土建专业外文翻译2
土建工程英语(最全版)

Grout leakage 漏浆(挂帘)
Gas-forming admixture发气剂
Graduation 级配
H
Hardening agent 硬化剂
Honeycomb 蜂窝
Horizontal bar 水平筋
Height measurement高程测量
I
Initial setting strength 初凝强度
Shear strength 抗剪强度
Slump 塌落度
Specific weight/gravity 比重
Stability against sliding 抗滑稳定性
Second order triangulation 二等三角测量
Set out 放线,放样
Stake-line 测桩线
State plane coordinate system 国家平面坐标系
Additive 添加剂
Asbestos 石棉
Accelerator 速凝剂
Air-entraining agent 引气剂
Aggregate 骨料
Azimuth 方位角
B
Bending and unbending 反复弯曲
Batching plant 搅拌站
Bar/reinforcement yard 钢筋加工场
Construction joint 施工缝
Curing agent 养护剂
Cold bending test 冷弯试验
D
Distribution bar分布筋
Dowel 插筋
Depression 坑洼
Delivery sheet 运料单
E
Earthworks 土方工程
土建工程 翻译

土建工程翻译土建工程(Civil Engineering)是指涉及土地、地下和地上工程建设的一门工程学科。
它包括土木工程、结构工程、地基工程、道路工程、桥梁工程、隧道工程、水利工程、环境工程等多个专业领域。
土建工程涉及的范围广泛,应用广泛,是现代社会基础设施建设的重要组成部分。
土建工程的主要任务是规划、设计、施工和维护各种土木结构,以满足人们的日常生活和工作需求。
它涉及的工程包括建筑物、公路、桥梁、隧道、水库、港口、码头、排水系统、污水处理设施、环境保护设施等。
土建工程师通常需要具备扎实的数学、物理、地质等基础知识,以及相关的工程技术和管理能力。
以下是一些土建工程中常用的中英文对照例句:1. Civil engineering plays a crucial role in the development of modern society.(土建工程在现代社会的发展中起着至关重要的作用。
)2. The construction of the new highway is a major civil engineering project.(新公路的建设是一个重要的土建工程项目。
)3. The civil engineer is responsible for designing and supervising the construction of the bridge.(土建工程师负责桥梁的设计和施工监督。
)4. The foundation of the building needs to be reinforced to ensure its stability.(建筑物的地基需要加固以保证其稳定性。
)5. The civil engineering team is working on the excavation of the tunnel.(土建工程团队正在进行隧道的挖掘工作。
)6. The water supply system in the city was upgraded by the civil engineering department.(城市的供水系统由土建工程部门进行了升级。
土木工程毕业设计外文翻译原文+翻译

The bridge crack produced the reason to simply analyseIn recent years, the traffic capital construction of our province gets swift and violent development, all parts have built a large number of concrete bridges. In the course of building and using in the bridge, relevant to influence project quality lead of common occurrence report that bridge collapse even because the crack appears The concrete can be said to " often have illness coming on " while fracturing and " frequently-occurring disease ", often perplex bridge engineers and technicians. In fact , if take certain design and construction measure, a lot of cracks can be overcome and controlled. For strengthen understanding of concrete bridge crack further, is it prevent project from endanger larger crack to try one's best, this text make an more overall analysis , summary to concrete kind and reason of production , bridge of crack as much as possible, in order to design , construct and find out the feasible method which control the crack , get the result of taking precautions against Yu WeiRan.Concrete bridge crack kind, origin cause of formation In fact, the origin cause of formation of the concrete structure crack is complicated and various, even many kinds of factors influence each other , but every crack has its one or several kinds of main reasons produced . The kind of the concrete bridge crack, on its reason to produce, can roughly divide several kinds as follows :(1) load the crack caused Concrete in routine quiet .Is it load to move and crack that produce claim to load the crack under the times of stress bridge, summing up has direct stress cracks , two kinds stress crack onces mainly. Direct stress crack refer to outside load direct crack that stress produce that cause. The reason why the crack produces is as follows, 1, Design the stage of calculating , does not calculate or leaks and calculates partly while calculating in structure; Calculate the model is unreasonable; The structure is supposed and accorded with by strength actually by strength ; Load and calculate or leak and calculate few; Internal force and matching the mistake in computation of muscle; Safety coefficient of structure is not enough. Do not consider the possibility that construct at the time of the structural design; It is insufficientto design the section; It is simply little and assigning the mistake for reinforcing bar to set up; Structure rigidity is insufficient; Construct and deal with improperly; The design drawing can not be explained clearly etc.. 2, Construction stage, does not pile up and construct the machines , material limiting ; Is it prefabricate structure structure receive strength characteristic , stand up , is it hang , transport , install to get up at will to understand; Construct not according to the design drawing, alter the construction order of the structure without authorization , change the structure and receive the strength mode; Do not do the tired intensity checking computations under machine vibration and wait to the structure . 3, Using stage, the heavy-duty vehicle which goes beyond the design load passes the bridge; Receive the contact , striking of the vehicle , shipping; Strong wind , heavy snow , earthquake happen , explode etc.. Stress crack once means the stress of secondary caused by loading outside produces the crack. The reason why the crack produces is as follows, 1, In design outside load function , because actual working state and routine , structure of thing calculate have discrepancy or is it consider to calculate, thus cause stress once to cause the structure to fracture in some position. Two is it join bridge arch foot is it is it assign " X " shape reinforcing bar , cut down this place way , section of size design and cut with scissors at the same time to adopt often to design to cut with scissors, theory calculate place this can store curved square in , but reality should is it can resist curved still to cut with scissors, so that present the crack and cause the reinforcing bar corrosion. 2, Bridge structure is it dig trough , turn on hole , set up ox leg ,etc. to need often, difficult to use a accurate one diagrammatic to is it is it calculate to imitate to go on in calculating in routine, set up and receive the strength reinforcing bar in general foundation experience. Studies have shown , after being dug the hole by the strength component , it will produce the diffraction phenomenon that strength flows, intensive near the hole in a utensil, produced the enormous stress to concentrate. In long to step prestressing force of the continuous roof beam , often block the steel bunch according to the needs of section internal force in stepping, set up the anchor head, but can often see the crack in the anchor firm section adjacent place. So if deal with improper, in corner or component form sudden change office , block place to be easy to appear crack strengthreinforcing bar of structure the. In the actual project, stress crack once produced the most common reason which loads the crack. Stress crack once belong to one more piece of nature of drawing , splitting off , shearing. Stress crack once is loaded and caused, only seldom calculate according to the routine too, but with modern to calculate constant perfection of means, times of stress crack to can accomplish reasonable checking computations too. For example to such stresses 2 times of producing as prestressing force , creeping ,etc., department's finite element procedure calculates levels pole correctly now, but more difficult 40 years ago. In the design, should pay attention to avoiding structure sudden change (or section sudden change), when it is unable to avoid , should do part deal with , corner for instance, make round horn , sudden change office make into the gradation zone transition, is it is it mix muscle to construct to strengthen at the same time, corner mix again oblique to reinforcing bar , as to large hole in a utensil can set up protecting in the perimeter at the terms of having angle steel. Load the crack characteristic in accordance with loading differently and presenting different characteristics differently. The crack appear person who draw more, the cutting area or the serious position of vibration. Must point out , is it get up cover or have along keep into short crack of direction to appear person who press, often the structure reaches the sign of bearing the weight of strength limit, it is an omen that the structure is destroyed, its reason is often that sectional size is partial and small. Receive the strength way differently according to the structure, the crack characteristic produced is as follows: 1, The centre is drawn. The crack runs through the component cross section , the interval is equal on the whole , and is perpendicular to receiving the strength direction. While adopting the whorl reinforcing bar , lie in the second-class crack near the reinforcing bar between the cracks. 2, The centre is pressed. It is parallel on the short and dense parallel crack which receive the strength direction to appear along the component. 3, Receive curved. Most near the large section from border is it appear and draw into direction vertical crack to begin person who draw curved square, and develop toward neutralization axle gradually. While adopting the whorl reinforcing bar , can see shorter second-class crack among the cracks. When the structure matches muscles less, there are few but wide cracks, fragility destruction may take place in thestructure 4, Pressed big and partial. Heavy to press and mix person who draw muscle a less one light to pigeonhole into the component while being partial while being partial, similar to receiving the curved component. 5, Pressed small and partial. Small to press and mix person who draw muscle a more one heavy to pigeonhole into the component while being partial while being partial, similar to the centre and pressed the component. 6, Cut. Press obliquly when the hoop muscle is too dense and destroy, the oblique crack which is greater than 45?? direction appears along the belly of roof beam end; Is it is it is it destroy to press to cut to happen when the hoop muscle is proper, underpart is it invite 45?? direction parallel oblique crack each other to appear along roof beam end. 7, Sprained. Component one side belly appear many direction oblique crack, 45?? of treaty, first, and to launch with spiral direction being adjoint. 