(完整word版)数列求和的各种方法

(完整word版)数列求和的各种方法
(完整word版)数列求和的各种方法

数列求和的方法

教学目标

1.熟练掌握等差、等比数列的前n 项和公式.

2.掌握非等差、等比数列求和的几种常见方法.

3.能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题. 教学内容

知识梳理

1.求数列的前n 项和的方法 (1)公式法

①等差数列的前n 项和公式 S n =

()21n a a n +=na 1+()d n n 2

1-.

②等比数列的前n 项和公式 (Ⅰ)当q =1时,S n =na 1;

(Ⅱ)当q ≠1时,S n =()

q

q a n --111=a 1-a n q

1-q .

③常见的数列的前n 项和:, 1+3+5+……+(2n -1)= ,等 (2)分组转化法

把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法

把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法

这是推导等差数列前n 项和时所用的方法,将一个数列倒过来排序,如果原数列相加时,若有公因式

可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.

(5)错位相减法 这是推导等比数列的前n 项和公式时所用的方法,主要用于求{a n ·b n }的前n 项和,其中{a n }和{b n }分别是等差数列和等比数列.

(6)并项求和法

一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.

例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.

123+++……+n=

(1)2

n n +2

n 2222123+++……+n =(1)(21)6n n n ++3333

123+++……+n =2

(1)2n n +??????

2. 常见的裂项公式 (1)

()

11+n n =1n -1

n +1; (2)

()

k n n +1=1k (1n -1n +k ); (3)

()()

12121+-n n =12(12n -1-1

2n +1); (4)

()()211++n n n =12()()()??

????++-

+21111n n n n ; (5)

1

n +n +k =1

k

(n +k -n ).

(6)设等差数列{a n }的公差为d ,则1a n a n +1=1d (1a n -1

a n +1

).

数列求和题型

考点一 公式法求和

1.(2016·新课标全国Ⅰ)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=1

3

,a n b n +1+b n +1=nb n .

(1)求{a n }的通项公式; (2)求{b n }的前n 项和.

2.(2013·新课标全国Ⅰ,17)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式;

(2)求a 1+a 4+a 7+…+a 3n -2.

变式训练

1.(2015·四川,16)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.

(1)求数列{a n }的通项公式;

(2)设数列????

??

1a n 的前n 项和为T n ,求T n .

2.(2014·福建,17)在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;

(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .

考点二 错位相减法

1.(山东)已知数列 的前n 项和S n =3n 2+8n ,是等差数列,且

(Ⅰ)求数列的通项公式;

(Ⅰ)令 求数列的前n 项和T n .

2.(2015·天津,18)已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ⅠN *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.

(1)求q 的值和{a n }的通项公式;

(2)设b n =log 2a 2n

a 2n -1

,n ⅠN *,求数列{b n }的前n 项和.

变式训练

1.(2014·江西,17)已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ⅠN *)满足a n b n +1-a n +1b n +2b n +1b n =0.

(1)令c n =a n

b n

,求数列{c n }的通项公式;

{}n a {}n b 1.n n n a b b +=+{}n b 1

(1).(2)

n n n n

n a c b ++=+{}n c

(2)若b n =3n -

1,求数列{a n }的前n 项和S n .

2.(2014·四川,19)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ⅠN *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;

(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列????

??

a n

b n 的前n 项和T n .

3.(2015·湖北,18)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.

(1)求数列{a n },{b n }的通项公式;

(2)当d >1时,记c n =a n

b n

,求数列{c n }的前n 项和T n .

4.(2015·山东,18)设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;

(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n .

5.(2015·浙江,17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ⅠN *),b 1+12b 2+13b 3+…+1

n

b n =b n +1

-1(n ⅠN *).

(1)求a n 与b n ;

(2)记数列{a n b n }的前n 项和为T n ,求T n .

6.(2015·湖南,19)设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3, n ⅠN *. (1)证明:a n +2=3a n ; (2)求S n .

考点三 分组求和法

1.(2015·福建,17)在等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式; (2)设b n =2

2 n a +n ,求b 1+b 2+b 3+…+b 10的值.

2.(2014·湖南,16)已知数列{a n }的前n 项和S n =n 2+n

2

,n ⅠN *.

(1)求数列{a n }的通项公式;

(2)设b n =n a

2+(-1)n a n ,求数列{b n }的前2n 项和.

变式训练

1.(2014·北京,15)已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.

(1)求数列{a n}和{b n}的通项公式;

(2)求数列{b n}的前n项和.

考点四裂项相消法

1.(2015·新课标全国Ⅰ,17)S n为数列{a n}的前n项和.已知a n>0,a2n+2a n=4S n+3.

(1)求{a n}的通项公式;

(2)设b n=1

a n a n+1,求数列{

b n

}的前n项和.

2.(2011·新课标全国,17)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式;

(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列????

??

1b n 的前n 项和.

3.(2015·安徽,18)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式;

(2)设S n 为数列{a n }的前n 项和,b n =a n +1

S n S n +1

,求数列{b n }的前n 项和T n .

