a的不等式,解不等式即可得到答案.解答:解:设M(x,y),f(x)=1nx+=1nx+x)(∵fa﹣a)≥3﹣+x∴f′()=(1的锐处的切线的倾斜角是均不小于∵曲线在M角,1 ∴3≥﹣a2≤∴a2故答案为:a≤本题考查的知识点是直线的倾斜角,利用点评:导数研究曲线上某点的切线方程,其中利用基本 a不等式构造关于的不等式是解答本题的关键..已知一几何体的三视图如下,正视图和侧视15图都是矩形,俯视图为正方形,在该几何体上任个顶点,它们可能是如下各种几何形体4意选择个顶点,这些几何形体是(写出所有正确结4的.①③④⑤论的编号)①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体;⑤每个面都是直角三角形的四面体.考点:由三视图还原实物图;简单空间图形的三视图.专题:综合题;压轴题.分析:由题意可知三视图复原的几何体是正四棱柱,从正四棱柱中选择四个顶点,不难判断①②③④⑤的正误,顶点正确结果.解答:解:由该几何体的三视图可知该几何体为底面边长为a,高为b的正四棱柱;这四个顶点的几何形体若是平行四边形,则其一定是矩形.①正确;②不正确;③有三个面为直角三角形,有一个面为等腰三角形的四面体;如图中H﹣ABC四点的几何体;④每个面都是等腰三角形的四面体;如图中的EGDB四点就满足题意.⑤每个面都是直角三角形的四面体.如图中EABC四点的几何体满足题意.故答案为:①③④⑤.点评:本题是基础题,考查正四棱柱的结构特征,基本知识的掌握的熟练程度,考查空间想象能力,做到心中有图,灵活应用.三、解答题:(本大题共6小题,共75分,解答应写出文字说明、证明过或演算步骤.)16.已知向量(ω>0),,且f(x函数)图象上一个最高点的坐标,与之相邻的一个最低点的坐标为为.(1)求f(x)的解析式;(2)在△ABC中,a,b,c是角A、B、C 所对的边,且满足a+c﹣b=ac,求角B的大小以及f222(A)的取值范围.考点:三角函数的最值;由y=Asin(ωx+φ)的部分图象确定其解析式;余弦定理.专题:综合题.分析:(1)由已知中向量(ω>0),函数,根据向量的数量积公式,结合辅助角公式,我们易将函数的解析式化为正弦型函数的形式,根据f(x)图象上一个最高点的坐标为,与之相邻的一个最低点的坐标为.我们求出函数的最值及周期,进而求出A,ω,φ值即可 x)的解析式;f得到(的大小,=ac 又)a+c﹣b由余弦定理及求出B(2222的范围,根进而根据三角形内角和为π确定A)的取值A据正弦函数的图象和性质即可求出f(范围.)∵向量1解答:解:(∴=ωx=cosx+=sinω﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)∵f(x)图象上一个最高点的坐标为,与.之相邻的一个最低点的坐标为∴,.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣π,于是∴T=﹣﹣﹣﹣(5分)所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分),∴﹣﹣﹣﹣﹣﹣b=ac)∵(2a+c222﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣7﹣分又0<B<π,∴.∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)∵.于是,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)所以f(A)∈.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)点评:本题考查的知识点是三角函数的最值,正弦型函数解析式的确定,余弦定理,其中(1)的关键是根据已知条件确定函数的最值及周期,进而求出A,ω,φ值,(2)的关键是根据已知的形式,选择使用余弦定理做为解答的突破口.17.某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求分数在=2n+﹣<2n+.∴2n<c+c+…+c<2n+成立.n21熟练掌握公式、“错位相点评:减法”、基本不等式的性质和“裂项求和”是解题的关键.21.已知f(x)=xlnx,g(x)=x+ax﹣x+2.23(Ⅰ)如果函数g(x)的单调递减区间为,)的解析式;(x求函数g(Ⅱ)在(Ⅰ)的条件下,求函数y=g(x)的图象在点P (﹣1,1)处的切线方程;(Ⅲ)若不等式2f(x)≤g′(x)+2恒成立,求实数a的取值范围.考点:函数的单调性与导数的关系;利用导数研究曲线上某点切线方程.专题:计算题;压轴题.分析:(I)求出g(x)的导函数,令导函数小于0得到不等式的解集,得到相应方程的两个根,将根代入,求出a的值.(II)求出g(x)的导数在x=﹣1的值即曲线的切线斜率,利用点斜式求出切线的方程.(III)求出不等式,分离出参数A,构造函数h(x),利用导数求出h(x)的最大值,令a大于等于最大值,求出a的范围.解答:解:(I)g′(x)=3x+2ax﹣1由题意3x+2ax22﹣1<0的解集是即3x+2ax﹣1=0的两根分别是.2代入方程3x+2ax﹣1=0得或将x=1a=﹣1.2∴g(x)=x﹣x﹣x+2.(4分)23(II)由(Ⅰ)知:g′(x)=3x﹣2x﹣1,∴g′2(﹣1)=4,∴点p(﹣1,1)处的切线斜率k=g′(﹣1)=4,∴函数y=g(x)的图象在点p(﹣1,1)处的切线方程为:y﹣1=4(x+1),即4x﹣y+5=0.(8分)(III)∵2f(x)≤g′(x)+2即:2xlnx≤3x+2ax+1对x∈(0,+∞)上恒成立2可得对x∈(0,+∞)上恒成立,则设令h′(x(舍))=0,得当0<x<1时,h′(x)>0;当x>1时,h′(x)0<∴当x=1时,h(x)取得最大值﹣2∴a≥﹣2.∴a的取值范围是[﹣2,+∞).(13分)点评:解决不等式恒成立问题,常用的方法是分离出参数,构造新函数,求出新函数的最值,得到参数的范围.。

相关文档
最新文档