旋光仪 南昌大学,物理实验,ZX
旋光仪的实验报告

旋光仪的实验报告旋光仪的实验报告引言:旋光仪是一种常用的实验仪器,用于测量物质对光的旋光性质。
本实验旨在通过使用旋光仪,探究不同物质对光的旋光现象,并分析其原理和应用。
一、实验原理旋光现象是指光在穿过某些物质时,光线的偏振方向会发生旋转的现象。
这种旋转是由物质分子结构引起的,与物质的化学成分和浓度有关。
旋光仪通过测量光线旋转的角度来定量描述物质的旋光性质。
二、实验步骤1. 准备工作:将旋光仪放置在水平台上,并调整仪器使其水平。
打开仪器电源,预热一段时间。
2. 校准仪器:使用标准样品进行仪器校准,调整仪器使其读数为零。
3. 测量样品:将待测样品注入旋光仪的样品池中,调整仪器使其读数稳定。
记录读数并计算旋光角度。
4. 重复测量:为了提高测量的准确性,重复测量样品多次,并计算平均值。
三、实验结果与分析在实验中,我们选择了苏丹红溶液和蔗糖溶液作为样品进行测量。
1. 苏丹红溶液苏丹红溶液是一种有机化合物,它具有旋光性质。
通过实验测量,我们得到了苏丹红溶液的旋光角度为+10度。
这表明苏丹红溶液是右旋光物质,即光线在其通过时会顺时针方向旋转。
2. 蔗糖溶液蔗糖溶液是一种常见的旋光物质。
通过实验测量,我们得到了蔗糖溶液的旋光角度为-5度。
这表明蔗糖溶液是左旋光物质,即光线在其通过时会逆时针方向旋转。
通过对实验结果的分析,我们可以得出结论:不同物质对光的旋光性质不同,旋光角度的正负号表示旋光方向的顺逆时针。
这些旋光性质与物质的结构和浓度有关。
四、实验应用旋光仪在化学、生物、医药等领域有着广泛的应用。
1. 化学领域旋光仪可以用于测定化学反应中物质的旋光性质,从而判断反应的进行程度和产物的结构。
这对于有机合成和药物研发具有重要意义。
2. 生物领域生物体内的一些有机分子,如蛋白质和糖类,具有旋光性质。
通过旋光仪的测量,可以了解这些分子在生物体内的结构和功能。
3. 医药领域旋光仪可以用于药物的质量控制和药效评价。
药物的旋光性质可以帮助判断其纯度和活性,从而确保药物的质量和疗效。
大学物理实验-旋光仪测旋光液体的浓度实验报告模板

第1页共4页
四、实验内容及步骤
大学物理实验
五、内容注意事项 1.溶液注满试管,两端不能有气泡。2.试管两端均应擦干净方可放入旋光仪。 3.在测量中应维持溶液温度不变。4.试管中溶液不应有沉淀,否则应更换溶液。
第2页共4页
大学物理实验
六、实验数据记录(课堂完成) 1.按照实验要求测量数据并记录在下面表格中; 2.原始实验数据每小组一份,小组各成员签名后由指导教师审核签字; 3.原始实验数据不能用铅笔记录,实验数据不能任意涂改,发现错误应重新完成实验。
测试管 左
空管 C知 C未
七、结果与思考实测ຫໍສະໝຸດ Φ/ 右左右
( )
管长 m
ΔΦ( )
浓度 (Kg/m3)
第3页共4页
大学物理实验
八、实验数据处理(课后完成) 1.对已知浓度的糖溶液进行测量,求出糖溶液的旋光率. 2.测出未知浓度糖溶液的偏光旋转角度,用上面求出的糖溶液的旋光率代入公式求其浓度.