8, Washed and cut. 4 side is it invite 45?? direction inclined plane draw and split to take place along column cap board, form the tangent plane of washing. 9, Some and is pressed. Some to appear person who press direction roughly parallel large short cracks with pressure.(2) crack caused in temperature changeThe concrete has nature of expanding with heat and contract with cold, look on as the external environment condition or the structure temperature changes, concrete take place out of shape, if out of shape to restrain from, produce the stress in the structure, produce the temperature crack promptly when exceeding concrete tensile strength in stress. In some being heavy to step foot-path among the bridge , temperature stress can is it go beyond living year stress even to reach. The temperature crack distinguishes the main characteristic of other cracks will be varied with temperature and expanded or closed up. The main factor is as follows, to cause temperature and change 1, Annual difference in temperature. Temperature is changing constantly in four seasons in one year, but change relatively slowly, the impact on structure of the bridge is mainly the vertical displacement which causes the bridge, can prop up seat move or set up flexible mound ,etc. not to construct measure coordinate , through bridge floor expansion joint generally, can cause temperature crack only when the displacement of the structure is limited, for example arched bridge , just bridge etc. The annual difference in temperature of our country generally changes therange with the conduct of the average temperature in the moon of January and July. Considering the creep characteristic of the concrete, the elastic mould amount of concrete should be considered rolling over and reducing when the internal force of the annual difference in temperature is calculated. 2, Rizhao. After being tanned by the sun by the sun to the side of bridge panel , the girder or the pier, temperature is obviously higher than other position, the temperature gradient is presented and distributed by the line shape . Because of restrain oneself function, cause part draw stress to be relatively heavy, the crack appears. Rizhao and following to is it cause structure common reason most , temperature of crack to lower the temperature suddenly 3, Lower the temperature suddenly. Fall heavy rain , cold air attack , sunset ,etc. can cause structure surface temperature suddenly dropped suddenly, but because inside temperature change relatively slow producing temperature gradient. Rizhao and lower the temperature internal force can adopt design specification or consult real bridge materials go on when calculating suddenly, concrete elastic mould amount does not consider converting into and reducing 4, Heat of hydration. Appear in the course of constructing, the large volume concrete (thickness exceeds 2. 0), after building because cement water send out heat, cause inside very much high temperature, the internal and external difference in temperature is too large, cause the surface to appear in the crack. Should according to actual conditions in constructing, is it choose heat of hydration low cement variety to try one's best, limit cement unit's consumption, reduce the aggregate and enter the temperature of the mould , reduce the internal and external difference in temperature, and lower the temperature slowly , can adopt the circulation cooling system to carry on the inside to dispel the heat in case of necessity, or adopt the thin layer and build it in succession in order to accelerate dispelling the heat. 5, The construction measure is improper at the time of steam maintenance or the winter construction , the concrete is sudden and cold and sudden and hot, internal and external temperature is uneven , apt to appear in the crack. 6, Prefabricate T roof beam horizontal baffle when the installation , prop up seat bury stencil plate with transfer flat stencil plate when welding in advance, if weld measure to be improper, iron pieces of nearby concrete easy to is it fracture to burn. Adopt electric heat piece draw law piece draw prestressing force at the component ,prestressing force steel temperature can rise to 350 degrees Centigrade , the concrete component is apt to fracture. Experimental study indicates , are caused the intensity of concrete that the high temperature burns to obviously reduce with rising of temperature by such reasons as the fire ,etc., glueing forming the decline thereupon of strength of reinforcing bar and concrete, tensile strength drop by 50% after concrete temperature reaches 300 degrees Centigrade, compression strength drops by 60%, glueing the strength of forming to drop by 80% of only round reinforcing bar and concrete; Because heat, concrete body dissociate ink evaporate and can produce and shrink sharply in a large amount(3) shrink the crack causedIn the actual project, it is the most common because concrete shrinks the crack caused. Shrink kind in concrete, plasticity shrink is it it shrinks (is it contract to do ) to be the main reason that the volume of concrete out of shape happens to shrink, shrink spontaneously in addition and the char shrink. Plasticity shrink. About 4 hours after it is built that in the course of constructing , concrete happens, the cement water response is fierce at this moment, the strand takes shape gradually, secrete water and moisture to evaporate sharply, the concrete desiccates and shrinks, it is at the same time conduct oneself with dignity not sinking because aggregate,so when harden concrete yet,it call plasticity shrink. The plasticity shrink producing amount grade is very big, can be up to about 1%. If stopped by the reinforcing bar while the aggregate sinks, form the crack along the reinforcing bar direction. If web , roof beam of T and roof beam of case and carry baseplate hand over office in component vertical to become sectional place, because sink too really to superficial obeying the web direction crack will happen evenly before hardenning. For reducing concrete plasticity shrink,it should control by water dust when being construct than,last long-time mixing, unloading should not too quick, is it is it take closely knit to smash to shake, vertical to become sectional place should divide layer build. Shrink and shrink (do and contract). After the concrete is formed hard , as the top layer moisture is evaporated progressively , the humidity is reduced progressively , the volume of concrete is reduced, is called and shrunk to shrink (do and contract). Because concrete top layermoisture loss soon, it is slow for inside to lose, produce surface shrink heavy , inside shrink a light one even to shrink, it is out of shape to restrain from by the inside concrete for surface to shrink, cause the surface concrete to bear pulling force, when the surface concrete bears pulling force to exceed its tensile strength, produce and shrink the crack. The concrete hardens after-contraction to just shrink and shrink mainly .Such as mix muscle rate heavy component (exceed 3% ), between reinforcing bar and more obvious restraints relatively that concrete shrink, the concrete surface is apt to appear in the full of cracks crackle. Shrink spontaneously. Spontaneous to it shrinks to be concrete in the course of hardenning , cement and water take place ink react, the shrink with have nothing to do by external humidity, and can positive (whether shrink, such as ordinary portland cement concrete), can negative too (whether expand, such as concrete, concrete of slag cement and cement of fly ash). The char shrinks. Between carbon dioxide and hyrate of cement of atmosphere take place out of shape shrink that chemical reaction cause. The char shrinks and could happen only about 50% of humidity, and accelerate with increase of the density of the carbon dioxide. The char shrinks and seldom calculates . The characteristic that the concrete shrinks the crack is that the majority belongs to the surface crack, the crack is relatively detailed in width , and criss-cross, become the full of cracks form , the form does not have any law . Studies have shown , influence concrete shrink main factor of crack as follows, 1, Variety of cement , grade and consumption. Slag cement , quick-hardening cement , low-heat cement concrete contractivity are relatively high, ordinary cement , volcanic ash cement , alumina cement concrete contractivity are relatively low. Cement grade low in addition, unit volume consumption heavy rubing detailed degree heavy, then the concrete shrinks the more greatly, and shrink time is the longer. For example, in order to improve the intensity of the concrete , often adopt and increase the cement consumption method by force while constructing, the result shrinks the stress to obviously strengthen . 2, Variety of aggregate. Such absorbing water rates as the quartz , limestone , cloud rock , granite , feldspar ,etc. are smaller, contractivity is relatively low in the aggregate; And such absorbing water rates as the sandstone , slate , angle amphibolite ,etc. are greater, contractivity is relatively high. Aggregate grains of foot-path heavy to shrink light inaddition, water content big to shrink the larger. 3, Water gray than. The heavier water consumption is, the higher water and dust are, the concrete shrinks the more greatly. 4, Mix the pharmaceutical outside. It is the better to mix pharmaceutical water-retaining property outside, then the concrete shrinks the smaller. 5, Maintain the method . Water that good maintenance can accelerate the concrete reacts, obtain the intensity of higher concrete. Keep humidity high , low maintaining time to be the longer temperature when maintaining, then the concrete shrinks the smaller. Steam maintain way than maintain way concrete is it take light to shrink naturall. 6, External environment. The humidity is little, the air drying , temperature are high, the wind speed is large in the atmosphere, then the concrete moisture is evaporated fast, the concrete shrinks the faster. 