CDMA通信原理
CDMA通信原理

4.CDMA通信的基本原理:CDMA通信与传统的通信系统相比较, 发端多了扩频调制,收端多了扩频解调。
4.1.2 CDMA系统的正向链路
在CDMA移动通信系统中,基站和移动台之间的通 信即空中接口尤为关键,其中基站发往移动台的 信号线路称为正向链路(下行连路或前向链路)。 同理,由移动台发往基站的信号线路,称为反向
图4-10简化的CDMA系统反向链路组成方框图
4.2 CDMA蜂窝网的关键技术
4.2.1 功率控制
CDMA蜂窝移动通信系统中,所有用户使用相同的频带同时 发送信息,如果各移动台以相同功率发射信号,则信号到 达基站时,因为传输路程的不同,基站接收到的靠近基站 的用户发送的信号比在小区边缘用户发射的信号强度大, 因此远端的用户信号被近端的用户信号湮没,这就是所谓 的“远近效应”。
4.硬切换 移动台穿越工作于不同载频的小区时发生的过境切换,即移动 台先中断与原基站的联系,再与新基站取得联系。
图4-25软/更软切换
4.3 码分系统容量 4.3.1 CDMA蜂窝通信系统的容量
蜂窝系统采用频率再用技术,使用相同频率的小区称为共道 小区,共道小区之间存在的干扰称为共道干扰。
对于模拟频分和数字时分系统来说,系统容量的计算比较简 单。当蜂窝系统的总频道数M=W/B(W是无线频率带宽,B为信 道间隔)和区群小区数m(小区频率复用数)确定后,每一小 区的可用信道数,即模拟频分和数字时分蜂窝网移动通信系 统容量的一般公式为:
自适应阵的基本思想是依据相应的优化算法,调整权矢量W, 从而使天线阵的性能达到最优。这里选择一个环形排列的8 元阵为例,如图4-22所示,实现天线阵波束的自适应生成。
图4-21 自适应天线组成方框图
cdma原理

cdma原理
CDMA技术是一种无线通信技术。
它的全称是Code Division Multiple Access,意为码分多址。
这种技术是用来区分并处理在同一频率下的多个通信信号。
相比于其他通信技术,CDMA有着许多优势。
CDMA的原理是通过为每个用户分配唯一的码序列来实现信号分离。
在发送数据之前,数据会被翻转和编码,然后和码序列相乘。
这样操作后,每个用户的数据都会成为一个特定的序列。
在接收端,接收机会使用相同的码序列进行解码,来提取出第一步所编码的数据。
由于CDMA技术采用了码序列的不同,不同用户之间的通信信号是完全重叠的。
但是,通过使用不同的码序列,接收机可以分离出正确的信号。
这使得CDMA在信号干扰和隐私保护方面有着很好的优势。
另外,CDMA还具有自适应功率控制的能力。
这意味着在通信时,发送和接收端会动态地调整功率水平来提高传输质量,并减少对其他用户的干扰。
这种功率控制策略可以使CDMA 系统具备更好的频谱利用率。
CDMA技术广泛应用于移动通信中,特别是在第三代(3G)和第四代(4G)移动通信中得到了广泛采用。
通过CDMA技术,多个用户可以在同一频段上进行通信,大大提高了通信效率和容量。
此外,CDMA技术还支持高速数据传输,使得用户能够享受到更快的网络连接速度。
总之,CDMA技术通过码分多址的原理,实现了多个用户在同一频率下的同时通信。
其优势包括信号分离、抗干扰能力强和频谱利用率高等。
在移动通信领域,CDMA技术发挥了重要的作用,为用户提供了更高效和可靠的通信服务。
cdma技术原理

cdma技术原理CDMA技术原理CDMA是一种基于扩频技术的数字通信技术,它利用码分复用技术将多个用户的信息同时传输到一个频带上,从而提高了频谱利用率。
它具有抗多径干扰、抗窃听和抗干扰的特点。
CDMA技术的原理是通过将数字信息转换为数字码,并使用扩频技术,在传输过程中将码分离,然后再将其合并在一起。
在发射端,码被与一个伪码相乘,使信号的频谱宽度扩展到一个宽带。
接收端通过将接收到的信号与相同的伪码相乘,将其还原为原始信息信号,从而实现了码分复用。
CDMA技术使用伪随机码将每个用户的信息分离并重组在一起。
每个用户都有一个唯一的伪随机码,这个码可以在传输过程中与其他用户的码区分开来。
这种码的长度足够长,使得能够为大量用户提供独一无二的码。