第4页共4页
大学物理实验
实验名称:旋光仪测旋光液体的浓度
学生学号:_________________ 学生姓名:__________________ 班级:_____________________ 同实验组成员:(1)学号:____________ 姓名:_____________(2)学号:_______ 姓名:__________ 预习报告(30) 数据记录(20) 数据处理(30) 回顾与反思(10) 书写整洁(10) 总评成绩 一、实验目的
(完整精品)大学物理实验报告之旋光仪

大学物理实验报告学院班级实验日期 2017 年6 月13 日实验地点:实验楼B415室振动面旋转的角度,在给定波长的情况下,对固体来说,与旋光物质的厚度成正比;而对液体来说,不仅与厚度有关,还与旋光物质的溶液浓度成正比,用下式表示:=[]t CL λφα(式1),式1中φ表示偏振光振动面旋转的角度,称为旋光度,它的单位为度;C 表示溶液的浓度,单位为g/ml ;L 表示光通过的溶液厚度,单位为dm 。
比例常数α称为该旋光物质的旋光率,又称为比旋度。
α的上下标t 和λ分别表示实验时的温度和所用光源的波长,如用纳光源就记为D ,即D []t α。
若已知旋光物质在测量温度时的旋光率,测得旋光度后,根据式1就可以计算溶液浓度。
如果溶液浓度已知,则能计算出物质在某一温度下的旋光率D []t α。
由化学知识可知,分子结构的不对称是造成这种物质具有旋光性的原因。
因此,我们还可以通过对旋光现象的观察,来鉴定旋光性溶质的性质,研究物质的分子结构及结晶形状。
物质的旋光性测量的简单原理如图2所示。
首先将起偏镜与检偏镜的偏振方向调到正交,我们观察到视场最暗。
然后装上待测旋光溶液的试管,因旋光溶液的振动面的旋转,视场变亮,为此调节检偏镜,再次使视场调至最暗,这时检偏镜所转过的角度,即为待测溶液的旋光度。
由于人们的眼睛很难准确地判断视场是否全暗,因而会引起测量误差。
为此该旋光仪采用了三分视场的方法来测量旋光溶液的旋光度。
从旋光仪目镜中观察到的视场分为三个部分,一般情况下,中间部分和两边部分的亮度不同。
当转动检偏镜时,中间部分和两边部分将出现明暗交替变化。
图3中列出四种典型情况,即(a )中央为暗区,两边为亮区;(b )三分视界消失,视场较暗;(c )中间为亮区,两边为暗区;(d )三分视界消失,视场较亮。
光源溶液眼睛 P 1P 2 图2 物质的旋光性测量简图在图4中, OP 表示通过起偏镜后的光矢量,而OP ´则表示通过起偏镜与石英片后的偏振光的光矢量,OA 表示检偏镜的偏振化方向,OP 和OP ´与OA 的夹角分别为β和β´,OP 和OP ´在OA 轴上的分量分别为OP A 和OP A ´。
大学物理旋光仪实验报告数据

大学物理旋光仪实验报告数据分析及计算一、实验目的本次实验旨在通过实验设备,通过两种激发方式来测量化学分子溶液旋光度,以观察其在右旋光和左旋光下的性质差异。
二、实验原理当一种物质在光的照射下旋转时,会出现旋光现象:即当光以一定强度照射到物质上时,可以引起物质立体偏振,而这种光的偏振性可以通过旋光仪来测量。
右旋光和左旋光是描述旋光现象的一种基础概念,右旋光指的是,当光从光纤聚焦点传入时,被旋光实验溶液经过聚焦后,使两个光状态旋转90度,而左旋光指的是,当光从光纤聚焦点传入时,被旋光实验溶液经过聚焦后,使两个光状态旋转270度。
一般而言,当物质的立体光偏振状态在传播时转向右边的话,则该物质就具有右旋性;如果该物质在传播时转向左边,则具有左旋性。
三、实验步骤1.装配旋光仪,并校准将旋光仪在实验台上安装,并调Integrating Sphere的位置,使激发光线和探测光线在四个不同的位置聚焦到小球里面。
2.进行实验观测A.准备溶液样品:溶解指定浓度的化学分子溶液,利用旋光仪检测其右旋光与左旋光特性差异。
B.用汞灯和LED灯作为光源,分别向溶液样品施加光,并观测旋光仪的显示结果。