7, Shake and smash the way and time. Machinery shake way of smashing than make firm by ramming or tamping way concrete contractivity take little by hand. Shaking should determine according to mechanical performance to smash time , are generally suitable for 55s / time. It is too short, shake and can not smash closely knit , it is insufficient or not even in intensity to form the concrete; It is too long, cause and divide storey, thick aggregate sinks to the ground floor, the upper strata that the detailed aggregate stays, the intensity is not even , the upper strata incident shrink the crack. And shrink the crack caused to temperature, worthy of constructing the reinforcing bar againing can obviously improve the resisting the splitting of concrete , structure of especially thin wall (thick 200cm of wall ). Mix muscle should is it adopt light diameter reinforcing bar (8 |? construct 14 |? ) to have priority , little interval assign (whether @ 10 construct @ 15cm ) on constructing, the whole section is it mix muscle to be rate unsuitable to be lower than 0 to construct. 3%, can generally adopt 0 . 3%~0. 5%.(4), crack that causes out of shape of plinth of the groundBecause foundation vertical to even to subside or horizontal direction displacement, make the structure produce the additional stress, go beyond resisting the ability of drawing of concrete structure, cause the structure to fracture. The even main reason that subside of the foundation is as follows, 1, Reconnoitres the precision and is not enough for , test the materials inaccuratly in geology. Designing, constructing without fully grasping the geological situation, this is the main reason that cause the ground not to subside evenly .Such as hills area or bridge, district of mountain ridge,, hole interval to be too far when reconnoitring, and ground rise and fall big the rock, reconnoitring the report can't fully reflect the real geological situation . 2, The geological difference of the ground is too large. Building it in the bridge of the valley of the ditch of mountain area, geology of the stream place and place on the hillside change larger, even there are weak grounds in the stream, because the soil of the ground does not causes and does not subside evenly with the compressing. 3, The structure loads the difference too big. Under the unanimous terms, when every foundation too heavy to load difference in geological situation, may cause evenly to subside, for example high to fill out soil case shape in the middle part of the culvert than to is it take heavy to load both sides, to subside soon heavy than both sides middle part, case is it might fracture to contain 4, The difference of basic type of structure is great. Unite it in the bridge the samly , mix and use and does not expand the foundation and a foundation with the foundation, or adopt a foundation when a foot-path or a long difference is great at the same time , or adopt the foundation of expanding when basis elevation is widely different at the same time , may cause the ground not to subside evenly too 5, Foundation built by stages. In the newly-built bridge near the foundation of original bridge, if the half a bridge about expressway built by stages, the newly-built bridge loads or the foundation causes the soil of the ground to consolidate again while dealing with, may cause and subside the foundation of original bridge greatly 6, The ground is frozen bloatedly. The ground soil of higher moisture content on terms that lower than zero degree expands because of being icy; Once temperature goes up , the frozen soil is melted, the setting of ground. So the ground is icy or melts causes and does not subside evenly . 7, Bridge foundation put on body, cave with stalactites and stalagmites, activity fault,etc. of coming down at the bad geology, may cause and does not subside evenly . 8, After the bridge is built up , the condition change of original ground . After most natural grounds and artificial grounds are soaked with water, especially usually fill out such soil of special ground as the soil , loess , expanding in the land ,etc., soil body intensity meet water drop, compress out of shape to strengthen. In the soft soil ground , season causes the water table to drop to draw water or arid artificially, the ground soil layer consolidates and sinks again,reduce the buoyancy on the foundation at the same time , shouldering the obstruction of rubing to increase, the foundation is carried on one's shoulder or back and strengthened .Some bridge foundation is it put too shallow to bury, erode , is it dig to wash flood, the foundation might be moved. Ground load change of terms, bridge nearby is it is it abolish square , grit ,etc. in a large amount to put to pile with cave in , landslide ,etc. reason for instance, it is out of shape that the bridge location range soil layer may be compressed again. So, the condition of original ground change while using may cause and does not subside evenly Produce the structure thing of horizontal thrust to arched bridge ,etc., it is the main reason that horizontal displacement crack emerges to destroy the original geological condition when to that it is unreasonable to grasp incompletely , design and construct in the geological situation.桥梁裂缝产生原因浅析近年来,我省交通基础建设得到迅猛发展,各地建立了大量的混凝土桥梁。
土木建筑工程英汉词典

土木建筑工程英汉词典Soil Mechanics - 土力学Structural Analysis - 结构分析Concrete - 混凝土Steel - 钢铁Reinforcement - 钢筋Foundation - 基础Geotechnical Engineering - 岩土工程Shoring - 支护Excavation - 挖掘Tunneling - 隧道工程Surveying - 测量Geology - 地质学Hydraulics - 水力学Construction Management - 施工管理Structural Engineering - 结构工程Bridge - 桥梁Highway - 公路Irrigation - 灌溉Water Supply - 供水Foundation Design - 基础设计Soil Testing - 土壤测试Construction Materials - 建筑材料Earthquake Engineering - 地震工程Environmental Impact Assessment - 环境影响评价Safety Management - 安全管理Cost Estimation - 成本估算Project Planning - 项目规划Project Management - 项目管理Building Codes - 建筑规范Risk Assessment - 风险评估Contract Administration - 合同管理Quality Control - 质量控制Concrete Technology - 混凝土技术Steel Structures - 钢结构Engineering Drawing - 工程图纸Construction Equipment - 建筑设备Slope Stability - 边坡稳定性Dams - 水坝Seismic Design - 地震设计Construction Site - 建筑工地Structural Integrity - 结构完整性Water Treatment - 水处理Sustainable Construction - 可持续建筑Architectural Design - 建筑设计Material Testing - 材料测试Quantity Surveying - 工程测量Earthworks - 土方工程Structural Rehabilitation - 结构修复Road Construction - 道路建设Facade Design - 幕墙设计Construction Methodology - 施工方法论Retaining Wall - 挡土墙Heritage Conservation - 文物保护Building Maintenance - 建筑维护Engineering Ethics - 工程伦理Construction Waste Management - 建筑废弃物管理Public Infrastructure - 公共基础设施Landscape Architecture - 景观建筑。
(完整版)土木工程专业英语翻译

(完整版)土木工程专业英语翻译(1)Concrete and reinforced concrete are used as building materials in every country. In many, including Canada and the United States, reinforced concrete is a dominant structural material in engineered construction.(1)混凝土和钢筋混凝土在每个国家都被用作建筑材料。
在许多国家,包括加拿大和美国,钢筋混凝土是一种主要的工程结构材料。
(2)The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction.(2) 钢筋混凝土建筑的广泛存在是由于钢筋和制造混凝土的材料,包括石子,沙,水泥等,可以通过多种途径方便的得到,同时兴建混凝土建筑时所需要的技术也相对简单。
(3)Concrete and reinforced concrete are used in bridges, building of all sorts, underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships.(3)混凝土和钢筋混凝土被应用于桥梁,各种形式的建筑,地下结构,蓄水池,电视塔,海上石油平台,以及工业建筑,大坝,甚至船舶等。
土木工程 专业外语词汇大全中英翻译

土木工程专业外语词汇大全中英翻译1. 综合类大地工程geotechnical engineering1. 综合类反分析法back analysis method1. 综合类基础工程foundation engineering1. 综合类临界状态土力学critical state soil mechanics1. 综合类数值岩土力学numerical geomechanics1. 综合类土soil, earth1. 综合类土动力学soil dynamics1. 综合类土力学soil mechanics1. 综合类岩土工程geotechnical engineering1. 综合类应力路径stress path1. 综合类应力路径法stress path method2. 工程地质及勘察变质岩metamorphic rock2. 工程地质及勘察标准冻深standard frost penetration2. 工程地质及勘察冰川沉积glacial deposit2. 工程地质及勘察冰积层(台)glacial deposit2. 工程地质及勘察残积土eluvial soil, residual soil2. 工程地质及勘察层理beding2. 工程地质及勘察长石feldspar2. 工程地质及勘察沉积岩sedimentary rock2. 工程地质及勘察承压水confined water2. 工程地质及勘察次生矿物secondary mineral2. 工程地质及勘察地质年代geological age2. 工程地质及勘察地质图geological map2. 工程地质及勘察地下水groundwater2. 工程地质及勘察断层fault2. 工程地质及勘察断裂构造fracture structure2. 工程地质及勘察工程地质勘察engineering geological exploration 2. 工程地质及勘察海积层(台)marine deposit2. 工程地质及勘察海相沉积marine deposit2. 工程地质及勘察花岗岩granite2. 工程地质及勘察滑坡landslide2. 工程地质及勘察化石fossil2. 工程地质及勘察化学沉积岩chemical sedimentary rock2. 工程地质及勘察阶地terrace2. 工程地质及勘察节理joint2. 工程地质及勘察解理cleavage2. 工程地质及勘察喀斯特karst2. 工程地质及勘察矿物硬度hardness of minerals2. 工程地质及勘察砾岩conglomerate2. 工程地质及勘察流滑flow slide2. 工程地质及勘察陆相沉积continental sedimentation2. 工程地质及勘察泥石流mud flow, debris flow2. 工程地质及勘察年粘土矿物clay minerals2. 工程地质及勘察凝灰岩tuff2. 工程地质及勘察牛轭湖ox-bow lake2. 工程地质及勘察浅成岩hypabyssal rock2. 工程地质及勘察潜水ground water2. 工程地质及勘察侵入岩intrusive rock2. 工程地质及勘察取土器geotome2. 工程地质及勘察砂岩sandstone2. 工程地质及勘察砂嘴spit, sand spit2. 工程地质及勘察山岩压力rock pressure2. 工程地质及勘察深成岩plutionic rock2. 工程地质及勘察石灰岩limestone2. 工程地质及勘察石英quartz2. 工程地质及勘察松散堆积物rickle2. 工程地质及勘察围限地下水(台)confined ground water 2. 工程地质及勘察泻湖lagoon2. 工程地质及勘察岩爆rock burst2. 工程地质及勘察岩层产状attitude of rock2. 工程地质及勘察岩浆岩magmatic rock, igneous rock2. 工程地质及勘察岩脉dike, dgke2. 工程地质及勘察岩石风化程度degree of rock weathering 2. 工程地质及勘察岩石构造structure of rock2. 工程地质及勘察岩石结构texture of rock2. 工程地质及勘察岩体rock mass2. 工程地质及勘察页岩shale2. 工程地质及勘察原生矿物primary mineral2. 工程地质及勘察云母mica2. 工程地质及勘察造岩矿物rock-forming mineral2. 工程地质及勘察褶皱fold, folding2. 工程地质及勘察钻孔柱状图bore hole columnar section3. 土的分类饱和土saturated soil3. 土的分类超固结土overconsolidated soil3. 土的分类冲填土dredger fill3. 土的分类充重塑土3. 土的分类冻土frozen soil, tjaele3. 土的分类非饱和土unsaturated soil3. 土的分类分散性土dispersive soil3. 土的分类粉土silt, mo3. 土的分类粉质粘土silty clay3. 土的分类高岭石kaolinite3. 土的分类过压密土(台)overconsolidated soil3. 土的分类红粘土red clay, adamic earth3. 土的分类黄土loess, huangtu(China)3. 土的分类蒙脱石montmorillonite3. 土的分类泥炭peat, bog muck3. 土的分类年粘土clay3. 土的分类年粘性土cohesive soil, clayey soil3. 土的分类膨胀土expansive soil, swelling soil3. 土的分类欠固结粘土underconsolidated soil3. 土的分类区域性土zonal soil3. 土的分类人工填土fill, artificial soil3. 土的分类软粘土soft clay, mildclay, mickle3. 土的分类砂土sand3. 土的分类湿陷性黄土collapsible loess, slumping loess3. 土的分类素填土plain fill3. 