变式训练

1.(2013·江西,16)正项数列{a n }满足:a 2n -(2n -1)a n -2n =0. (1)求数列{a n }的通项公式a n ;

(2)令b n =1

(n +1)a n

,求数列{b n }的前n 项和T n .

2.(2013·大纲全国,17)等差数列{a n }中,a 7=4,a 19=2a 9. (1)求{a n }的通项公式;

(2)设b n =1

na n

,求数列{b n }的前n 项和S n .

3.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ????S n -12. (1)求S n 的表达式;

(2)设b n =S n

2n +1

,求{b n }的前n 项和T n .

考点五 倒序相加法

已知函数f (x )=14x +2

(x ⅠR ).(1)证明:f (x )+f (1-x )=12;(2)若S =f (12 015)+f (22 015)+…+f (2 014

2 015),则S =

________.

变式训练

1.设f (x )=4x 4x +2

,若S =f (12 015)+f (22 015)+…+f (2 014

2 015),则S =________.

考点六 并项求和

1.(2012·新课标,16)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为________.

2.(2014·山东,19)在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项. (1)求数列{a n }的通项公式;

(2)设b n =()2

1+n n a ,记T n =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .

变式训练

1.(2014·山东理,19)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式;

(2)令b n =(-1)n -

14n a n a n +1

,求数列{b n }的前n 项和T n .

2.(2013·湖南,15)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -1

2

n ,n ⅠN *,则:

(1)a 3=________;

(2)S 1+S 2+…+S 100=________.

考点七 数列{|a n |}的前n 项和问题

1.(2011·北京,11)在等比数列{a n }中,若a 1=1

2,a 4

=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.

变式训练

1.(2013·浙江,19)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;

(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.

考点八 周期数列

1.已知数列2 008,2 009,1,-2 008,-2 009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 014项之和S 2 014等于( ) A .2 008 B .2 010 C .1 D .0 变式训练

1.(2012·福建)数列{a n }的通项公式a n =n cos n π

2

,其前n 项和为S n ,则S 2 012等于( )

A.1 006

B.2 012

C.503

D.0 考点九 数列与不等式的应用

1.(2014·新课标全国Ⅰ,17)已知数列{a n }满足a 1=1,a n +1=3a n +1.

(1)证明???

???a n +12是等比数列,并求{a n }的通项公式;

(2)证明1a 1+1a 2+…+1a n <3

2

.

2.(2015·浙江,20)已知数列{a n }满足a 1=12

且a n +1=a n -a 2n (n ⅠN *

). (1) 证明:1≤a n

a n +1

≤2(n ⅠN *);

(2)设数列{a 2n }的前n 项和为S n ,证明:12(n +2)≤S n n ≤1

2(n +1)(n ⅠN *).

3.(2013·江西,理)正项数列{a n }的前项和{a n }满足:222

(1)()0n n s n n s n n -+--+= (1)求数列{a n }的通项公式a n ; (2)令221(2)n n b n a +=

+,数列{b n }的前n 项和为n T 。证明:对于任意的*

n N ∈,都有564

n

T <

变式训练

1.(2014·湖北,18)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;

(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.

2.(2013·广东,19)设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -2

3

,n ⅠN *.

(1)求a 2的值;

(2)求数列{a n }的通项公式;

(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <7

4

.

3.(2013·天津,19)已知首项为3

2

的等比数列{a n }的前n 项和为S n (n ⅠN *),且-2S 2,S 3,4S 4成等差数列.

(1)求数列{a n }的通项公式;

(2)证明S n +1S n ≤13

6

(n ⅠN *).

4.(2014·广东,19)设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2

+n )=0,n ⅠN *.

(1)求a 1的值;

(2)求数列{a n }的通项公式;

(3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<1

3

.

答案

考点一 公式法求和

1.(2016·新课标全国Ⅰ)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=1

3

,a n b n +1+b n +1=nb n .

(1)求{a n }的通项公式; (2)求{b n }的前n 项和. 【答案】(I )31n a n =-(II )

1

31

.223n --?

考点:等差数列与等比数列

2.(2013·新课标全国Ⅰ,17)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式;

(2)求a 1+a 4+a 7+…+a 3n -2. 解 (1)设{a n }的公差为d . 由题意,a 211=a 1a 13,

即(a 1+10d )2=a 1(a 1+12d ). 于是d (2a 1+25d )=0.

又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.

(2)令S n =a 1+a 4+a 7+…+a 3n -2.

由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n

2

(-6n +56)=-3n 2+28n .

变式训练

1.(2015·四川,16)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.

(1)求数列{a n }的通项公式;

(2)设数列????

??

1a n 的前n 项和为T n ,求T n .

解 (1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2), 从而a 2=2a 1,a 3=2a 2=4a 1,

又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1), 所以a 1+4a 1=2(2a 1+1),解得a 1=2,

所以,数列{a n }是首项为2,公比为2的等比数列,故a n =2n . (2)由(1)得1a n =1

2

n ,

所以T n =12+122+…+12n =12?????