因此,CDMA技术可以同时处理多个用户的信息,而不会发生信号冲突。
在CDMA系统中,每个用户的信息被编码为数字码,并与伪随机码相乘。
这样,用户的信息就被扩展到了一个带宽,这个带宽远远大于用户信息的带宽。
这种扩展的带宽使得CDMA系统具有高度的抗多径干扰和抗窃听能力。
多径干扰是由信号在传输过程中反射和折射产生的,这种干扰会导致信号的失真和弱化。
CDMA技术可以通过使用扩频技术将信号扩展到一个宽带来抵消多径干扰。
抗窃听的能力是由于CDMA技术使用伪随机码对信号进行编码,这使得信号非常难以被窃听者解码。
CDMA技术的另一个重要特征是抗干扰能力。
当多个用户同时使用同一个频段时,会产生互相干扰的现象。
CDMA技术通过使用伪随机码和信道编码技术来抵消这种干扰。
伪随机码使得每个用户的信号都不同,而信道编码技术则可以检测和恢复错误的信息。
CDMA技术是一种基于扩频技术的数字通信技术,具有抗多径干扰、抗窃听和抗干扰的特点。
它通过使用伪随机码将多个用户的信息同时传输到一个频带上,从而提高了频谱利用率,同时也提高了通信的可靠性和安全性。
CDMA通信原理知识介绍

CDMA(码分多址)是一种多址接入技术,允许多个用户在同一频段上同时进行通信。 它通过给每个用户分配一组独特的扩频码(也称为伪随机码或扩频序列),来区分不同 的用户信号。CDMA技术的核心在于扩频,即将信息数据与扩频码进行调制,扩展信
号带宽,使信号在传输过程中具有更强的抗干扰能力。
CDMA技术的发展历程和应用领域
05 CDMA通信的优势与局限 性
CDMA通信的优势
抗干扰能力强
CDMA采用扩频技术,能够有效抑制干扰信 号,降低误码率。
保密性好
CDMA中的扩频编码具有很好的保密性,能 够实现安全的无线通信。
频谱利用率高
CDMA允许用户在相同的频段上共享频率资 源,提高了频谱利用率。
软切换和软容量
CDMA支持软切换技术,提高了通信的稳定 性和覆盖范围。
04 CDMA通信的关键技术
功率控制技术
总结词
功率控制技术是CDMA通信中的重要技术之一,用于平衡不同用户之间的干扰和信号强度,确保通信质量。
详细描述
在CDMA通信系统中,多个用户共享相同的频谱资源,因此需要有效地控制各个用户的发射功率,以减小相互之 间的干扰。功率控制技术通过动态调整用户的发射功率,保证接收端能够可靠地接收信号,同时降低对其他用户 的干扰。
感谢您的观看
CDMA与其他通信技术的融合与比较
CDMA与OFDMA的融合
将CDMA的扩频技术与OFDMA的高效频谱利用技术 相结合,实现更高速的数据传输。
CDMA与MIMO的融合
利用MIMO技术提高CDMA系统的空间分集增益和 容量。
CDMA与毫米波通信的融合
探索在毫米波频段应用CDMA技术,以实现超高速 无线通信。
软切换技术
cdma 原理

cdma 原理
CDMA (Code Division Multiple Access) 是一种无线通信技术,它的原理是利用编码和解码技术对信号进行分割和复用,使多个用户在同一频率带宽内同时进行通信。
CDMA技术的主要原理如下:
1. 扩频:CDMA技术中,每个用户的信号都会被编码成一串较长的扩频码。
扩频码是一种伪随机序列,其比特频率远远高于传输信号的比特频率。
通过扩频码,原始信号被扩展到更宽的频带上。
2. 复用:CDMA技术使用了碎片化复用的原理。
每个用户的扩频码都是不同的,并且彼此相互正交,使得多个用户的信号可以重叠在同一频率上而不会相互干扰。
接收端利用正交性可以将目标用户的信号从其他用户的信号中分离出来。
3. 解码:在接收端,接收到的复用的信号会经过一个与发送端相同的扩频码进行解码。
解码后的信号可以恢复为原始信号。
CDMA技术的优点在于其频谱利用效率较高,可以支持更多的用户数目,而且在信道干扰和多路径衰落等复杂环境下仍能保持通信质量。
此外,CDMA还具有抗干扰和保密性好的特点,使其成为许多移动通信系统的重要技术。
CDMA移动通信基础

CDMA移动通信基础1. 介绍CDMA( Division Multiple Access,码分多址)是一种数字移动通信技术,广泛应用于第二代(2G)和第三代(3G)移动通信系统中。