土的分类塑性图plasticity chart3. 土的分类碎石土stone, break stone, broken stone, channery, chat, crushed stone, deritus 3. 土的分类未压密土(台)underconsolidated clay3. 土的分类无粘性土cohesionless soil, frictional soil, non-cohesive soil3. 土的分类岩石rock3. 土的分类伊利土illite3. 土的分类有机质土organic soil3. 土的分类淤泥muck, gyttja, mire, slush3. 土的分类淤泥质土mucky soil3. 土的分类原状土undisturbed soil3. 土的分类杂填土miscellaneous fill3. 土的分类正常固结土normally consolidated soil3. 土的分类正常压密土(台)normally consolidated soil3. 土的分类自重湿陷性黄土self weight collapse loess4. 土的物理性质阿太堡界限Atterberg limits4. 土的物理性质饱和度degree of saturation4. 土的物理性质饱和密度saturated density4. 土的物理性质饱和重度saturated unit weight4. 土的物理性质比重specific gravity4. 土的物理性质稠度consistency4. 土的物理性质不均匀系数coefficient of uniformity, uniformity coefficient4. 土的物理性质触变thixotropy4. 土的物理性质单粒结构single-grained structure4. 土的物理性质蜂窝结构honeycomb structure4. 土的物理性质干重度dry unit weight4. 土的物理性质干密度dry density4. 土的物理性质塑性指数plasticity index4. 土的物理性质含水量water content, moisture content4. 土的物理性质活性指数4. 土的物理性质级配gradation, grading4. 土的物理性质结合水bound water, combined water, held water4. 土的物理性质界限含水量Atterberg limits4. 土的物理性质颗粒级配particle size distribution of soils, mechanical composition of soil 4. 土的物理性质可塑性plasticity4. 土的物理性质孔隙比void ratio4. 土的物理性质孔隙率porosity4. 土的物理性质粒度granularity, grainness, grainage4. 土的物理性质粒组fraction, size fraction4. 土的物理性质毛细管水capillary water4. 土的物理性质密度density4. 土的物理性质密实度compactionness4. 土的物理性质年粘性土的灵敏度sensitivity of cohesive soil4. 土的物理性质平均粒径mean diameter, average grain diameter4. 土的物理性质曲率系数coefficient of curvature4. 土的物理性质三相图block diagram, skeletal diagram, three phase diagram4. 土的物理性质三相土tri-phase soil4. 土的物理性质湿陷起始应力initial collapse pressure4. 土的物理性质湿陷系数coefficient of collapsibility4. 土的物理性质缩限shrinkage limit4. 土的物理性质土的构造soil texture4. 土的物理性质土的结构soil structure4. 土的物理性质土粒相对密度specific density of solid particles4. 土的物理性质土中气air in soil4. 土的物理性质土中水water in soil4. 土的物理性质团粒aggregate, cumularpharolith4. 土的物理性质限定粒径constrained diameter4. 土的物理性质相对密度relative density, density index4. 土的物理性质相对压密度relative compaction, compacting factor, percent compaction, coefficient of compaction4. 土的物理性质絮状结构flocculent structure4. 土的物理性质压密系数coefficient of consolidation4. 土的物理性质压缩性compressibility4. 土的物理性质液限liquid limit4. 土的物理性质液性指数liquidity index4. 土的物理性质游离水(台)free water4. 土的物理性质有效粒径effective diameter, effective grain size, effective size4. 土的物理性质有效密度effective density4. 土的物理性质有效重度effective unit weight4. 土的物理性质重力密度unit weight4. 土的物理性质自由水free water, gravitational water, groundwater, phreatic water4. 土的物理性质组构fabric4. 土的物理性质最大干密度maximum dry density4. 土的物理性质最优含水量optimum water content5. 渗透性和渗流达西定律Darcy s law5. 渗透性和渗流管涌piping5. 渗透性和渗流浸润线phreatic line5. 渗透性和渗流临界水力梯度critical hydraulic gradient5. 渗透性和渗流流函数flow function5. 渗透性和渗流流土flowing soil5. 渗透性和渗流流网flow net5. 渗透性和渗流砂沸sand boiling5. 渗透性和渗流渗流seepage5. 渗透性和渗流渗流量seepage discharge5. 渗透性和渗流渗流速度seepage velocity5. 渗透性和渗流渗透力seepage force5. 渗透性和渗流渗透破坏seepage failure5. 渗透性和渗流渗透系数coefficient of permeability5. 渗透性和渗流渗透性permeability5. 渗透性和渗流势函数potential function5. 渗透性和渗流水力梯度hydraulic gradient6. 地基应力和变形变形deformation6. 地基应力和变形变形模量modulus of deformation6. 地基应力和变形泊松比Poisson s ratio6. 地基应力和变形布西涅斯克解Boussinnesq s solution6. 地基应力和变形残余变形residual deformation6. 地基应力和变形残余孔隙水压力residual pore water pressure6. 地基应力和变形超静孔隙水压力excess pore water pressure6. 地基应力和变形沉降settlement6. 地基应力和变形沉降比settlement ratio6. 地基应力和变形次固结沉降secondary consolidation settlement6. 地基应力和变形次固结系数coefficient of secondary consolidation6. 地基应力和变形地基沉降的弹性力学公式elastic formula for settlement calculation 6. 地基应力和变形分层总和法layerwise summation method6. 地基应力和变形负孔隙水压力negative pore water pressure6. 地基应力和变形附加应力superimposed stress6. 地基应力和变形割线模量secant modulus6. 地基应力和变形固结沉降consolidation settlement6. 地基应力和变形规范沉降计算法settlement calculation by specification6. 地基应力和变形回弹变形rebound deformation6. 地基应力和变形回弹模量modulus of resilience6. 地基应力和变形回弹系数coefficient of resilience6. 地基应力和变形回弹指数swelling index6. 地基应力和变形建筑物的地基变形允许值allowable settlement of building6. 地基应力和变形剪胀dilatation6. 地基应力和变形角点法corner-points method6. 地基应力和变形孔隙气压力pore air pressure6. 地基应力和变形孔隙水压力pore water pressure6. 地基应力和变形孔隙压力系数Apore pressure parameter A6. 地基应力和变形孔隙压力系数Bpore pressure parameter B6. 地基应力和变形明德林解Mindlin s solution6. 地基应力和变形纽马克感应图Newmark chart6. 地基应力和变形切线模量tangent modulus6. 地基应力和变形蠕变creep6. 地基应力和变形三向变形条件下的固结沉降three-dimensional consolidation settlement 6. 地基应力和变形瞬时沉降immediate settlement6. 地基应力和变形塑性变形plastic deformation6. 地基应力和变形谈弹性变形elastic deformation6. 地基应力和变形谈弹性模量elastic modulus6. 地基应力和变形谈弹性平衡状态state of elastic equilibrium6. 地基应力和变形体积变形模量volumetric deformation modulus6. 地基应力和变形先期固结压力preconsolidation pressure6. 地基应力和变形压缩层6. 地基应力和变形压缩模量modulus of compressibility6. 地基应力和变形压缩系数coefficient of compressibility6. 地基应力和变形压缩性compressibility6. 地基应力和变形压缩指数compression index6. 地基应力和变形有效应力effective stress6. 地基应力和变形自重应力self-weight stress6. 地基应力和变形总应力total stress approach of shear strength6. 地基应力和变形最终沉降final settlement7. 固结巴隆固结理论Barron s consolidation theory7. 固结比奥固结理论Biot s consolidation theory7. 固结超固结比over-consolidation ratio7. 固结超静孔隙水压力excess pore water pressure7. 固结次固结secondary consolidation7. 固结次压缩(台)secondary consolidatin7. 固结单向度压密(台)one-dimensional consolidation7. 固结多维固结multi-dimensional consolidation7. 固结固结consolidation7. 固结固结度degree of consolidation7. 固结固结理论theory of consolidation7. 固结固结曲线consolidation curve7. 固结固结速率rate of consolidation7. 固结固结系数coefficient of consolidation7. 固结固结压力consolidation pressure7. 固结回弹曲线rebound curve7. 固结井径比drain spacing ratio7. 固结井阻well resistance7. 固结曼代尔-克雷尔效应Mandel-Cryer effect7. 固结潜变(台)creep7. 固结砂井sand drain7. 固结砂井地基平均固结度average degree of consolidation of sand-drained ground7. 固结时间对数拟合法logrithm of time fitting method7. 固结时间因子time factor7. 固结太沙基固结理论Terzaghi s consolidation theory7. 固结太沙基-伦杜列克扩散方程Terzaghi-Rendulic diffusion equation7. 固结先期固结压力preconsolidation pressure7. 固结压密(台)consolidation7. 固结压密度(台)degree of consolidation7. 固结压缩曲线cpmpression curve7. 固结一维固结one dimensional consolidation7. 固结有效应力原理principle of effective stress7. 固结预压密压力(台)preconsolidation pressure7. 固结原始压缩曲线virgin compression curve7. 固结再压缩曲线recompression curve7. 固结主固结primary consolidation7. 固结主压密(台)primary consolidation7. 固结准固结压力pseudo-consolidation pressure7. 固结K0固结consolidation under K0 condition8. 抗剪强度安息角(台)angle of repose8. 抗剪强度不排水抗剪强度undrained shear strength8. 抗剪强度残余内摩擦角residual angle of internal friction8. 抗剪强度残余强度residual strength8. 抗剪强度长期强度long-term strength8. 抗剪强度单轴抗拉强度uniaxial tension test8. 抗剪强度动强度dynamic strength of soils8. 抗剪强度峰值强度peak strength8. 抗剪强度伏斯列夫参数Hvorslev parameter8. 抗剪强度剪切应变速率shear strain rate8. 抗剪强度抗剪强度shear strength8. 抗剪强度抗剪强度参数shear strength parameter8. 抗剪强度抗剪强度有效应力法effective stress approach of shear strength 8. 抗剪强度抗剪强度总应力法total stress approach of shear strength8. 抗剪强度库仑方程Coulomb s equation8. 抗剪强度摩尔包线Mohr s envelope8. 抗剪强度摩尔-库仑理论Mohr-Coulomb theory8. 抗剪强度内摩擦角angle of internal friction8. 抗剪强度年粘聚力cohesion8. 抗剪强度破裂角angle of rupture8. 抗剪强度破坏准则failure criterion8. 抗剪强度十字板抗剪强度vane strength8. 抗剪强度无侧限抗压强度unconfined compression strength8. 抗剪强度有效内摩擦角effective angle of internal friction8. 抗剪强度有效粘聚力effective cohesion intercept8. 抗剪强度有效应力破坏包线effective stress failure envelope8. 抗剪强度有效应力强度参数effective stress strength parameter8. 抗剪强度有效应力原理principle of effective stress8. 抗剪强度真内摩擦角true angle internal friction8. 抗剪强度真粘聚力true cohesion8. 抗剪强度总应力破坏包线total stress failure envelope8. 抗剪强度总应力强度参数total stress strength parameter9. 本构模型本构模型constitutive model9. 本构模型边界面模型boundary surface model9. 本构模型层向各向同性体模型cross anisotropic model9. 本构模型超弹性模型hyperelastic model9. 本构模型德鲁克-普拉格准则Drucker-Prager criterion9. 本构模型邓肯-张模型Duncan-Chang model9. 本构模型动剪切强度9. 本构模型非线性弹性模量nonlinear elastic model9. 本构模型盖帽模型cap model9. 本构模型刚塑性模型rigid plastic model9. 本构模型割线模量secant modulus9. 本构模型广义冯·米赛斯屈服准则extended von Mises yield criterion 9. 本构模型广义特雷斯卡屈服准则extended tresca yield criterion9. 本构模型加工软化work softening9. 本构模型加工硬化work hardening9. 本构模型加工硬化定律strain harding law9. 本构模型剑桥模型Cambridge model9. 本构模型柯西弹性模型Cauchy elastic model9. 本构模型拉特-邓肯模型Lade-Duncan model9. 本构模型拉特屈服准则Lade yield criterion9. 本构模型理想弹塑性模型ideal elastoplastic model9. 本构模型临界状态弹塑性模型critical state elastoplastic model9. 本构模型流变学模型rheological model9. 本构模型流动规则flow rule9. 本构模型摩尔-库仑屈服准则Mohr-Coulomb yield criterion9. 本构模型内蕴时间塑性模型endochronic plastic model9. 本构模型内蕴时间塑性理论endochronic theory9. 本构模型年粘弹性模型viscoelastic model9. 本构模型切线模量tangent modulus9. 本构模型清华弹塑性模型Tsinghua elastoplastic model9. 本构模型屈服面yield surface9. 本构模型沈珠江三重屈服面模型Shen Zhujiang three yield surface method 9. 本构模型双参数地基模型9. 本构模型双剪应力屈服模型twin shear stress yield criterion9. 本构模型双曲线模型hyperbolic model9. 本构模型松岗元-中井屈服准则Matsuoka-Nakai yield criterion9. 本构模型塑性形变理论9. 本构模型谈弹塑性模量矩阵elastoplastic modulus matrix9. 本构模型谈弹塑性模型elastoplastic modulus9. 本构模型谈弹塑性增量理论incremental elastoplastic theory9. 本构模型谈弹性半空间地基模型elastic half-space foundation model9. 本构模型谈弹性变形elastic deformation9. 本构模型谈弹性模量elastic modulus9. 本构模型谈弹性模型elastic model9. 本构模型魏汝龙-Khosla-Wu模型Wei Rulong-Khosla-Wu model9. 本构模型文克尔地基模型Winkler foundation model9. 本构模型修正剑桥模型modified cambridge model9. 本构模型准弹性模型hypoelastic model10. 地基承载力冲剪破坏punching shear failure10. 地基承载力次层(台)substratum10. 地基承载力地基subgrade, ground, foundation soil10. 地基承载力地基承载力bearing capacity of foundation soil10. 地基承载力地基极限承载力ultimate bearing capacity of foundation soil10. 地基承载力地基允许承载力allowable bearing capacity of foundation soil10. 地基承载力地基稳定性stability of foundation soil10. 地基承载力汉森地基承载力公式Hansen s ultimate bearing capacity formula10. 地基承载力极限平衡状态state of limit equilibrium10. 地基承载力加州承载比(美国)California Bearing Ratio10. 地基承载力局部剪切破坏local shear failure10. 地基承载力临塑荷载critical edge pressure10. 地基承载力梅耶霍夫极限承载力公式Meyerhof s ultimate bearing capacity formula 10. 地基承载力普朗特承载力理论Prandel bearing capacity theory10. 地基承载力斯肯普顿极限承载力公式Skempton s ultimate bearing capacity formula 10. 地基承载力太沙基承载力理论Terzaghi bearing capacity theory10. 地基承载力魏锡克极限承载力公式V esic s ultimate bearing capacity formula10. 地基承载力整体剪切破坏general shear failure11. 土压力被动土压力passive earth pressure11. 土压力被动土压力系数coefficient of passive earth pressure11. 土压力极限平衡状态state of limit equilibrium11. 土压力静止土压力earth pressue at rest11. 土压力静止土压力系数coefficient of earth pressur at rest11. 土压力库仑土压力理论Coulomb s earth pressure theory11. 土压力库尔曼图解法Culmannn construction11. 土压力朗肯土压力理论Rankine s earth pressure theory11. 