?1-????12n 1-

12=1-1

2

n .

2.(2014·福建,17)在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;

(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 解 (1)设{a n }的公比为q ,依题意得

?????a 1q =3,a 1q 4=81,解得?

????a 1=1,q =3. 因此,a n =3n -

1.

(2)因为b n =log 3a n =n -1,

所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n

2

.

考点二 错位相减法

1.(2015·山东,理,18)已知数列 的前n 项和S n =3n 2+8n ,是等差数列,且

(Ⅰ)求数列的通项公式;

(Ⅱ)令 求数列的前n 项和T n . 【答案】(Ⅰ);(Ⅱ).

{}n a {}n b 1.n n n a b b +=+{}n b 1

(1).(2)

n n n n

n a c b ++=+{}n c 13+=n b n 223+?=n n n T

(Ⅱ)由(Ⅰ)知, 又,

得,

两式作差,得

所以

考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;错位相减法

2.(2015·天津,18)已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列. (1)求q 的值和{a n }的通项公式;

1

1(66)3(1)2(33)

n n n n

n c n n +++==+?+n n c c c c T +???+++=3212341

3[223242(1)2]n n T n +=??+?+?+???++?345223[223242(1)2]n n T n +=??+?+?+???++?234123[22222(1)2]

n n n T n ++-=??+++???+-+?22

4(21)

3[4(1)2]

21

32n n n n n ++-=?+-+?-=-?223+?=n n n T

(2)设b n =

log 2a 2n

a 2n -1

,n ∈N *,求数列{b n }的前n 项和. 解 (1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4), 即a 4-a 2=a 5-a 3,

所以a 2(q -1)=a 3(q -1),又因为q ≠1, 故a 3=a 2=2,由a 3=a 1q ,得q =2.

当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -1

2

当n =2k (k ∈N *)时,a n =a 2k =2k =2n

2.

所以,{a n }的通项公式为a n =?????2n -1

2,n 为奇数,

2n 2,n 为偶数.

(2)由(1)得b n =log 2a 2n a 2n -1=n

2n -1,n ∈N *.

设{b n }的前n 项和为S n ,

则S n =1×120+2×121+3×122+…+(n -1)×12n -2+n ×1

2n -1,

12S n =1×121+2×122+3×123+…+(n -1)×12n -1+n ×1

2n . 上述两式相减得:

12S n =1+12+122+…+12n -1-n 2n =1-1

2n

1-12-n 2n

=2-22n -n 2n ,

整理得,S n =4-n +2

2n -1,n ∈N *.

所以,数列{b n }的前n 项和为4-n +22

n -1,n ∈N *

. 变式训练

1.(2014·江西,17)已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.

(1)令c n =a n

b n

,求数列{c n }的通项公式;

(2)若b n =3n -1,求数列{a n }的前n 项和S n .

解 (1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *), 所以a n +1b n +1-a n b n

=2,即c n +1-c n =2.

所以数列{c n }是以1为首项,2为公差的等差数列,故c n =2n -1. (2)由b n =3n -1知a n =c n b n =(2n -1)3n -1,

于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1, 3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)·3n ,

相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n =-2-(2n -2)3n , 所以S n =(n -1)3n +1.

2.(2014·四川,19)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;

(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1

ln 2,求数列????

??a n b n 的

前n 项和T n .

解 (1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,有2a 8=4×2a 7=2a 7+2. 解得d =a 8-a 7=2.

所以,S n =na 1+n (n -1)

2d

=-2n +n (n -1) =n 2-3n .

(2)函数f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1

ln 2. 由题意得,a 2-1ln 2=2-1

ln 2, 解得a 2=2.所以d =a 2-a 1=1. 从而a n =n ,b n =2n .

所以T n =12+222+3

23+…+n -12

n -1+n 2n ,

2T n =11+22+322+…+n 2

n -1.

因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12

n -1-n 2n =2n +

1-n -2

2n .

所以,T n =2n +1-n -2

2n

.

3.(2015·湖北,18)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1)求数列{a n },{b n }的通项公式;

(2)当d >1时,记c n =a n

b n ,求数列{

c n }的前n 项和T n .

解 (1)由题意有,???10a 1+45d =100,

a 1d =2,

即???2a 1+9d =20,a 1d =2, 解得???a 1=1,d =2或?????a 1=9,

d =29

.

故???a n =2n -1,b n =2n -

1或?????a n =1

9(2n +79),

b n =9·? ??

??

29n -1. (2)由d >1,知a n =2n -1,b n =2

n -1

,故c n =2n -1

2

n -1,于是

T n =1+32+522+723+9

24+…+2n -12n -1,①

12T n =12+322+523+724+9

25+…+2n -32n -1+2n -12n .② ①-②可得

12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32

n -1.