CDMA技术采用了先进的信号处理和调制技术,能够提高信号传输效率和容量,实现更可靠的通信。
2. CDMA原理CDMA技术基于扩频技术,通过将用户信号加上特定的扩频码再进行调制发送,不同用户的扩频码相互正交,可以实现多用户传输而不干扰。
CDMA还采用了软切换和功率控制等技术,使得信号传输更加可靠和高效。
3. CDMA系统结构CDMA系统主要由以下几个组成部分构成:基站(Base Station):负责与用户终端进行通信,进行信号的调制解调和多用户间的分配和管理。
用户终端(Mobile Station):包括方式和数据终端等,与基站进行通信,传输用户的语音、数据等信息。
控制器(Controller):负责对基站和用户终端进行管理和控制,实现系统的整体协调和优化。
移动交换中心(Mobile Switching Center):负责处理跨网络的通信和连接,实现用户的呼叫转移等功能。
4. CDMA优势CDMA技术相比其他移动通信技术具有以下优势:多用户接入:CDMA技术能够实现多用户接入而不干扰,提高了系统的容量和效率。
抗干扰能力强:CDMA技术采用了扩频技术,能够有效抵抗多径传播和其他干扰。
隐私保护性能好:CDMA技术采用了特定的扩频码对用户信号进行加密,保护用户通信的隐私。
调度灵活性高:CDMA技术能够灵活地对用户进行分配和调度,优化系统资源的利用。
5. CDMA在移动通信中的应用CDMA技术在移动通信中得到了广泛的应用:第二代(2G)CDMA系统:以IS-95标准为代表,提供了CDMA2000 1X、CDMA2000 1xEV-DO等多种技术,实现了语音和数据的传输。
第三代(3G)CDMA系统:以CDMA2000 3X标准为代表,提供了更高的数据传输速率、更丰富的业务和更好的系统性能。
CDMA基本原理、基站结构及故障处理

CDMA基本原理、基站结构及故障处理1.CDMA概况:1)CDMA国际上最具代表性的3G技术标准有3种:WCDMA、TD-SCDMA、CDMA2000。
其中TD-SCDMA属于时分双工(TDD)模式,是由中国提出的3G技术标准;而 WCDMA和CDMA2000属于频分双工(FDD)模式,WCDMA技术标准由欧洲和日本提出,CDMA2000技术标准由美国提出。
2)太原CDMA网络全部使用MOTOROLA的网络设备。
现网使用的技术是来自美国的CMDA2000/95。
2.CDMA基本原理:码分多址的概念:CDMA是码分多址(Code-DivisionMultiple Access)技术的缩写,是近年来在数字移动通信进程中出现的一种先进的无线扩频通信技术,它能够满足市场对移动通信容量和品质的高要求,具有频谱利用率高、话音质量好、保密性强、掉话率低、电磁辐射小、容量大、覆盖广等特点,可以大量减少投资和降低运营成本。
1)CDMA是扩频通信的一种,他具有扩频通信的以下特点:(1)抗干扰能力强。
这是扩频通信的基本特点,是所有通信方式无法比拟的。
(2)宽带传输,抗衰落能力强。
(3)由于采用宽带传输,在信道中传输的有用信号的功率比干扰信号的功率低得多,因此信号好像隐蔽在噪声中;即功率话密度比较低,有利于信号隐蔽。
(4)利用扩频码的相关性来获取用户的信息,抗截获的能力强。
2)在扩频CDMA通信系统中,由于采用了新的关键技术而具有一些新的特点:(1)采用了多种分集方式。
除了传统的空间分集外。
由于是宽带传输起到了频率分集的作用,同时在基站和移动台采用了RAKE接收机技术,相当于时间分集的作用。
(2)采用了话音激活技术和扇区化技术。
因为CDMA系统的容量直接与所受的干扰有关,采用话音激活和扇区化技术可以减少干扰,可以使整个系统的容量增大。
(3)采用了移动台辅助的软切换。
通过它可以实现无缝切换,保证了通话的连续性,减少了掉话的可能性。
CDMA移动通信基础

CDMA移动通信基础CDMA移动通信基础CDMA( Division Multiple Access)是一种移动通信技术,是利用信道编码技术实现多用户使用同一频段的一种通信方式。