土压力朗肯状态Rankine state11. 土压力谈弹性平衡状态state of elastic equilibrium11. 土压力土压力earth pressure11. 土压力主动土压力active earth pressure11. 土压力主动土压力系数coefficient of active earth pressure12. 土坡稳定分析安息角(台)angle of repose12. 土坡稳定分析毕肖普法Bishop method12. 土坡稳定分析边坡稳定安全系数safety factor of slope12. 土坡稳定分析不平衡推理传递法unbalanced thrust transmission method12. 土坡稳定分析费伦纽斯条分法Fellenius method of slices12. 土坡稳定分析库尔曼法Culmann method12. 土坡稳定分析摩擦圆法friction circle method12. 土坡稳定分析摩根斯坦-普拉斯法Morgenstern-Price method12. 土坡稳定分析铅直边坡的临界高度critical height of vertical slope12. 土坡稳定分析瑞典圆弧滑动法Swedish circle method12. 土坡稳定分析斯宾赛法Spencer method12. 土坡稳定分析泰勒法Taylor method12. 土坡稳定分析条分法slice method12. 土坡稳定分析土坡slope12. 土坡稳定分析土坡稳定分析slope stability analysis12. 土坡稳定分析土坡稳定极限分析法limit analysis method of slope stability 12. 土坡稳定分析土坡稳定极限平衡法limit equilibrium method of slope stability 12. 土坡稳定分析休止角angle of repose12. 土坡稳定分析扬布普遍条分法Janbu general slice method12. 土坡稳定分析圆弧分析法circular arc analysis13. 土的动力性质比阻尼容量specific gravity capacity13. 土的动力性质波的弥散特性dispersion of waves13. 土的动力性质波速法wave velocity method13. 土的动力性质材料阻尼material damping13. 土的动力性质初始液化initial liquefaction13. 土的动力性质地基固有周期natural period of soil site13. 土的动力性质动剪切模量dynamic shear modulus of soils13. 土的动力性质动力布西涅斯克解dynamic solution of Boussinesq13. 土的动力性质动力放大因素dynamic magnification factor13. 土的动力性质动力性质dynamic properties of soils13. 土的动力性质动强度dynamic strength of soils13. 土的动力性质骨架波akeleton waves in soils13. 土的动力性质几何阻尼geometric damping13. 土的动力性质抗液化强度liquefaction stress13. 土的动力性质孔隙流体波fluid wave in soil13. 土的动力性质损耗角loss angle13. 土的动力性质往返活动性reciprocating activity13. 土的动力性质无量纲频率dimensionless frequency13. 土的动力性质液化liquefaction13. 土的动力性质液化势评价evaluation of liquefaction potential13. 土的动力性质液化应力比stress ratio of liquefaction13. 土的动力性质应力波stress waves in soils13. 土的动力性质振陷dynamic settlement13. 土的动力性质阻尼damping of soil13. 土的动力性质阻尼比damping ratio14. 挡土墙挡土墙retaining wall14. 挡土墙挡土墙排水设施14. 挡土墙挡土墙稳定性stability of retaining wall14. 挡土墙垛式挡土墙14. 挡土墙扶垛式挡土墙counterfort retaining wall14. 挡土墙后垛墙(台)counterfort retaining wall14. 挡土墙基础墙foundation wall14. 挡土墙加筋土挡墙reinforced earth bulkhead14. 挡土墙锚定板挡土墙anchored plate retaining wall14. 挡土墙锚定式板桩墙anchored sheet pile wall14. 挡土墙锚杆式挡土墙anchor rod retaining wall14. 挡土墙悬壁式板桩墙cantilever sheet pile wall14. 挡土墙悬壁式挡土墙cantilever sheet pile wall14. 挡土墙重力式挡土墙gravity retaining wall15. 板桩结构物板桩sheet pile15. 板桩结构物板桩结构sheet pile structure15. 板桩结构物钢板桩steel sheet pile15. 板桩结构物钢筋混凝土板桩reinforced concrete sheet pile15. 板桩结构物钢桩steel pile15. 板桩结构物灌注桩cast-in-place pile15. 板桩结构物拉杆tie rod15. 板桩结构物锚定式板桩墙anchored sheet pile wall15. 板桩结构物锚固技术anchoring15. 板桩结构物锚座Anchorage15. 板桩结构物木板桩wooden sheet pile15. 板桩结构物木桩timber piles15. 板桩结构物悬壁式板桩墙cantilever sheet pile wall16. 基坑开挖与降水板桩围护sheet pile-braced cuts16. 基坑开挖与降水电渗法electro-osmotic drainage16. 基坑开挖与降水管涌piping16. 基坑开挖与降水基底隆起heave of base16. 基坑开挖与降水基坑降水dewatering16. 基坑开挖与降水基坑失稳instability (failure) of foundation pit16. 基坑开挖与降水基坑围护bracing of foundation pit16. 基坑开挖与降水减压井relief well16. 基坑开挖与降水降低地下水位法dewatering method16. 基坑开挖与降水井点系统well point system16. 基坑开挖与降水喷射井点eductor well point16. 基坑开挖与降水铅直边坡的临界高度critical height of vertical slope 16. 基坑开挖与降水砂沸sand boiling16. 基坑开挖与降水深井点deep well point16. 基坑开挖与降水真空井点vacuum well point16. 基坑开挖与降水支撑围护braced cuts17. 浅基础杯形基础17. 浅基础补偿性基础compensated foundation17. 浅基础持力层bearing stratum17. 浅基础次层(台)substratum17. 浅基础单独基础individual footing17. 浅基础倒梁法inverted beam method17. 浅基础刚性角pressure distribution angle of masonary foundation 17. 浅基础刚性基础rigid foundation17. 浅基础高杯口基础17. 浅基础基础埋置深度embeded depth of foundation17. 浅基础基床系数coefficient of subgrade reaction17. 浅基础基底附加应力net foundation pressure17. 浅基础交叉条形基础cross strip footing17. 浅基础接触压力contact pressure17. 浅基础静定分析法(浅基础)static analysis (shallow foundation)17. 浅基础壳体基础shell foundation17. 浅基础扩展基础spread footing17. 浅基础片筏基础mat foundation17. 浅基础浅基础shallow foundation17. 浅基础墙下条形基础17. 浅基础热摩奇金法Zemochkin s method17. 浅基础柔性基础flexible foundation17. 浅基础上部结构-基础-土共同作用分析structure- foundation-soil interactionanalysis 17. 浅基础谈弹性地基梁(板)分析analysis of beams and slabs on elastic foundation 17. 浅基础条形基础strip footing17. 浅基础下卧层substratum17. 浅基础箱形基础box foundation17. 浅基础柱下条形基础18. 深基础贝诺托灌注桩Benoto cast-in-place pile18. 深基础波动方程分析Wave equation analysis18. 深基础场铸桩(台)cast-in-place pile18. 深基础沉管灌注桩diving casting cast-in-place pile18. 深基础沉井基础open-end caisson foundation18. 深基础沉箱基础box caisson foundation18. 深基础成孔灌注同步桩synchronous pile18. 深基础承台pile caps18. 深基础充盈系数fullness coefficient18. 深基础单桩承载力bearing capacity of single pile18. 深基础单桩横向极限承载力ultimate lateral resistance of single pile18. 深基础单桩竖向抗拔极限承载力vertical ultimate uplift resistance of single pile18. 深基础单桩竖向抗压容许承载力vertical ultimate carrying capacity of single pile18. 深基础单桩竖向抗压极限承载力vertical allowable load capacity of single pile18. 深基础低桩承台low pile cap18. 深基础地下连续墙diaphgram wall18. 深基础点承桩(台)end-bearing pile18. 深基础动力打桩公式dynamic pile driving formula18. 深基础端承桩end-bearing pile18. 深基础法兰基灌注桩Franki pile18. 深基础负摩擦力negative skin friction of pile18. 深基础钢筋混凝土预制桩precast reinforced concrete piles18. 深基础钢桩steel pile18. 深基础高桩承台high-rise pile cap18. 深基础灌注桩cast-in-place pile18. 深基础横向载荷桩laterally loaded vertical piles18. 深基础护壁泥浆slurry coat method18. 深基础回转钻孔灌注桩rotatory boring cast-in-place pile18. 深基础机挖异形灌注桩18. 深基础静力压桩silent piling18. 深基础抗拔桩uplift pile18. 深基础抗滑桩anti-slide pile18. 深基础摩擦桩friction pile18. 深基础木桩timber piles18. 深基础嵌岩灌注桩piles set into rock18. 深基础群桩pile groups18. 深基础群桩效率系数efficiency factor of pile groups18. 深基础群桩效应efficiency of pile groups18. 深基础群桩竖向极限承载力vertical ultimate load capacity of pile groups 18. 深基础深基础deep foundation18. 深基础竖直群桩横向极限承载力18. 深基础无桩靴夯扩灌注桩rammed bulb ile18. 深基础旋转挤压灌注桩18. 深基础桩piles18. 深基础桩基动测技术dynamic pile test18. 深基础钻孔墩基础drilled-pier foundation18. 深基础钻孔扩底灌注桩under-reamed bored pile18. 深基础钻孔压注桩starsol enbesol pile18. 深基础最后贯入度final set19. 地基处理表层压密法surface compaction19. 地基处理超载预压surcharge preloading19. 地基处理袋装砂井sand wick19. 地基处理地工织物geofabric, geotextile19. 地基处理地基处理ground treatment, foundation treatment19. 地基处理电动化学灌浆electrochemical grouting19. 地基处理电渗法electro-osmotic drainage19. 地基处理顶升纠偏法19. 地基处理定喷directional jet grouting19. 地基处理冻土地基处理frozen foundation improvement19. 地基处理短桩处理treatment with short pile19. 地基处理堆载预压法preloading19. 地基处理粉体喷射深层搅拌法powder deep mixing method19. 地基处理复合地基composite foundation19. 地基处理干振成孔灌注桩vibratory bored pile19. 地基处理高压喷射注浆法jet grounting19. 地基处理灌浆材料injection material19. 地基处理灌浆法grouting19. 地基处理硅化法silicification19. 地基处理夯实桩compacting pile19. 地基处理化学灌浆chemical grouting19. 地基处理换填法cushion19. 地基处理灰土桩lime soil pile19. 地基处理基础加压纠偏法19. 地基处理挤密灌浆compaction grouting19. 地基处理挤密桩compaction pile, compacted column19. 地基处理挤淤法displacement method19. 地基处理加筋法reinforcement method19. 地基处理加筋土reinforced earth19. 地基处理碱液法soda solution grouting19. 地基处理浆液深层搅拌法grout deep mixing method19. 地基处理降低地下水位法dewatering method19. 地基处理纠偏技术19. 地基处理坑式托换pit underpinning19. 地基处理冷热处理法freezing and heating19. 地基处理锚固技术anchoring19. 地基处理锚杆静压桩托换anchor pile underpinning19. 地基处理排水固结法consolidation19. 地基处理膨胀土地基处理expansive foundation treatment19. 地基处理劈裂灌浆fracture grouting19. 地基处理浅层处理shallow treatment19. 地基处理强夯法dynamic compaction19. 地基处理人工地基artificial foundation19. 地基处理容许灌浆压力allowable grouting pressure19. 地基处理褥垫pillow19. 地基处理软土地基soft clay ground19. 地基处理砂井sand drain19. 地基处理砂井地基平均固结度average degree of consolidation of sand-drained ground 19. 地基处理砂桩sand column19. 地基处理山区地基处理foundation treatment in mountain area19. 地基处理深层搅拌法deep mixing method19. 地基处理渗入性灌浆seep-in grouting19. 地基处理湿陷性黄土地基处理collapsible loess treatment19. 地基处理石灰系深层搅拌法lime deep mixing method19. 地基处理石灰桩lime column, limepile19. 地基处理树根桩root pile19. 地基处理水泥土水泥掺合比cement mixing ratio19. 地基处理水泥系深层搅拌法cement deep mixing method19. 地基处理水平旋喷horizontal jet grouting19. 地基处理塑料排水带plastic drain19. 地基处理碎石桩gravel pile, stone pillar19. 地基处理掏土纠偏法19. 地基处理天然地基natural foundation19. 地基处理土工聚合物Geopolymer19. 地基处理土工织物geofabric, geotextile19. 地基处理土桩earth pile19. 地基处理托换技术underpinning technique19. 地基处理外掺剂additive19. 地基处理旋喷jet grouting19. 地基处理药液灌浆chemical grouting19. 地基处理预浸水法presoaking19. 地基处理预压法preloading19. 地基处理真空预压vacuum preloading19. 地基处理振冲法vibroflotation method19. 地基处理振冲密实法vibro-compaction19. 地基处理振冲碎石桩vibro replacement stone column19. 地基处理振冲置换法vibro-replacement19. 地基处理振密、挤密法vibro-densification, compacting19. 地基处理置换率(复合地基)replacement ratio19. 地基处理重锤夯实法tamping19. 地基处理桩式托换pile underpinning19. 地基处理桩土应力比stress ratio20. 动力机器基础比阻尼容量specific gravity capacity20. 动力机器基础等效集总参数法constant strain rate consolidation test20. 动力机器基础地基固有周期natural period of soil site20. 动力机器基础动基床反力法dynamic subgrade reaction method20. 动力机器基础动力放大因素dynamic magnification factor20. 动力机器基础隔振isolation20. 动力机器基础基础振动foundation vibration20. 动力机器基础基础振动半空间理论elastic half-space theory of foundation vibr ation20. 动力机器基础基础振动容许振幅allowable amplitude of foundation vibration 20. 动力机器基础基础自振频率natural frequency of foundation20. 动力机器基础集总参数法lumped parameter method20. 动力机器基础吸收系数absorption coefficient20. 动力机器基础质量-弹簧-阻尼器系统mass-spring-dushpot system21. 地基基础抗震地基固有周期natural period of soil site21. 地基基础抗震地震earthquake, seism, temblor21. 地基基础抗震地震持续时间duration of earthquake21. 地基基础抗震地震等效均匀剪应力equivalent even shear stress of earthquake 21. 地基基础抗震地震反应谱earthquake response spectrum21. 地基基础抗震地震烈度earthquake intensity21. 地基基础抗震地震震级earthquake magnitude21. 地基基础抗震地震卓越周期seismic predominant period21. 地基基础抗震地震最大加速度maximum acceleration of earthquake21. 地基基础抗震动力放大因数dynamic magnification factor21. 地基基础抗震对数递减率logrithmic decrement21. 地基基础抗震刚性系数coefficient of rigidity21. 地基基础抗震吸收系数absorption coefficient22. 室内土工试验比重试验specific gravity test22. 室内土工试验变水头渗透试验falling head permeability test22. 室内土工试验不固结不排水试验unconsolidated-undrained triaxial test22. 室内土工试验常规固结试验routine consolidation test22. 室内土工试验常水头渗透试验constant head permeability test22. 室内土工试验单剪仪simple shear apparatus22. 室内土工试验单轴拉伸试验uniaxial tensile test22. 室内土工试验等速加荷固结试验constant loading rate consolidatin test22. 室内土工试验等梯度固结试验constant gradient consolidation test22. 室内土工试验等应变速率固结试验equivalent lumped parameter method22. 室内土工试验反复直剪强度试验repeated direct shear test22. 室内土工试验反压饱和法back pressure saturation method22. 室内土工试验高压固结试验high pressure consolidation test22. 室内土工试验各向不等压固结不排水试验consoidated anisotropically undrained test 22. 室内土工试验各向不等压固结排水试验consolidated anisotropically drained test 22. 室内土工试验共振柱试验resonant column test22. 室内土工试验固结不排水试验consolidated undrained triaxial test22. 室内土工试验固结快剪试验consolidated quick direct shear test22. 室内土工试验固结排水试验consolidated drained triaxial test22. 室内土工试验固结试验consolidation test22. 室内土工试验含水量试验water content test22. 室内土工试验环剪试验ring shear test22. 室内土工试验黄土湿陷试验loess collapsibility test22. 室内土工试验击实试验22. 室内土工试验界限含水量试验Atterberg limits test22. 室内土工试验卡萨格兰德法Casagrande s method22. 室内土工试验颗粒分析试验grain size analysis test22. 室内土工试验孔隙水压力消散试验pore pressure dissipation test22. 室内土工试验快剪试验quick direct shear test22. 室内土工试验快速固结试验fast consolidation test22. 室内土工试验离心模型试验centrifugal model test22. 室内土工试验连续加荷固结试验continual loading test22. 室内土工试验慢剪试验consolidated drained direct shear test22. 室内土工试验毛细管上升高度试验capillary rise test22. 室内土工试验密度试验density test22. 室内土工试验扭剪仪torsion shear apparatus22. 室内土工试验膨胀率试验swelling rate test22. 室内土工试验平面应变仪plane strain apparatus22. 室内土工试验三轴伸长试验triaxial extension test22. 室内土工试验三轴压缩试验triaxial compression test22. 室内土工试验砂的相对密实度试验sand relative density test22. 室内土工试验筛分析sieve analysis。