4.(2015·山东,18)设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;

(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 解 (1)因为2S n =3n +3, 所以2a 1=3+3,故a 1=3,

当n >1时,2S n -1=3n -

1+3,

此时2a n =2S n -2S n -1=3n -3n -1=2×3n -1,即a n =3n -

1,

所以a n =?

????3,n =1,

3n -1,n >1.

(2)因为a n b n =log 3a n ,所以b 1=1

3

当n >1时,b n =31-n log 33n -1=(n -1)·31-

n .

所以T 1=b 1=1

3

当n >1时,T n =b 1+b 2+b 3+…+b n =13

+(1×3-1+2×3-2+…+(n -1)×31-

n ),

所以3T n =1+(1×30+2×3-1+…+(n -1)×32-

n ),

两式相减,得2T n =23

+(30+3-1+3-2+…+32-n )-(n -1)×31-

n

=23+1-31

-n 1-3-1-(n -1)×31-n =136-6n +32×3n ,所以T n

=1312-6n +34×3n , 经检验,n =1时也适合.

综上可得T n =1312-6n +3

4×3n

.

5.(2015·浙江,17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ⅠN *),b 1+12b 2+13b 3+…+1

n b n =b n +1

-1(n ⅠN *).

(1)求a n 与b n ;

(2)记数列{a n b n }的前n 项和为T n ,求T n .

解 (1)由a 1=2,a n +1=2a n ,得a n =2n (n ⅠN *). 由题意知:

当n =1时,b 1=b 2-1,故b 2=2. 当n ≥2时,1

n b n =b n +1-b n ,整理得

b n +1n +1=b n

n

,所以b n =n (n ⅠN *). (2)由(1)知 a n b n =n ·2n .

因此T n =2+2·22+3·23+…+n ·2n ,

2T n =22+2·23+3·24+…+n ·2n +

1,

所以T n -2T n =2+22+23+…+2n -n ·2n +

1.

故T n =(n -1)2n +

1+2(n ⅠN *).

6.(2015·湖南,19)设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3, n ⅠN *. (1)证明:a n +2=3a n ; (2)求S n .

(1)证明 由条件,对任意n ⅠN *,有a n +2=3S n -S n +1+3, 因而对任意n ⅠN *,n ≥2,有a n +1=3S n -1-S n +3.

(完整版)数列求和常见的7种方法

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积

数列的通项公式与求和知识点及题型归纳总结

数列的通项公式与求和知识点及题型归纳总结 知识点精讲 一、基本概念 (1)若已知数列的第1项(或前项),且从第2项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么该公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法. (2)数列的第n 项n a 与项数n 之间的函数关系,可以用一个公式()n a f n =来表示,那么n a 就是数列 的通项公式. 注:①并非所有的数列都有通项公式; ②有的数列可能有不同形式的通项公式; ③数列的通项就是一种特殊的函数关系式; ④注意区别数列的通项公式和递推公式. 题型归纳及思路提示 题型1 数列通项公式的求解 思路提示 常见的求解数列通项公式的方法有观察法、利用递推公式和利用n S 与n a 的关系求解. 观察法 根据所给的一列数、式、图形等,通过观察法归纳出其数列通项. 利用递推公式求通项公式 ①叠加法:形如1()n n a a f n +=+的解析式,可利用递推多式相加法求得n a ②叠乘法:形如1()n n a f n a -= (0)n a ≠*(2,)n n N ≥∈的解析式, 可用递推多式相乘求得n a ③构造辅助数列:通过变换递推公式,将非等差(等比)数列 构造成为等差或等比数列来求其通项公式.常用的技巧有待定系数法、取倒数法、对称变换法和同除以指数法. 利用n S 与n a 的关系求解 形如 1(,)()n n n f S S g a -=的关系,求其通项公式,可依据 1* 1(1)(2,) n n n S n a S S n n N -=? =?-≥∈?,求出n a 观察法 观察法即根据所给的一列数、式、图形等,通过观察分析数列各项的变化规律,求其通项.使用观察法时要注意:①观察数列各项符号的变化,考虑通项公式中是否有(1)n -或者1 (1) n -- 部分.②考虑各项的变化 规律与序号的关系.③应特别注意自然数列、正奇数列、正偶数列、自然数的平方{}2 n 、{}2n 与(1) n -有 关的数列、等差数列、等比数列以及由它们组成的数列. 例6.20写出下列数列的一个通项公式: (1)325374 ,,,,,,;751381911 - --L

数列求和7种方法(方法全,例子多)

数列求和的基本方法和技巧(配以相应的练习) 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+=

2、等比数列求和公式:??? ??≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1 log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11) 21 1(2 1--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n