CDMA移动通信基础是了解CDMA技术的基本原理和核心技术的基础知识。
1. CDMA技术的原理CDMA技术的基本原理是将不同的用户数据按照一定的编码方式进行编码,然后通过扩频技术将编码后的数据发送到整个频段。
接收端通过解码和去除其他用户干扰的方式,将特定用户的数据还原出来。
CDMA技术主要包括信道编码、信道容量和干扰抑制三个方面。
1.1 信道编码CDMA技术通过采用码片作为信号的传输方式,将用户数据进行编码与解码过程。
码片是一种特殊的伪随机序列,能够使信息在传输过程中增加冗余度,提高信号的鲁棒性和抗干扰能力。
1.2 信道容量CDMA技术具有高信道容量的特点。
由于CDMA技术采用扩频技术,可以在同一频段内传输多个用户的数据,从而提高了频段的利用率。
CDMA技术的信道容量远高于传统的时分多路复用和频分多路复用技术。
1.3 干扰抑制CDMA技术可以通过编码和解码的过程对其他用户的信号进行抑制。
由于CDMA技术是将所有用户的信号混合传输,所以没有固定的时间、频率和位序来分离不同用户的信号。
其他用户的信号会被视为干扰信号,需要通过解码过程进行抑制。
2. CDMA系统的结构CDMA系统由基站、移动台和交换网三部分组成。
基站负责与移动台进行无线通信,传输和接收数据,以及与交换网连接进行调度管理。
移动台是用户使用的移动终端设备,在与基站建立通信连接后可以进行语音通话或数据传输。
交换网则负责处理和转发数据,实现移动通信的集中管理。
3. CDMA系统的优点和应用CDMA技术具有以下优点:抗干扰能力强,能有效抵抗同频干扰和多径干扰。
高带宽利用率,实现多用户使用同一频段。
通信质量稳定,支持高速数据传输和语音通话。
系统容量大,能够容纳大量用户通信。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S( f)
f0
f
扩频后的信号频谱
干扰噪声 信号
信号 干扰噪声
f0
f
解扩频前的信号频谱
信号
脉冲干扰
纵坐标位为能量密度
f0
f
解扩频后的信号频谱
白噪声
频域信号带宽的扩展和解扩
在时域信号速率的提高,意味着频域信号带宽的展宽
S( f)
S( f)
信号 信号
S( f)
f0
f
扩频前的信号频谱
S( f)
f0
f
扩频后的信号频谱
频率
业务信道在不同 时间分配给不同用户 如:DAMPS、GSM
业务信道在不同 频率 频段分配给不同用户
如:AMPS、TACS
多址技术
CDMA
时间
码
FDMA
时间
时间
TDMA
用户3 用户2 用户1
用户1 用户2 用户3
用户3
用户2 用户1
频率
所有用户在同一时间、 同一频段上、根据编码 获得业务信道,如 WCDMA, CDMA2000
课程内容
主 移动通信发展简介 要 CDMA原 理 内 CDMA关 键 技 术 容 IS95A/B技 术
CDMA 1X技 术
移动通信发展历程
多址技术
CDMA
时间
码
FDMA
时间
时间
TDMA
用户3 用户2 用户1
用户1 用户2 用户3
用户3
用户2 用户1
频率ห้องสมุดไป่ตู้
所有用户在同一时间、 同一频段上、根据编码 获得业务信道,如 WCDMA, CDMA2000
12345678
88888888
数据传输方向
加扰-M序列
0
0
1
1
1
0
Out
包含两部分
( 1) 最 大 移 位 寄 存 器 序 列 ( 2) 掩 码
输 出 序 列 周 期 为 2 N- 1 ( 没 有 全 0 状 态 ) 当掩码不同时,输出相位不同
加扰-长码
长码为一周期为242-1的m-序列
移位相加特性: 输出序列Ck和Ck+t(Ck时移t)的相加后的序列仍 然是序列Ck的一个时移序列
频率
业务信道在不同 时间分配给不同用户 如:DAMPS、GSM
业务信道在不同 频率 频段分配给不同用户
如:AMPS、TACS
3G的目标
全球统一频段、统一标准,全球无缝覆盖 高效的频谱效率 更高的服务质量、保密性和可靠性 易于从2G系统平滑演进与过渡,并反向兼
容2G系统 提供多媒体业务,速率最高可达2Mbps
车速环境:144kbps 步行环境:384kbps 室内环境:2Mbps