土木工程 专业外语词汇大全中英翻译

土木工程专业外语词汇大全中英翻译1. 综合类大地工程geotechnical engineering反分析法back analysis method基础工程foundation engineering临界状态土力学critical state soil mechanics数值岩土力学numerical geomechanics土soil, earth土动力学soil dynamics土力学soil mechanics岩土工程geotechnical engineering应力路径stress path应力路径法stress path method2. 工程地质及勘察变质岩metamorphic rock标准冻深standard frost penetration冰川沉积glacial deposit冰积层(台)glacial deposit残积土eluvial soil, residual soil层理beding长石feldspar沉积岩sedimentary rock承压水confined water次生矿物secondary mineral地质年代geological age地质图geological map地下水groundwater断层fault断裂构造fracture structure工程地质勘察engineering geological exploration海积层(台)marine deposit海相沉积marine deposit花岗岩granite滑坡landslide化石fossil化学沉积岩chemical sedimentary rock阶地terrace节理joint解理cleavage喀斯特karst矿物硬度hardness of minerals砾岩conglomerate流滑flow slide陆相沉积continental sedimentation泥石流mud flow, debris flow年粘土矿物clay minerals凝灰岩tuff牛轭湖ox-bow lake浅成岩hypabyssal rock潜水ground water侵入岩intrusive rock取土器geotome砂岩sandstone砂嘴spit, sand spit山岩压力rock pressure深成岩plutionic rock石灰岩limestone石英quartz松散堆积物rickle围限地下水(台)confined ground water 泻湖lagoon岩爆rock burst岩层产状attitude of rock岩浆岩magmatic rock, igneous rock岩脉dike, dgke岩石风化程度degree of rock weathering 岩石构造structure of rock岩石结构texture of rock岩体rock mass页岩shale原生矿物primary mineral云母mica造岩矿物rock-forming mineral褶皱fold, folding钻孔柱状图bore hole columnar section3. 土的分类饱和土saturated soil超固结土overconsolidated soil冲填土dredger fill充重塑土冻土frozen soil, tjaele非饱和土unsaturated soil分散性土dispersive soil粉土silt, mo粉质粘土silty clay高岭石kaolinite过压密土(台)overconsolidated soil红粘土red clay, adamic earth黄土loess, huangtu(China)蒙脱石montmorillonite泥炭peat, bog muck年粘土clay年粘性土cohesive soil, clayey soil膨胀土expansive soil, swelling soil欠固结粘土underconsolidated soil区域性土zonal soil人工填土fill, artificial soil软粘土soft clay, mildclay, mickle砂土sand湿陷性黄土collapsible loess, slumping loess素填土plain fill塑性图plasticity chart碎石土stone, break stone, broken stone, channery, chat, crushed sto ne, deritus未压密土(台)underconsolidated clay无粘性土cohesionless soil, frictional soil, non-cohesive soil岩石rock伊利土illite有机质土organic soil淤泥muck, gyttja, mire, slush淤泥质土mucky soil原状土undisturbed soil杂填土miscellaneous fill正常固结土normally consolidated soil正常压密土(台)normally consolidated soil自重湿陷性黄土self weight collapse loess4. 土的物理性质阿太堡界限Atterberg limits饱和度degree of saturation饱和密度saturated density饱和重度saturated unit weight比重specific gravity稠度consistency不均匀系数coefficient of uniformity, uniformity coefficient触变thixotropy单粒结构single-grained structure蜂窝结构honeycomb structure干重度dry unit weight干密度dry density塑性指数plasticity index含水量water content, moisture content活性指数级配gradation, grading结合水bound water, combined water, held water界限含水量Atterberg limits颗粒级配particle size distribution of soils, mechanical composi tion of soil可塑性plasticity孔隙比void ratio孔隙率porosity粒度granularity, grainness, grainage粒组fraction, size fraction毛细管水capillary water密度density密实度compactionness年粘性土的灵敏度sensitivity of cohesive soil平均粒径mean diameter, average grain diameter曲率系数coefficient of curvature三相图block diagram, skeletal diagram, three phase diagram三相土tri-phase soil湿陷起始应力initial collapse pressure湿陷系数coefficient of collapsibility缩限shrinkage limit土的构造soil texture土的结构soil structure土粒相对密度specific density of solid particles土中气air in soil土中水water in soil团粒aggregate, cumularpharolith限定粒径constrained diameter相对密度relative density, density index相对压密度relative compaction, compacting factor, percent compa ction, coefficient of compaction絮状结构flocculent structure压密系数coefficient of consolidation压缩性compressibility液限liquid limit液性指数liquidity index游离水(台)free water有效粒径effective diameter, effective grain size, effective size有效密度effective density有效重度effective unit weight重力密度unit weight自由水free water, gravitational water, groundwater, phreatic water 组构fabric最大干密度maximum dry density最优含水量optimum water content5. 渗透性和渗流达西定律Darcy s law管涌piping浸润线phreatic line临界水力梯度critical hydraulic gradient流函数flow function流土flowing soil流网flow net砂沸sand boiling渗流seepage渗流量seepage discharge渗流速度seepage velocity渗透力seepage force渗透破坏seepage failure渗透系数coefficient of permeability渗透性permeability势函数potential function水力梯度hydraulic gradient6. 地基应力和变形变形deformation变形模量modulus of deformation泊松比Poisson s ratio布西涅斯克解Boussinnesq s solution残余变形residual deformation残余孔隙水压力residual pore water pressure超静孔隙水压力excess pore water pressure沉降settlement沉降比settlement ratio次固结沉降secondary consolidation settlement次固结系数coefficient of secondary consolidation地基沉降的弹性力学公式elastic formula for settlement calculation 分层总和法layerwise summation method负孔隙水压力negative pore water pressure附加应力superimposed stress割线模量secant modulus固结沉降consolidation settlement规范沉降计算法settlement calculation by specification回弹变形rebound deformation回弹模量modulus of resilience回弹系数coefficient of resilience回弹指数swelling index建筑物的地基变形允许值allowable settlement of building剪胀dilatation角点法corner-points method孔隙气压力pore air pressure孔隙水压力pore water pressure孔隙压力系数Apore pressure parameter A孔隙压力系数Bpore pressure parameter B明德林解Mindlin s solution纽马克感应图Newmark chart切线模量tangent modulus蠕变creep三向变形条件下的固结沉降three-dimensional consolidation settl ement瞬时沉降immediate settlement塑性变形plastic deformation谈弹性变形elastic deformation谈弹性模量elastic modulus谈弹性平衡状态state of elastic equilibrium体积变形模量volumetric deformation modulus先期固结压力preconsolidation pressure压缩层压缩模量modulus of compressibility压缩系数coefficient of compressibility压缩性compressibility压缩指数compression index有效应力effective stress自重应力self-weight stress总应力total stress approach of shear strength最终沉降final settlement7. 固结巴隆固结理论Barron s consolidation theory比奥固结理论Biot s consolidation theory超固结比over-consolidation ratio超静孔隙水压力excess pore water pressure次固结secondary consolidation次压缩(台)secondary consolidatin单向度压密(台)one-dimensional consolidation多维固结multi-dimensional consolidation固结consolidation固结度degree of consolidation固结理论theory of consolidation固结曲线consolidation curve固结速率rate of consolidation固结系数coefficient of consolidation固结压力consolidation pressure回弹曲线rebound curve井径比drain spacing ratio井阻well resistance曼代尔-克雷尔效应Mandel-Cryer effect潜变(台)creep砂井sand drain砂井地基平均固结度average degree of consolidation of sand-drained ground 时间对数拟合法logrithm of time fitting method时间因子time factor太沙基固结理论Terzaghi s consolidation theory太沙基-伦杜列克扩散方程Terzaghi-Rendulic diffusion equation先期固结压力preconsolidation pressure压密(台)consolidation压密度(台)degree of consolidation压缩曲线cpmpression curve一维固结one dimensional consolidation有效应力原理principle of effective stress预压密压力(台)preconsolidation pressure原始压缩曲线virgin compression curve再压缩曲线recompression curve主固结primary consolidation主压密(台)primary consolidation准固结压力pseudo-consolidation pressureK0固结consolidation under K0 condition8. 抗剪强度安息角(台)angle of repose不排水抗剪强度undrained shear strength残余内摩擦角residual angle of internal friction残余强度residual strength长期强度long-term strength单轴抗拉强度uniaxial tension test动强度dynamic strength of soils峰值强度peak strength伏斯列夫参数Hvorslev parameter剪切应变速率shear strain rate抗剪强度shear strength抗剪强度参数shear strength parameter抗剪强度有效应力法effective stress approach of shear strength 抗剪强度总应力法total stress approach of shear strength库仑方程Coulomb s equation摩尔包线Mohr s envelope摩尔-库仑理论Mohr-Coulomb theory内摩擦角angle of internal friction年粘聚力cohesion破裂角angle of rupture破坏准则failure criterion十字板抗剪强度vane strength无侧限抗压强度unconfined compression strength有效内摩擦角effective angle of internal friction有效粘聚力effective cohesion intercept有效应力破坏包线effective stress failure envelope有效应力强度参数effective stress strength parameter有效应力原理principle of effective stress真内摩擦角true angle internal friction真粘聚力true cohesion总应力破坏包线total stress failure envelope总应力强度参数total stress strength parameter9. 本构模型本构模型constitutive model边界面模型boundary surface model层向各向同性体模型cross anisotropic model超弹性模型hyperelastic model德鲁克-普拉格准则Drucker-Prager criterion邓肯-张模型Duncan-Chang model动剪切强度非线性弹性模量nonlinear elastic model盖帽模型cap model刚塑性模型rigid plastic model割线模量secant modulus广义冯·米赛斯屈服准则extended von Mises yield criterion广义特雷斯卡屈服准则extended tresca yield criterion加工软化work softening加工硬化work hardening加工硬化定律strain harding law剑桥模型Cambridge model柯西弹性模型Cauchy elastic model拉特-邓肯模型Lade-Duncan model拉特屈服准则Lade yield criterion理想弹塑性模型ideal elastoplastic model临界状态弹塑性模型critical state elastoplastic model流变学模型rheological model流动规则flow rule摩尔-库仑屈服准则Mohr-Coulomb yield criterion内蕴时间塑性模型endochronic plastic model内蕴时间塑性理论endochronic theory年粘弹性模型viscoelastic model切线模量tangent modulus清华弹塑性模型Tsinghua elastoplastic model屈服面yield surface沈珠江三重屈服面模型Shen Zhujiang three yield surface method双参数地基模型双剪应力屈服模型twin shear stress yield criterion双曲线模型hyperbolic model松岗元-中井屈服准则Matsuoka-Nakai yield criterion塑性形变理论谈弹塑性模量矩阵elastoplastic modulus matrix谈弹塑性模型elastoplastic modulus谈弹塑性增量理论incremental elastoplastic theory谈弹性半空间地基模型elastic half-space foundation model谈弹性变形elastic deformation谈弹性模量elastic modulus谈弹性模型elastic model魏汝龙-Khosla-Wu模型Wei Rulong-Khosla-Wu model文克尔地基模型Winkler foundation model修正剑桥模型modified cambridge model准弹性模型hypoelastic model10. 