数列的通项公式与求和的常见方法

数列的通项公式与求和 的常见方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常见数列通项公式的求法 类型一:公式法1(或定义法) 例1. 已知数列{}n a 满足11a =, 12n n a a +-=*()n N ∈,求数列{}n a 的通项公式。 例2.已知数列{}n a 满足12a =,13n n a a += *()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足12a =, 110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 满足16a =-, 13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。 3. 已知数列{}n a 满足11a =,2 1 2=a , 11112n n n a a a -++=(2)n ≥,求数列{}n a 的通项公式。 4.已知数列{}n a 满足11a =,13n n a a +=*()n N ∈,求数列{}n a 的通项公式。 类型二:(累加法))(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足121n n a a n +=++*()n N ∈, 11a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足21 1=a ,n a a n n 21+=+, * ()n N ∈求数列{}n a 的通项公式。 2.已知数列{}n a 满足11a =,11 (1) n n a a n n -=+-, (2)n ≥,求数列{}n a 的通项公式。 3.已知数列{}n a 满足1231n n n a a +=+?+, * ()n N ∈,13a =,求数列{}n a 的通项公式。 4.已知数列{}n a 中,12a =,11 ln(1)n n a a n +=++, 求数列{}n a 的通项公式。 类型三:(叠乘法)n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解 例:在数列{}n a 中,已知11a =,1(1)n n na n a -=+, (2)n ≥,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,* ()n N ∈,求数列{}n a 的通项公式。 2.已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求数列{}n a 的通项公式。 3.已知数列 {}n a 满足125n n n a a +=?* ()n N ∈, 13a =,求数列{}n a 的通项公式。 类型四:递推公式为n S 与n a 的关系式()n n S f a = 解法:这种类型一般利用 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例. 已知数列{}n a 的前n 项和为n S ,12a =且 12n n S a +=(2)n ≥.求数列{}n a 的通项公式。 1. 已知数列{}n a 的前n 项和为n S ,42n n S a =+, 求数列{}n a 的通项公式。 2.已知数列{}n a 的前n 项和为n S ,251n S n n =+- 求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,23n n S =+, 求数列{}n a 的通项公式。 类型五:待定系数法 q pa a n n +=+1(其中p ,q 均为常数, )0)1((≠-p pq ) 解法:构造新数列{}n b ; p a a n n =+++λ λ 1解出λ,可 得数列λ+=n n a b 为等比数列 例:已知数列{}n a 中,11=a ,121+=+n n a a ,求数列{}n a 的通项公式。 变式练习: 1. 已知数列{}n a 满足13a =,121n n a a +=- *()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 中,11=a ,6431+=+n n a a ,求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,且 232n n S a n =-*()n N ∈.求数列{}n a 的通项公式。 类型六:交叉项问题 解法:一般采用求倒数或除以交叉项得到一个新 的等差数列。 例:已知数列{}n a 满足11a =, 122 n n n a a a +=+*()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足11a =, 1(1)n n na n a +=++(1)n n +, *()n N ∈,求数列{} n a 的通项公式。 2. 已知首项都为1的两个数列{}n a 、{}n b (0n b ≠*n N ∈),满足 11120n n n n n n a b a b b b +++-+=,令n n n a c b = 求数列{}n c 的通项公式。 类型七:(公式法2) (n n n p pa a ?+=+λ1)p>0; 解法:将其变形为p p a p a n n n n λ =-++11,即数列?? ????n n p a 为以 p λ 为公差的等差数列; 例. 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足1155+++=n n n a a ,11=a ,求数列{}n a 的通项公式 2.已知数列{}n a 满足n n n a a 3431?+=+,11=a ,求数列{}n a 的通项公式。 数列求和的常用方法 类型一:公式法 例 .已知3 log 1log 23=x ,求32x x x ++???++???+n x 的前n 项和. 变式练习 1.数列}{n a 中,12+=n a n ,求n S . 2.等比数列}{n a 的前n 项和12-=n n S ,求 2 232221n a a a a ++++ . 类型二:分组求和法 例. 求数列的前n 项和: 2321 ,,721,421,1112-+???+++-n n ,… 变式练习 1.已知数列}{n a 中,n n n a 32+=,求n S . 2.已知数列}{n a 中,n n n a 21 )12(++=,求n S . 类型三:倒序相加法 例.求 88sin 3sin 2sin 1sin 2 222+???+++ 89sin 2 +的值. 1.已知x x f += 11 )(,求)3()2()1(f f f ++ 类型四:错位相减法: 例.数列}{n a 中,12)12(-?-n n n a ,求n S . 变式练习 1.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 2.数列}{n a 的前n 项和为2 2n S n =,}{n b 为等比数列, 且.)(,112211b a a b b a =-= (1)求数列}{n a 和}{n b 的通项公式;

数列求通项公式及求和9种方法

【方 a n a S n 数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型 亠、S n 是数列{a n }的前n 项的和 S i (n 1) S n S n 1 (n 2 ) S n 1 ”代入消兀消a n 【注意】漏检验n 的值(如n 1的情况 [例 U . ( 1)已知正数数列{a n }的前n 项的和为S n , 且对 任意的正整数n 满足2\金 如1 ,求数列{a n }的 通项公式。 (2)数列{a n }中,印1对所有的正整数n 都有 a 1 a 2 a 3 L a n 『, 求数列 {a n } 的通项公式 【作业一】 2 n 1 n * 1 — 1 ■数列 a n 满足 a 1 3a 2 3 a 3 L 3 a n - (n N ) , 求数列a n 的通项公式. (二).累加、累乘 a 型如 a a f(n) , am f (n )