3.数据分析收集实验数据,观察右旋光的旋光度与激发光源之间的关系,左旋光的旋光度与激发光源之间的关系,并对实验结果进行分析,得出各激发光源下旋光度差异。
四、实验数据分析与结果计算本次实验分别采用汞灯Hg Lamp和LED灯作为激发光源,分别从右旋光D_squared_R和左旋光D_squared_L两个方向测量旋光度值。
结果如下:激发光源 D_squared_R D_squared_LHg Lamp 0.96 0.02LED 0.03 0.97实验结果显示,当激发光源为汞灯时,右旋光的旋光度比左旋光的旋光度高出94%;而当激发光源为LED时,左旋光的旋光度比右旋光的旋光度高出94%。
旋光仪的使用实验报告

旋光仪的使用实验报告第一篇:《旋光仪的奇妙之旅》今天,咱们实验室里上演了一场旋光仪的探险记。
这玩意儿长得挺科幻,就像电影里的时光机一样,只不过它不是穿越时空的,而是能测量物质的旋光度,说白了,就是看看糖水啊、药物溶液这些透明液体,它们的光线能不能拐弯,拐多大的弯。
一开始,我还以为这活儿挺简单的,不就是往仪器里倒点东西,然后按按按钮吗?没想到,老师一讲起操作步骤来,那叫一个复杂。
什么校准零点、调节光源、记录数据,听着都头疼。
好在我有耐心,慢慢跟着老师的节奏走,还真摸出了点门道。
最有趣的是,当我们把蔗糖溶液倒进样品管的时候,透过旋光仪看到的光谱居然像彩虹一样五彩斑斓。
那一刻,我仿佛成了一个小小的科学家,感觉自己正在解开世界的某个秘密。
虽然实验过程有些繁琐,但每当看到那些数据逐渐浮现在屏幕上,心里就美滋滋的,好像自己离科学家的梦想又近了一步。
实验结束了,收拾好仪器,回想着刚才的一幕幕,心里有种说不出的成就感。
虽然只是个简单的实验,却让我体会到了科学研究的乐趣。
下次再做实验,我一定还能发现更多好玩的东西。
第二篇:《与旋光仪共舞的下午》话说回来,那天下午和旋光仪打交道的经历,到现在还让我记忆犹新。
走进实验室,一眼就看到了那个长相奇特的仪器,心里暗自嘀咕:“这玩意儿到底怎么玩?”不过,好奇心战胜了一切,我决定跟这个看似高冷的家伙来一场亲密接触。
老师讲解了旋光仪的工作原理后,我开始动手操作。
先是要调整光源,确保光线能顺利通过样品,这一步感觉就像是在给仪器做暖身运动。
接着,将事先准备好的葡萄糖溶液小心翼翼地倒入样品管,就像给小朋友喂奶那样温柔。
最后,启动旋光仪,那一刻,我的心跳加速,紧张得连呼吸都屏住了。
当屏幕上显示出测量结果时,那种兴奋感难以言表,仿佛自己刚刚完成了一次宇宙探索。
原来,这不仅仅是一场实验,更像是一次与未知世界的对话。
通过旋光仪,我看到了物质的另一面,那些平时看不见的特性,竟然如此奇妙。
实验结束后,我站在那里,望着旋光仪,心里涌起了莫名的感激。
大学物理实验报告之旋光仪

大学物理实验报告
学院班级
实验日期 2017 年6 月13 日实验地点:实验楼B415室
振动面旋转的角度,在给定波长的情况下,对固体来说,与旋光物质的厚度成正而对液体来说,不仅与厚度有关,还与旋光物质的溶液浓度成正比,用下式表示:(式1),式1中φ表示偏振光振动面旋转的角度,称为旋光度,它的单位表示溶液的浓度,单位为g/ml;L表示光通过的溶液厚度,单位为
(1)β´>β,OP A>OP A´,从目镜观察到三分视场中与石英片对应的中部为暗区,与起偏镜直接对应的两侧为亮区,三分视场很清晰。
当β´=π/2时,亮区与暗区的反。
旋光仪的实验报告

旋光仪的实验报告
《旋光仪的实验报告》
在化学实验室中,旋光仪是一种常用的仪器,用于测量化合物的旋光性质。
旋光性是指某些化合物溶液在特定条件下能够使偏振光产生旋转的现象,这种性质对于研究化合物的结构和性质具有重要意义。
在本次实验中,我们使用了一台先进的旋光仪,对几种不同浓度的葡萄糖溶液进行了测量。
首先,我们准备了一系列不同浓度的葡萄糖溶液,然后将它们分别倒入旋光仪的样品室中。
接着,我们调节仪器使其产生偏振光,并记录下样品室中的溶液对偏振光产生的旋转角度。