地基承载力冲剪破坏punching shear failure次层(台)substratum地基subgrade, ground, foundation soil地基承载力bearing capacity of foundation soil地基极限承载力ultimate bearing capacity of foundation soil地基允许承载力allowable bearing capacity of foundation soil地基稳定性stability of foundation soil汉森地基承载力公式Hansen s ultimate bearing capacity formula极限平衡状态state of limit equilibrium加州承载比(美国)California Bearing Ratio局部剪切破坏local shear failure临塑荷载critical edge pressure梅耶霍夫极限承载力公式Meyerhof s ultimate bearing capacity formula 普朗特承载力理论Prandel bearing capacity theory斯肯普顿极限承载力公式Skempton s ultimate bearing capacity formula太沙基承载力理论Terzaghi bearing capacity theory魏锡克极限承载力公式Vesic s ultimate bearing capacity formula 整体剪切破坏general shear failure11. 土压力被动土压力passive earth pressure被动土压力系数coefficient of passive earth pressure极限平衡状态state of limit equilibrium静止土压力earth pressue at rest静止土压力系数coefficient of earth pressur at rest库仑土压力理论Coulomb s earth pressure theory库尔曼图解法Culmannn construction朗肯土压力理论Rankine s earth pressure theory朗肯状态Rankine state谈弹性平衡状态state of elastic equilibrium土压力earth pressure主动土压力active earth pressure主动土压力系数coefficient of active earth pressure12. 土坡稳定分析安息角(台)angle of repose分析毕肖普法Bishop method分析边坡稳定安全系数safety factor of slope分析不平衡推理传递法unbalanced thrust transmission method分析费伦纽斯条分法Fellenius method of slices分析库尔曼法Culmann method分析摩擦圆法friction circle method分析摩根斯坦-普拉斯法Morgenstern-Price method分析铅直边坡的临界高度critical height of vertical slope分析瑞典圆弧滑动法Swedish circle method分析斯宾赛法Spencer method分析泰勒法Taylor method分析条分法slice method分析土坡slope分析土坡稳定分析slope stability analysis分析土坡稳定极限分析法limit analysis method of slope stability分析土坡稳定极限平衡法limit equilibrium method of slope stability 分析休止角angle of repose分析扬布普遍条分法Janbu general slice method分析圆弧分析法circular arc analysis13. 土的动力性质比阻尼容量specific gravity capacity波的弥散特性dispersion of waves波速法wave velocity method材料阻尼material damping初始液化initial liquefaction地基固有周期natural period of soil site动剪切模量dynamic shear modulus of soils动力布西涅斯克解dynamic solution of Boussinesq 动力放大因素dynamic magnification factor动力性质dynamic properties of soils动强度dynamic strength of soils骨架波akeleton waves in soils几何阻尼geometric damping抗液化强度liquefaction stress孔隙流体波fluid wave in soil损耗角loss angle往返活动性reciprocating activity无量纲频率dimensionless frequency液化liquefaction液化势评价evaluation of liquefaction potential液化应力比stress ratio of liquefaction应力波stress waves in soils振陷dynamic settlement阻尼damping of soil阻尼比damping ratio14. 挡土墙挡土墙retaining wall挡土墙排水设施挡土墙稳定性stability of retaining wall垛式挡土墙扶垛式挡土墙counterfort retaining wall后垛墙(台)counterfort retaining wall基础墙foundation wall加筋土挡墙reinforced earth bulkhead锚定板挡土墙anchored plate retaining wall锚定式板桩墙anchored sheet pile wall锚杆式挡土墙anchor rod retaining wall悬壁式板桩墙cantilever sheet pile wall悬壁式挡土墙cantilever sheet pile wall重力式挡土墙gravity retaining wall15. 板桩结构物板桩sheet pile物板桩结构sheet pile structure物钢板桩steel sheet pile物钢筋混凝土板桩reinforced concrete sheet pile物钢桩steel pile物灌注桩cast-in-place pile物拉杆tie rod物锚定式板桩墙anchored sheet pile wall物锚固技术anchoring物锚座Anchorage物木板桩wooden sheet pile物木桩timber piles物悬壁式板桩墙cantilever sheet pile wall16. 基坑开挖与降水板桩围护sheet pile-braced cuts电渗法electro-osmotic drainage管涌piping基底隆起heave of base基坑降水dewatering基坑失稳instability (failure) of foundation pit基坑围护bracing of foundation pit减压井relief well降低地下水位法dewatering method井点系统well point system喷射井点eductor well point铅直边坡的临界高度critical height of vertical slope砂沸sand boiling深井点deep well point真空井点vacuum well point支撑围护braced cuts17. 浅基础补偿性基础compensated foundation持力层bearing stratum次层(台)substratum单独基础individual footing倒梁法inverted beam method刚性角pressure distribution angle of masonary foundation 刚性基础rigid foundation高杯口基础基础埋置深度embeded depth of foundation基床系数coefficient of subgrade reaction基底附加应力net foundation pressure交叉条形基础cross strip footing接触压力contact pressure静定分析法(浅基础)static analysis (shallow foundation)壳体基础shell foundation扩展基础spread footing片筏基础mat foundation浅基础shallow foundation墙下条形基础热摩奇金法Zemochkin s method柔性基础flexible foundation上部结构-基础-土共同作用分析structure- foundation-soil interactionanalysis 谈弹性地基梁(板)分析analysis of beams and slabs on elastic foundation条形基础strip footing下卧层substratum箱形基础box foundation18. 深基础贝诺托灌注桩Benoto cast-in-place pile波动方程分析Wave equation analysis场铸桩(台)cast-in-place pile沉管灌注桩diving casting cast-in-place pile沉井基础open-end caisson foundation沉箱基础box caisson foundation成孔灌注同步桩synchronous pile承台pile caps充盈系数fullness coefficient单桩承载力bearing capacity of single pile单桩横向极限承载力ultimate lateral resistance of single pile单桩竖向抗拔极限承载力vertical ultimate uplift resistance of single pile单桩竖向抗压容许承载力vertical ultimate carrying capacity of single pile单桩竖向抗压极限承载力vertical allowable load capacity of single pile低桩承台low pile cap地下连续墙diaphgram wall点承桩(台)end-bearing pile动力打桩公式dynamic pile driving formula端承桩end-bearing pile法兰基灌注桩Franki pile负摩擦力negative skin friction of pile钢筋混凝土预制桩precast reinforced concrete piles钢桩steel pile高桩承台high-rise pile cap灌注桩cast-in-place pile横向载荷桩laterally loaded vertical piles护壁泥浆slurry coat method回转钻孔灌注桩rotatory boring cast-in-place pile静力压桩silent piling抗拔桩uplift pile抗滑桩anti-slide pile摩擦桩friction pile木桩timber piles嵌岩灌注桩piles set into rock群桩pile groups群桩效率系数efficiency factor of pile groups群桩效应efficiency of pile groups群桩竖向极限承载力vertical ultimate load capacity of pile groups 深基础deep foundation竖直群桩横向极限承载力无桩靴夯扩灌注桩rammed bulb ile桩piles桩基动测技术dynamic pile test钻孔墩基础drilled-pier foundation钻孔扩底灌注桩under-reamed bored pile钻孔压注桩starsol enbesol pile最后贯入度final set19. 地基处理表层压密法surface compaction超载预压surcharge preloading袋装砂井sand wick地工织物geofabric, geotextile地基处理ground treatment, foundation treatment电动化学灌浆electrochemical grouting电渗法electro-osmotic drainage顶升纠偏法定喷directional jet grouting冻土地基处理frozen foundation improvement短桩处理treatment with short pile堆载预压法preloading粉体喷射深层搅拌法powder deep mixing method复合地基composite foundation干振成孔灌注桩vibratory bored pile高压喷射注浆法jet grounting灌浆材料injection material灌浆法grouting硅化法silicification夯实桩compacting pile化学灌浆chemical grouting换填法cushion灰土桩lime soil pile挤密灌浆compaction grouting挤密桩compaction pile, compacted column挤淤法displacement method加筋法reinforcement method加筋土reinforced earth碱液法soda solution grouting浆液深层搅拌法grout deep mixing method降低地下水位法dewatering method坑式托换pit underpinning冷热处理法freezing and heating锚固技术anchoring锚杆静压桩托换anchor pile underpinning排水固结法consolidation膨胀土地基处理expansive foundation treatment劈裂灌浆fracture grouting浅层处理shallow treatment强夯法dynamic compaction人工地基artificial foundation容许灌浆压力allowable grouting pressure褥垫pillow软土地基soft clay ground砂井sand drain砂井地基平均固结度average degree of consolidation of sand-drained ground 砂桩sand column山区地基处理foundation treatment in mountain area深层搅拌法deep mixing method渗入性灌浆seep-in grouting湿陷性黄土地基处理collapsible loess treatment石灰系深层搅拌法lime deep mixing method石灰桩lime column, limepile树根桩root pile水泥土水泥掺合比cement mixing ratio水泥系深层搅拌法cement deep mixing method水平旋喷horizontal jet grouting塑料排水带plastic drain碎石桩gravel pile, stone pillar天然地基natural foundation土工聚合物Geopolymer土工织物geofabric, geotextile土桩earth pile托换技术underpinning technique外掺剂additive旋喷jet grouting药液灌浆chemical grouting预浸水法presoaking预压法preloading真空预压vacuum preloading振冲法vibroflotation method振冲密实法vibro-compaction振冲碎石桩vibro replacement stone column振冲置换法vibro-replacement振密、挤密法vibro-densification, compacting置换率(复合地基)replacement ratio重锤夯实法tamping桩式托换pile underpinning桩土应力比stress ratio20. 动力机器基础比阻尼容量specific gravity capacity等效集总参数法constant strain rate consolidation test地基固有周期natural period of soil site动基床反力法dynamic subgrade reaction method动力放大因素dynamic magnification factor隔振isolation基础振动foundation vibration基础振动半空间理论elastic half-space theory of foundation vibration 基础振动容许振幅allowable amplitude of foundation vibration基础自振频率natural frequency of foundation集总参数法lumped parameter method吸收系数absorption coefficient质量-弹簧-阻尼器系统mass-spring-dushpot system21. 地基基础抗震地基固有周期natural period of soil site地震earthquake, seism, temblor地震持续时间duration of earthquake地震等效均匀剪应力equivalent even shear stress of earthquake地震反应谱earthquake response spectrum地震烈度earthquake intensity地震震级earthquake magnitude地震卓越周期seismic predominant period地震最大加速度maximum acceleration of earthquake动力放大因数dynamic magnification factor对数递减率logrithmic decrement刚性系数coefficient of rigidity吸收系数absorption coefficient22. 室内土工试验比重试验specific gravity test变水头渗透试验falling head permeability test不固结不排水试验unconsolidated-undrained triaxial test常规固结试验routine consolidation test常水头渗透试验constant head permeability test单剪仪simple shear apparatus单轴拉伸试验uniaxial tensile test等速加荷固结试验constant loading rate consolidatin test等梯度固结试验constant gradient consolidation test等应变速率固结试验equivalent lumped parameter method反复直剪强度试验repeated direct shear test反压饱和法back pressure saturation method高压固结试验high pressure consolidation test各向不等压固结不排水试验consoidated anisotropically undrained test 各向不等压固结排水试验consolidated anisotropically drained test共振柱试验resonant column test固结不排水试验consolidated undrained triaxial test固结快剪试验consolidated quick direct shear test固结排水试验consolidated drained triaxial test固结试验consolidation test含水量试验water content test环剪试验ring shear test黄土湿陷试验loess collapsibility test界限含水量试验Atterberg limits test卡萨格兰德法Casagrande s method颗粒分析试验grain size analysis test孔隙水压力消散试验pore pressure dissipation test快剪试验quick direct shear test快速固结试验fast consolidation test离心模型试验centrifugal model test连续加荷固结试验continual loading test慢剪试验consolidated drained direct shear test毛细管上升高度试验capillary rise test密度试验density test扭剪仪torsion shear apparatus膨胀率试验swelling rate test平面应变仪plane strain apparatus三轴伸长试验triaxial extension test三轴压缩试验triaxial compression test砂的相对密实度试验sand relative density test筛分析sieve analysis渗透试验permeability test湿化试验slaking test收缩试验shrinkage test塑限试验plastic limit test缩限试验shrinkage limit test土工模型试验geotechnical model test土工织物试验geotextile test无侧限抗压强度试验unconfined compression strength test无粘性土天然坡角试验angle of repose of cohesionless soils test压密不排水三轴压缩试验consolidated undrained triaxial compression test 压密排水三轴压缩试验consolidated drained triaxial compressure test压密试验consolidation test液塑限联合测定法liquid-plastic limit combined method液限试验liquid limit test应变控制式三轴压缩仪strain control triaxial compression apparatus应力控制式三轴压缩仪stress control triaxial compression apparatus有机质含量试验organic matter content test真三轴仪true triaxial apparatus振动单剪试验dynamic simple shear test直剪仪direct shear apparatus直接剪切试验direct shear test直接单剪试验direct simple shear test自振柱试验free vibration column testK0固结不排水试验K0 consolidated undrained testK0固结排水试验K0 consolidated drained test23. 原位测试标准贯入试验standard penetration test表面波试验surface wave test超声波试验ultrasonic wave test承载比试验Califonia Bearing Ratio Test单桩横向载荷试验lateral load test of pile单桩竖向静载荷试验static load test of pile动力触探试验dynamic penetration test静力触探试验static cone penetration test静力载荷试验plate loading test跨孔试验cross-hole test块体共振试验block resonant test螺旋板载荷试验screw plate test旁压试验pressurementer test轻便触探试验light sounding test深层沉降观测deep settlement measurement十字板剪切试验vane shear test无损检测nondestructive testing下孔法试验down-hole test现场渗透试验field permeability test原位孔隙水压力量测in situ pore water pressure measurement原位试验in-situ soil test最后贯入度final set。