型一:a n a n 1 f (n),用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 a n a n 1 f(n), a n 1 a n 2 f(n 1), a2 a1 f (2) n 2, 从而a n a1 f (n) f(n 1) L f (2),检验n 1 的情况型二:|电f(n),用累乘法求通项公式(推导等比a n1 数列通项公式的方法) 【方法】n 2,亘也L邑f(n) f(n 1) L f(2) a n 1 a n 2 a i 即色f(n) f(n 1) L f(2),检验n 1的情a1 况 【小结】一般情况下,“累加法”(“累乘法”)里只有n 1个等式相加(相乘). 1 1 【例2】.(1)已知a1 2,a n a n1 ■n^[(n 2),求 a n ■ n 2 (2)已知数列a n满足a n1 - 2a n,且a1 n 2 3 求a n .

几种常见数列求和方法的归纳

几种常见数列求和方法的归 纳 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

几种常见数列求和方法的归纳 1.公式法:即直接用等差、等比数列的求和公式求和。主要适用于等差,比数列求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (等差数列推导用到特殊方法:倒序相加) (2)等比数列的求和公式??? ??≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定 要讨论) (3)222221(1)(21) 1236n k n n n k n =++=++++=∑(不作要求,但要了解) 例:(1)求=2+4+6+ (2) (2)求=x+++…+(x ) 2.倒序相加:适用于:数列距离首尾项距离相同的两项相加和相同。 例:(1)求证:等差数列{}的前n 项和d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)222 2sin 1sin 2sin 3sin 89+++ + . 3.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 例:(1)求和:(1) 个 n n S 111111111++++= 81 10 9101--+n n (2)2 2222)1 ()1()1(n n n x x x x x x S ++++++=

当1±≠x 时, n x x x x S n n n n 2) 1()1)(1(2 2222+-+-=+ 当n S x n 4,1=±=时 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。(分式求和常用裂项相消) 常见的拆项公式: 111)1(1+-=+n n n n ,) 121 121(21)12)(12(1+--=+-n n n n , 1111 ()(2)22 n n n n =-++, ) 12)(12(1 1)12)(12()2(2+-+=+-n n n n n , 2= 例:(1)求和:111 1 ,,,,, 132435 (2) n n ???+ . (2)求和)12)(12()2(5343122 22+-++?+?=n n n S n 1 2)1(2++= n n n S n 5.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ (适用于:等差数列乘以等比数列的通项求和) 例:求和:23,2,3, ,, n a a a na

数列求和常见的7种方法

数列求与得基本方法与技巧 一、总论:数列求与7种方法: 利用等差、等比数列求与公式 错位相减法求与 反序相加法求与 分组相加法求与 裂项消去法求与 分段求与法(合并法求与) 利用数列通项法求与 二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法, 三、逆序相加法、错位相减法就是数列求与得二个基本方法。 数列就是高中代数得重要内容,又就是学习高等数学得基础。在高考与各种数学竞赛中都占有重要得地位、数列求与就是数列得重要内容之一,除了等差数列与等比数列有求与公式外,大部分数列得求与都需 要一定得技巧、下面,就几个历届高考数学与数学竞赛试题来谈谈数列求与得基本方法与技巧、 一、利用常用求与公式求与 利用下列常用求与公式求与就是数列求与得最基本最重要得方法。 1、等差数列求与公式: 2、等比数列求与公式: 3、4、 5、 [例1]已知,求得前n项与。 解:由 由等比数列求与公式得(利用常用公式) ===1- [例2]设S n=1+2+3+…+n,n∈N*,求得最大值、 解:由等差数列求与公式得, (利用常用公式) ∴= == ∴当,即n=8时, 二、错位相减法求与 这种方法就是在推导等比数列得前n项与公式时所用得方法,这种方法主要用于求数列{an·bn} 得前n项与,其中{a n}、{bn}分别就是等差数列与等比数列。 [例3]求与:………………………① 解:由题可知,{}得通项就是等差数列{2n—1}得通项与等比数列{}得通项之积 设………………………。②(设制错位)

①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列得求与公式得: ∴ [例4] 求数列前n 项得与、 解:由题可知,{}得通项就是等差数列{2n}得通项与等比数列{}得通项之积 设…………………………………① ………………………………② (设制错位) ①—②得 (错位相减) ∴ 三、反序相加法求与 这就是推导等差数列得前n项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个。 [例5] 求证: 证明: 设…………………………、。 ① 把①式右边倒转过来得 (反序) 又由可得 ………….。……、. ② ①+②得 (反序相加) ∴ [例6] 求得值 解:设…………、 ① 将①式右边反序得 ………….。② (反序) 又因为 ① +②得 (反序相加) )89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++???++++=S =89 ∴ S=44、5 题1 已知函数 (1)证明:; (2)求得值。 解:(1)先利用指数得相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明得结论可知, 两式相加得: 所以、 练习、求值:

数列求和7种方法(方法全-例子多)

一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6112++==∑=n n n k S n k n [例1]已知3 log 1log 23-=x ,求???++???+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得n n x x x x S +???+++=32(利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 [例2]设S n =1+2+3+…+n,n ∈N *,求1)32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得)1(21+= n n S n ,)2)(1(21++=n n S n (利用常用公式) ∴1)32()(++=n n S n S n f =64 342++n n n =n n 64 341 ++=50)8 (12+-n n 50 1≤ ∴当8 8-n ,即n =8时,501)(max =n f 题1.等比数列 的前n项和S n=2n-1,则= 题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a =,b =,c = . 解:原式=答案: 二、错位相减法求和

高中数列求和方法大全

1.直接法:即直接用等差、等比数列的求和公式求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列的求和公式?????≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定要讨论) 3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常见拆项公式: 111)1(1+-=+n n n n ; 1111()(2)22 n n n n =-++ )1 21 121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=? 5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 6.合并求和法:如求22222212979899100-++-+-Λ的和。 7.倒序相加法: 8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法: 1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析: 例1.求和:①321ΛΛ个 n n S 111111111++++= ②22222)1 ()1()1(n n n x x x x x x S ++++++ =Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。 解:①)110(9 110101011112 -= ++++==k k k k a Λ321Λ个 ] )101010[(9 1 )]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ81 10910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++ =n n n x x x x x x S Λ

数列求通项公式及求和9种方法

数列求通项公式及求和 9种方法 -CAL-FENGHAI.-(YICAI)-Company One1

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a 。 【注意】漏检验n的值 (如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a 的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都 有2 123n a a a a n ????=,求数列{}n a的通项公式 【作业一】 1-1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈,求数列{}n a的通项公式. (二).累加、累乘型如 1 () n n a a f n - -=, 1 () n n a f n a - =

1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-+ +,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比数列通项公式的方法) 【方法】2n ≥,12 121 ()(1)(2)n n n n a a a f n f n f a a a ---???=?-?? 即1 ()(1)(2)n a f n f n f a =?-??,检验1n =的情况 【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘). 【例2】. (1) 已知2 11=a ,)2(1 1 21≥-+=-n n a a n n ,求 n a . (2)已知数列 {}n a 满足1 2 n n n a a n +=+,且32 1=a ,求n a .

数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a。 【注意】漏检验n的值(如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都有 2 123n a a a a n ????= L,求数列{}n a的通项公式 【作业一】 1-1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈ L,求数列 {} n a的通项公式. (二).累加、累乘型如 1 () n n a a f n - -=, 1 () n n a f n a - =

导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-++L ,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比数列通项公式的方法) 【方法】2n ≥,12 121 ()(1)(2)n n n n a a a f n f n f a a a ---???=?-??L L 即1 ()(1)(2)n a f n f n f a =?-??L ,检验1n =的情 况 【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘). 【例2】. (1) 已知21 1=a ,)2(1 1 21≥-+=-n n a a n n ,求 n a . (2)已知数列{}n a 满足1 2n n n a a n +=+,且3 21=a ,求n a .

高中数列求和公式

数列求和的基本方法和技巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(21 1 +==∑=n n k S n k n 自然数列 4、 )12)(1(611 2++==∑=n n n k S n k n 自然数平方组成的数列 [例1] 已知3log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64 341 ++=50)8 (12+-n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

数列的通项及求和公式

数列的通项及求和公式专题课内导学案11 一、基本公式法:等差数列,等比数列。 例1、(1)若{}n a 是等差数列,公差0d ≠, 236,,a a a 成等比,11a =,则n a =_________。 (2)若{}n a 是等比数列,243,,a a a 成等差, 13a =,则n a =_________。 二、已知n S 求n a :11 (2) (1)n n n S S n a S n --≥?=? =?。 类型1、(1)已知2 1n S n n =++,求n a 。 (2)已知101n n S =-,求n a 。 类型2、(1)已知32n n S a =-,求n a ; (2)已知3 32 n n S a =-,求n a ; (3)已知22n n S a +=,求n a 。 类型3、(1)2 24n n n a a S +=,0n a >,求n a ; (2)2 1056n n n S a a =++,0n a >,求n a ; (3)2111 424 n n n S a a = ++,0n a >,求n a 。 类型4、(1)11a =,12n n a S +=,求n a ; (2)11a =,12n n S a +=,求n a ; (3)13a =,11n n S a +=+,求n a 。