IMT-2000技术规范体制
WCDMA
3GPP FDD方式
CDMA2000
3GPP2 FDD方式
3G 体制
TD-SCDMA
CWTS TDD方式
3G三种制式的比较(1)
3G三种制式的比较(2)
接收机结构 闭环功率控制
越区切换 解调方式 码片速率
(Mcps)
发射分集方式
同步方式 核心网
WCDMA RAKE 支持 软、硬切换 相干解调
3.84
TSTD STTD FBTD 异步 GSM MAP
cdma2000 RAKE 支持
软、硬切换 相干解调
N*1.2288
OTD STS
同步 ANSI-41
TD-SCDMA RAKE 支持
软、硬切换 相干解调 1.28
(symbol) ➢ 经过最终扩频后得到的数据被称为码片(chip)
❖处理增益(Processing Gain)
➢ 理解为最终扩频速率与信息速率的比;在IS-95中处理增益 为128,即21dB
❖前向(Forward):从基站到移动台 ❖反向(Reverse):从移动台到基站
目录
主 移动通信发展简介
CDMA原理
要
扩频技术
内
常用术语
容
系统模型
CDMA关键技术
IS95A/B技术
CDMA 1X技术
CDMA系统模型
信源编码
可变速率声码器:
8K QCELP 13K QCELP
特点:
支持话音激活。
典型的双工通话中,通话的占空比小于35%,不通话 的时候降低发射速率,有效提高系统容量。
信道编码
信 道 编 码 采 用 卷 积 码 或 者 TURBO码 。 约 束 长 度 : 移 位 寄 存 器 数 +1。
无
异步 GSM MAP
CDMA的发展历程
目录
移动通信发展简介
主
CDMA原理
要
扩频技术
内
常用术语
容
系统模型
CDMA关键技术
IS95A/B技术
CDMA 1X技术
扩频过程
解扩过程
频域信号带宽的扩展和解扩
在时域信号速率的提高,意味着频域信号带宽的展宽
S( f)
S( f)
信号 信号
S( f)
f0
f
扩频前的信号频谱
编码效率:输入bit数 / 输出符号数。
卷积码编码器
交织
12345678
11111111
12345678
22222222
12345678
33333333
12345678
交
44444444
12345678
织
15 25 35 45 5 65 75 85
12345678
66666666
12345678
77777777
扩频
64 阶正交Walsh 函数
6 symbol
i D5 D4 D3 D2 D1D0 2
64*64 矩阵
wi64
0101……01
Walsh码为正向信道提供信道化,反向由长码提供信道化 反向,编码器输出的数据每六个比特对应一个Walsh码
(6符号变换到64个码片) 正向,编码器输出的数据每一个比特对应一个Walsh码
自相关特性: 不同相位的m-序列的相关值为-1
长码的作用:
长码在前向用作扰码加密 控制功率控制比特的插入
扩频
Walsh码
W2n=Wn Wn Wn Wn
W1=0
0000
0101 W2= 0 0 W4=0 0 1 1
01
0110
采用64阶Walsh函数作为扩频函数,Walsh码是
正交码。若两个函数互相关系数为0,则相互正 交。
干扰噪声 信号
信号 干扰噪声
f0
f
解扩频前的信号频谱
信号
脉冲干扰
纵坐标位为能量密度
f0
f
解扩频后的信号频谱
白噪声
目录
主 移动通信发展简介
CDMA原理
要
扩频技术
内
常用术语
容
系统模型
CDMA关键技术
IS95A/B技术
CDMA 1X技术
常用术语
❖比特(bit)、符号(Symbol)与码片(Chip)
➢ 输入含有信息的数据称为比特(bit) ➢ 在经过卷积编码器、符号重复与交织后的数据被称为符号
CDMA通信原理
课程目标
了解移动通信发展历史 掌握CDMA系统的技术:
信源编码、信道编码、交织、加扰、扩频、调 制
关键技术:功控、软切换、呼吸、RAKE接收机 信道结构:导频、同步、寻呼、业务、接入 长码、短码和Walsh码在CDMA系统中的作用
掌握CDMA 1X的技术特点
Walsh码、Turbo码