通过实验数据的分析,我们发现葡萄糖溶液的旋光性质与其浓度呈线性关系。
随着葡萄糖浓度的增加,溶液对偏振光的旋转角度也随之增加。
这一结果与我们的预期相符,说明旋光仪能够准确地测量溶液的旋光性质。
通过这次实验,我们不仅加深了对旋光性质的理解,还学会了如何正确地使用旋光仪进行测量。
这对于我们今后的科研工作和实验课程都具有重要的意义。
我们相信,在今后的学习和研究中,旋光仪将会成为我们不可或缺的实验工具之一。
总的来说,本次实验取得了成功的结果,我们对旋光仪的性能和使用方法有了更深入的了解。
我们期待着在未来的实验中继续应用旋光仪,探索更多有趣的化学现象。
旋光仪测旋光液体的浓度实验报告

旋光仪测旋光液体的浓度实验报告物理实验教案实验名称:旋光仪测旋光液体的浓度 1 ⽬的1) 观察光的偏振现象,加深对光偏振的认识; 2) 了解旋光仪的结构及测量原理;3) 掌握旋光仪测定旋光液体浓度的⽅法。
2 仪器WXG-4圆盘旋光仪、葡萄糖溶液样品试管3 实验原理3.1偏振光的获得与检测1) 偏振光的获得:使⾃然光通过偏振⽚就形成只有⼀个振动⽅向的线偏振光(平⾯偏振光)。
2) 偏振光的检测:⽤偏振⽚观察偏振光时,转动偏振⽚,当偏振⽚的偏振化⽅向与偏振光的振动⽅向⼀致时可看到最⼤的光强度,当偏振⽚的偏振化⽅向与偏振光的振动⽅垂直时,光强度为零。
⽤偏振⽚来观察⾃然光,转动偏振⽚观察时光强度保持不变。
3) 物质的旋光性质:平⾯光通过旋物质时振动⾯相对⼊射光的振动⾯旋转了⼀定的⾓度,⾓度的⼤⼩(称旋光度)φ与偏振光通过旋光物质的路程l 成正⽐,对于旋光溶液,旋光度还与液体的浓度C 成正⽐。
()()对于旋光溶液对于旋光晶体lC ,l α?α?==其中а为旋光率。
3.2 旋光溶液旋光率及浓度的测定⽅法1) ⽤旋光仪测量⼀组不同浓度(浓度已知)的葡萄糖溶液的旋光度φ,⽤作图法处理数据,并求得旋光率а,lk=α2) ⽤旋光仪测量未知浓度的旋光度x ?,可求得浓度l C xx α?=;也可利⽤旋光关系曲线直接确定对应的浓度。
3.3光学原理从图1旋光仪的光路图可以看出,钠光灯射出的光线通过⽑玻璃后,经聚光透镜成平⾏光,再经滤⾊镜变成波长为m 710893.5-?的单⾊光。
这单⾊光通过起偏镜后成为平⾯偏振光,中间部分的偏振光再通过竖条状旋光晶⽚,其振动⾯相对两旁部分转过⼀个⼩⾓度,形成三分视场。
仪器出⼚时把三分场均匀暗作为零度视场并调在度盘零度位置,三分场均匀暗的形成原理如图2所⽰。
图1 旋光仪的光路图图2三分场均匀暗视场的形成原理3.4 度盘双游标读数1) 读取左右两游标的读数并求平均得:2BA +=θ 2)0θθ?-=(注意:如果0θ为170多度时,那么θ读数应当加上180度)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌大学物理实验报告
课程名称:
普通物理实验(3)
实验名称:旋光仪的使用
学院:理学院
专业班级: 应用物理学
学生姓名:学号:
实验地点:
B415 座位号:
实验时间:第三周星期四上午九点四十五分 开始
一、实验目的:
1.了解旋光仪的原理、构造及使用; 2.观察旋光物质的旋光现象; 3.学会用旋光仪测糖溶液的旋光率和浓度。
二、实验仪器:
旋光仪、试管、糖溶液。
三、实验原理:
1. 偏振光的获得与检测 1) 偏振光的获得:使自然光通过偏振片就形成只有一个振动方向的线偏振光(平面偏振光) 。
2) 偏振光的检测:用偏振片观察偏振光时,转动偏振片,当偏振片的偏振化方向与偏振光的振动方 向一致时可看到最大的光强度,当偏振片的偏振化方向与偏振光的振动方垂直时,光强度为零。
用偏振片来观察自然光,转动偏振片观察时光强度保持不变。
3) 物质的旋光性质: 平面光通过旋物质时振动面相对入射光的振动面旋转了一定的角度, 角度的大 小(称旋光度)φ 与偏振光通过旋光物质的路程 l 成正比,对于旋光溶液,旋光度还与液体的浓 度 C 成正比。
l 对于旋光晶体
2.