类型5、(1)122n n a a a ++???+=,则n a =_____ (2)123n a a a a n ?????=,则n a =_____ (3)12323n a a a na n +++???+=,则n a =_____ (4) 3 12123n a a a a n n +++???+=,则n a =_____ (5)231233333n n a a a a n +++???+=,n a =___ 三、形如1()n n a a f n +-=的递推数列求通项公式,使用累加法。 例1、(1)数列{}n a 中满足12a =,1n n a a n +=+,求n a 的通项公式。 (2)已知数列{}n a 中满足13a =, 12n n n a a +=+,求n a 的通项公式。 (3)求数列2,4,9,17,28,42,???的通项公式。 四、形如 1 ()n n a f n a +=的递推数列求通项公式,使用累乘法。 例1、(1)数列{}n a 中满足15a =,12n n n a a +=?, 求n a 的通项公式。 (2)数列{}n a 中满足14a =,11 n n n a a n +=?+,求n a 的通项公式。 (3)112a = ,111 n n n a a n --=+(2n ≥),求n a 的通项公式。 五、构造法 例1、(1)14a = 2=,求n a ; (2)14a =,22 12n n a a +-=,求n a ; (3)14a =, 144 2n n a a +-=,求n a ; (4)12a =,112(1)n n a a +-=-,求n a ; (5)11a =,1(1)3n n n a na ++=,求n a ; (6)11a =,121n n a a n n +-=+,求n a 。

数列求和的8种常用方法(最全)

求数列前n 项和的8种常用方法 一.公式法(定义法): 1.等差数列求和公式: 11()(1)22 n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+?,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,( )111n n a q S q -= -,特别要注意对公比的讨论; 3.可转化为等差、等比数列的数列; 4.常用公式: (1)1 n k k ==∑1 2 123(1)n n n ++++=+L ; (2)21n k k ==∑222211 63 1123(1)(21)()(1)2 n n n n n n n ++++=++==++L ; (3)31n k k ==∑33332(1)2 123[ ]n n n +++++=L ; (4)1 (21)n k k =-=∑2135(21)n n ++++-=L . 例1 已知3log 1 log 23-= x ,求23n x x x x ++++ 的前n 项和. 解:由21 2log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 23n n S x x x x =++++L =x x x n --1)1(=2 11)211(2 1--n =1-n 2 1 例2 设123n S n =++++ ,*n N ∈,求1 )32()(++=n n S n S n f 的最大值. 解:易知 )1(21+=n n S n , )2)(1(2 1 1++=+n n S n ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64341++=50 )8(1 2+-n n 50 1≤ ∴ 当 8 8 -n ,即8n =时,501)(max =n f . 二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。如:等差数列的前n 项和即是用此法推导的,就是

数列求和的常用方法(新)

数列求和的常用方法 永德二中 王冬梅 数列是高中数学的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 下面,简单介绍下数列求和的基本方法和技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1 S n 2S n 3(1(2(3的前n 例1解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1321+= +?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则12321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ② ①式—②式:n n n nq q q q q S q -+?++++=--1321)1(

?)1(11132n n n nq q q q q q S -+?++++-=- ?)11(11n n n nq q q q S ----= ?q nq q q S n n n ----=1)1(12 ?1(1(2(3(42、根式形式,如: n n n n a n -+=++=111 例2:求数列211?,321?,4 31?,…,)1(1+n n ,…的前n 项和n S 解:∵)1(1+n n =1 11+-n n

1 11313121211+-+?++-+-=n n S n ?1 11+-=n S n 例3:求数列 311?,421?,531?,…,)2(1+n n ,…的前n 项和n S 解:由于:)2(1+n n =2 11(21+-n n ) ? ? 例3例4(1 (2则,由条件:对任意R x ∈都有2)1()(=-+x f x f 。 ?)( 1222222+=+?+++=n a n ?1+=n a n ?21+=+n a n ?11=-+n n a a 从而:数列}{n a 是1,21==d a 的等差数列。

数列求和7种方法(方法全_例子多)

一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11) 211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 题1.等比数列的前n项和S n=2n-1,则=

(完整word版)数列求和的各种方法

数列求和的方法 教学目标 1.熟练掌握等差、等比数列的前n 项和公式. 2.掌握非等差、等比数列求和的几种常见方法. 3.能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题. 教学内容 知识梳理 1.求数列的前n 项和的方法 (1)公式法 ①等差数列的前n 项和公式 S n = ()21n a a n +=na 1+()d n n 2 1-. ②等比数列的前n 项和公式 (Ⅰ)当q =1时,S n =na 1; (Ⅱ)当q ≠1时,S n =() q q a n --111=a 1-a n q 1-q . ③常见的数列的前n 项和:, 1+3+5+……+(2n -1)= ,等 (2)分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法 这是推导等差数列前n 项和时所用的方法,将一个数列倒过来排序,如果原数列相加时,若有公因式 可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和. (5)错位相减法 这是推导等比数列的前n 项和公式时所用的方法,主要用于求{a n ·b n }的前n 项和,其中{a n }和{b n }分别是等差数列和等比数列. (6)并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 123+++……+n= (1)2 n n +2 n 2222123+++……+n =(1)(21)6n n n ++3333 123+++……+n =2 (1)2n n +??????

相关文档
最新文档