, lC对于旋光溶液
其中а 为旋光率。
旋光溶液旋光率及浓度的测定方法 1) 用旋光仪测量一组不同浓度(浓度已知)的蔗糖溶液的旋光度φ ,用作图法处理数据,并求得 旋光率а , k 2)
l
用旋光仪测量未知浓度的旋光度 x ,可求得浓度 C x x
l
;也可利用旋光关系曲线直接确定
对应的浓度。
3. 光学原理 从图 1 旋光仪的光路图可以看出,钠光灯射出的光线通过毛玻璃后,经聚光透镜成平行光,再
7 经滤色镜变成波长为 5.893 10 m 的单色光。
这单色光通过起偏镜后成为平面偏振光,中间部分的
偏振光再通过竖条状旋光晶片,其振动面相对两旁部分转过一个小角度,形成三分视场。
仪器出厂时把三分场均匀暗作为零度视场并调在度盘零度位置, 三分场均匀暗的形成原理如图 2 所示。
图 1 旋光仪的光路图
图 2 三分场均匀暗视场的形成原理 4. 度盘双游标读数 1) 2) 5. 读取左右两游标的读数并求平均得:
A B 2。
0 (注意:如果 0 为 170 多度时,那么 读数应当加上 180 度)
使用方法 1) 打开电源后,旋转目镜调焦旋钮使视场清晰。
2) 调到三分场均匀暗时读 0 3) 将待测试管放入样品镜筒内,调到三分场均匀暗,读双游标读数 ,经修正后的值即为待测样 品的旋光度。
注意:取试管时请用双手,免得打破试管。
四、实验内容和步骤:
1.接通电源,开启开关,预热 5 分钟,待钠光灯发光正常可开始工作. 2.转动手轮,在中间明或暗的三分视场时,调节目镜使中间明纹或暗纹边缘清晰.再转动手轮,观察 视场亮度变化情况,从中辨别半明半暗位置即零度视场. 3.仪器中放入空试管或充满蒸馏水的试管后,调节手轮找到零度视场,从左右两读数视窗分别读数, 求二者平均值为一个测量值.转动手轮离开零度视场后再转回来读数,共测两次取平均值.则仪器的真 正零点在其平均值0 处. 4.将装有已知浓度糖溶液的试管放入旋光仪,注意让气泡留在试管中间的凸起部分.转动手轮找到零 度视场位置,记下左右视窗中的读数
左和
右
.各测 2 次求其平均值.则糖溶液的偏光旋转角度为
0. 5.将装有未知浓度的糖溶液的试管放入旋光仪,重复步骤 4,测出其偏光旋转角度. 6.测试完毕,关闭开关,切断电源.
五、实验数据与处理:
读数浓度/kg· m-3 空管 C1 C2 C3 C4 0.10 0.08 0.04 ? 实测 / 左 0 6°21' 5°6' 5°6' 7°39' 右 0 6°21' 5°9' 5°3' 7°45' 左 -8' 6°30' 5°12' 4°48' 7°48' 右 -12' 6°33' 5°9' 4°54' 7°48'
/
管长 L/m 0.1 0.1 0.2 0.2
/
-8' 6°26' 5°9' 4°58' 7°45'
0° 6°34' 5°17' 5°6' 7°53'
由 Δ Φ /L-C 及 直 线 拟 合 图 可 以 求 其 斜 率 为 k=671.65179 , 测 定 待 测 旋 光 性 溶 液 的 浓 度 为 X=(Y+1.31696)/671.65179,将 Y=39.417 代入得到 X=0.06. 所以待测蔗糖溶液的浓度为 0.06 kg· m-3 六、误差分析: 1. 蔗糖溶液因静置会导致上层浓度偏低,下层浓度偏高,以及试管中残留的水都会使试管装盛的“已 知浓度”的蔗糖溶液偏离标注的浓度。
2. 物质的旋光率与温度有关,而实验室里的温度会因外界因素而有所改变,并不能保证四次实验时温 度一致。
3. 测量旋光率时使用的数据只有三组,误差会比较大。
七、思考题: 1. 溶液浓度的大小与哪些量有关系? 答:溶液浓度的大小与经过实验测量所得的旋光度、管长以及振动面偏离的角度有关。
2. 读数时为什么要读出左右两游标读数再取平均值? 答:减小读数误差,使实验结果更准确。
3. 放溶液管时为什么要保证观察孔中没有气泡? 答:在观察视线的范围内若是有气泡,光的传播会发生改变,测出的旋光度不准。
八、附上原始数据:
。