土木工程专业英语词汇(整理版)

土木工程专业英语词汇(整理版)第一部分必须掌握,第二部分尽量掌握第一部分:1 Finite Element Method 有限单元法2 专业英语 Specialty English3 水利工程 Hydraulic Engineering4 土木工程 Civil Engineering5 地下工程 Underground Engineering6 岩土工程 Geotechnical Engineering7 道路工程 Road (Highway) Engineering8 桥梁工程Bridge Engineering9 隧道工程 Tunnel Engineering10 工程力学 Engineering Mechanics11 交通工程 Traffic Engineering12 港口工程 Port Engineering13 安全性 safety17木结构 timber structure18 砌体结构 masonry structure19 混凝土结构concrete structure20 钢结构 steelstructure21 钢 - 混凝土复合结构 steel and concrete composite structure22 素混凝土 plain concrete23 钢筋混凝土reinforced concrete24 钢筋 rebar25 预应力混凝土 pre-stressed concrete26 静定结构statically determinate structure27 超静定结构 statically indeterminate structure28 桁架结构 truss structure29 空间网架结构 spatial grid structure30 近海工程 offshore engineering31 静力学 statics32运动学kinematics33 动力学dynamics34 简支梁 simply supported beam35 固定支座 fixed bearing36弹性力学 elasticity37 塑性力学 plasticity38 弹塑性力学 elaso-plasticity39 断裂力学 fracture Mechanics40 土力学 soil mechanics41 水力学 hydraulics42 流体力学 fluid mechanics精品文库43 固体力学solid mechanics44 集中力 concentrated force45 压力 pressure46 静水压力 hydrostatic pressure47 均布压力 uniform pressure48 体力 body force49 重力 gravity50 线荷载 line load51 弯矩 bending moment52 扭矩 torque53 应力 stress54 应变 stain55 正应力 normal stress56 剪应力 shearing stress57 主应力 principal stress58 变形 deformation59 内力 internal force60 偏移量挠度 deflection61 沉降settlement62 屈曲失稳 buckle63 轴力 axial force64 允许应力 allowable stress65 疲劳分析 fatigue analysis66 梁 beam67 壳 shell68 板 plate69 桥 bridge70 桩 pile71 主动土压力 active earth pressure72 被动土压力 passive earth pressure73 承载力 load-bearing capacity74 水位 water Height75 位移 displacement76 结构力学 structural mechanics77 材料力学 material mechanics78 经纬仪 altometer79 水准仪level80 学科 discipline81 子学科 sub-discipline82 期刊 journal periodical83 文献literature84 国际标准刊号ISSN International Standard Serial Number精品文库85 国际标准书号ISBN International Standard Book Number86 卷 volume87 期 number88 专著 monograph89 会议论文集 Proceeding90 学位论文 thesis dissertation91 专利 patent92 档案档案室 archive93 国际学术会议 conference94 导师 advisor95 学位论文答辩 defense of thesis96 博士研究生 doctorate student97 研究生 postgraduate98 工程索引EI Engineering Index99 科学引文索引SCI Science Citation Index100 科学技术会议论文集索引ISTP Index to Science and Tec hnology Proceedings101 题目 title102 摘要 abstract103 全文 full-text104 参考文献 reference105 联络单位、所属单位affiliation106 主题词 Subject107 关键字 keyword108 美国土木工程师协会ASCE American Society of Civil Engineers109 联邦公路总署FHWA Federal Highway Administration110 国际标准组织ISO International Standard Organization111 解析方法 analytical method112 数值方法 numerical method113 计算 computation114 说明书 instruction115 规范 Specification Code第二部分:岩土工程专业词汇1.geotechnical engineering 岩土工程2.foundation engineering 基础工程3.soil earth 土4.soil mechanics 土力学5.cyclic loading 周期荷载6.unloading 卸载7.reloading 再加载8.viscoelastic foundation 粘弹性地基9.viscous damping 粘滞阻尼10.shear modulus 剪切模量精品文库11.soil dynamics 土动力学12.stress path 应力路径13.numerical geotechanics 数值岩土力学二.土的分类1.residual soil 残积土 groundwater level 地下水位2.groundwater 地下水 groundwater table 地下水位3.clay minerals 粘土矿物4.secondary minerals 次生矿物ndslides 滑坡6.bore hole columnar section 钻孔柱状图7.engineering geologic investigation 工程地质勘察8.boulder 漂石9.cobble 卵石10.gravel 砂石11.gravelly sand 砾砂12.coarse sand 粗砂13.medium sand 中砂14.fine sand 细砂15.silty sand 粉土16.clayey soil 粘性土17.clay 粘土18.silty clay 粉质粘土19.silt 粉土20.sandy silt 砂质粉土21.clayey silt 粘质粉土22.saturated soil 饱和土23.unsaturated soil 非饱和土24.fill (soil) 填土25.overconsolidated soil 超固结土26.normally consolidated soil 正常固结土27.underconsolidated soil 欠固结土28.zonal soil 区域性土29.soft clay 软粘土30.expansive (swelling) soil 膨胀土31.peat 泥炭32.loess 黄土33.frozen soil 冻土24.degree of saturation 饱和度25.dry unit weight 干重度26.moist unit weight 湿重度45.ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering 国际土力学与岩土工程学会精品文库四.渗透性和渗流1.Darcy’s law 达西定律2.piping 管涌3.flowing soil 流土4.sand boiling 砂沸5.flow net 流网6.seepage 渗透(流)7.leakage 渗流8.seepage pressure 渗透压力9.permeability 渗透性10.seepage force 渗透力11.hydraulic gradient 水力梯度12.coefficient of permeability 渗透系数五.地基应力和变形1.soft soil 软土2.(negative) skin friction of driven pile 打入桩(负)摩阻力3.effective stress 有效应力4.total stress 总应力5.field vane shear strength 十字板抗剪强度6.low activity 低活性7.sensitivity 灵敏度8.triaxial test 三轴试验9.foundation design 基础设计10.recompaction 再压缩11.bearing capacity 承载力12.soil mass 土体13.contact stress (pressure)接触应力(压力)14.concentrated load 集中荷载15.a semi-infinite elastic solid 半无限弹性体16.homogeneous 均质17.isotropic 各向同性18.strip footing 条基19.square spread footing 方形独立基础20.underlying soil (stratum strata)下卧层(土)21.dead load =sustained load 恒载持续荷载22.live load 活载23.short –term transient load 短期瞬时荷载24.long-term transient load 长期荷载25.reduced load 折算荷载26.settlement 沉降27.deformation 变形28.casing 套管精品文库29.dike=dyke 堤(防)30.clay fraction 粘粒粒组31.physical properties 物理性质32.subgrade 路基33.well-graded soil 级配良好土34.poorly-graded soil 级配不良土35.normal stresses 正应力36.shear stresses 剪应力37.principal plane 主平面38.major (intermediate minor) principal stress 最大(中、最小)主应力39.Mohr-Coulomb failure condition 摩尔-库仑破坏条件40.FEM=finite element method 有限元法41.limit equilibrium method 极限平衡法42.pore water pressure 孔隙水压力43.preconsolidation pressure 先期固结压力44.modulus of compressibility 压缩模量45.coefficent of compressibility 压缩系数pression index 压缩指数47.swelling index 回弹指数48.geostatic stress 自重应力49.additional stress 附加应力50.total stress 总应力51.final settlement 最终沉降52.slip line 滑动线六.基坑开挖与降水1 excavation 开挖(挖方)2 dewatering (基坑)降水3 failure of foundation 基坑失稳4 bracing of foundation pit 基坑围护5 bottom heave=basal heave (基坑)底隆起6 retaining wall 挡土墙7 pore-pressure distribution 孔压分布8 dewatering method 降低地下水位法9 well point system 井点系统(轻型)10 deep well point 深井点11 vacuum well point 真空井点12 braced cuts 支撑围护13 braced excavation 支撑开挖14 braced sheeting 支撑挡板七.深基础--deep foundation1.pile foundation 桩基础1)cast –in-place 灌注桩diving casting cast-in-place pile 沉管灌注桩bored pile 钻孔桩special-shaped cast-in-place pile 机控异型灌注桩piles set into rock 嵌岩灌注桩rammed bulb pile 夯扩桩2)belled pier foundation 钻孔墩基础drilled-pier foundation 钻孔扩底墩under-reamed bored pier3)precast concrete pile 预制混凝土桩4)steel pile 钢桩steel pipe pile 钢管桩steel sheet pile 钢板桩5)prestressed concrete pile 预应力混凝土桩prestressed concrete pipe pile 预应力混凝土管桩2.caisson foundation 沉井(箱)3.diaphragm wall 地下连续墙截水墙4.friction pile 摩擦桩5.end-bearing pile 端承桩6.shaft 竖井;桩身7.wave equation analysis 波动方程分析8.pile caps 承台(桩帽)9.bearing capacity of single pile 单桩承载力teral pile load test 单桩横向载荷试验11.ultimate lateral resistance of single pile 单桩横向极限承载力12.static load test of pile 单桩竖向静荷载试验13.vertical allowable load capacity 单桩竖向容许承载力14.low pile cap 低桩承台15.high-rise pile cap 高桩承台16.vertical ultimate uplift resistance of single pile 单桩抗拔极限承载力17.silent piling 静力压桩18.uplift pile 抗拔桩19.anti-slide pile 抗滑桩20.pile groups 群桩21.efficiency factor of pile groups 群桩效率系数(η)22.efficiency of pile groups 群桩效应23.dynamic pile testing 桩基动测技术24.final set 最后贯入度25.dynamic load test of pile 桩动荷载试验26.pile integrity test 桩的完整性试验27.pile head=butt 桩头28.pile tip=pile point=pile toe 桩端(头)29.pile spacing 桩距30.pile plan 桩位布置图31.arrangement of piles =pile layout 桩的布置32.group action 群桩作用33.end bearing=tip resistance 桩端阻34.skin(side) friction=shaft resistance 桩侧阻35.pile cushion 桩垫36.pile driving(by vibration) (振动)打桩37.pile pulling test 拔桩试验38.pile shoe 桩靴39.pile noise 打桩噪音40.pile rig 打桩机九.固结 consolidation1.Terzzaghi’s consolidation theory 太沙基固结理论2.Barraon’s consolidation theory 巴隆固结理论3.Biot’s consolidation theory 比奥固结理论4.over consolidation ration (OCR)超固结比5.overconsolidation soil 超固结土6.excess pore water pressure 超孔压力7.multi-dimensional consolidation 多维固结8.one-dimensional consolidation 一维固结9.primary consolidation 主固结10.secondary consolidation 次固结11.degree of consolidation 固结度12.consolidation test 固结试验13.consolidation curve 固结曲线14.time factor Tv 时间因子15.coefficient of consolidation 固结系数16.preconsolidation pressure 前期固结压力17.principle of effective stress 有效应力原理18.consolidation under K0 condition K0 固结十.抗剪强度 shear strength1.undrained shear strength 不排水抗剪强度2.residual strength 残余强度3.long-term strength 长期强度4.peak strength 峰值强度5.shear strain rate 剪切应变速率6.dilatation 剪胀7.effective stress approach of shear strength 剪胀抗剪强度有效应力法 8.total stress approach of shear strength 抗剪强度总应力法9.Mohr-Coulomb theory 莫尔-库仑理论10.angle of internal friction 内摩擦角11.cohesion 粘聚力12.failure criterion 破坏准则13.vane strength 十字板抗剪强度14.unconfined compression 无侧限抗压强度15.effective stress failure envelop 有效应力破坏包线16.effective stress strength parameter 有效应力强度参数十一.本构模型--constitutive model1.elastic model 弹性模型2.nonlinear elastic model 非线性弹性模型3.elastoplastic model 弹塑性模型4.viscoelastic model 粘弹性模型5.boundary surface model 边界面模型6.Du ncan-Chang model 邓肯-张模型7.rigid plastic model 刚塑性模型8.cap model 盖帽模型9.work softening 加工软化10.work hardening 加工硬化11.Cambridge model 剑桥模型12.ideal elastoplastic model 理想弹塑性模型13.Mohr-Coulomb yield criterion 莫尔-库仑屈服准则14.yield surface 屈服面15.elastic half-space foundation model 弹性半空间地基模型16.elastic modulus 弹性模量17.Winkler foundation model 文克尔地基模型十二.地基承载力--bearing capacity of foundation soil1.punching shear failure 冲剪破坏2.general shear failure 整体剪切破化3.local shear failure 局部剪切破坏4.state of limit equilibrium 极限平衡状态5.critical edge pressure 临塑荷载6.stability of foundation soil 地基稳定性7.ultimate bearing capacity of foundation soil 地基极限承载力8.allowable bearing capacity of foundation soil 地基容许承载力十三.土压力--earth pressure1.active earth pressure 主动土压力2.passive earth pressure 被动土压力3.earth pressure at rest 静止土压力4.Coulomb’s earth pressure theory 库仑土压力理论5.Rankine’s earth pressure theory 朗金土压力理论十四.土坡稳定分析--slope stability analysis1.angle of repose 休止角2.Bishop method 毕肖普法3.safety factor of slope 边坡稳定安全系数4.Fellenius method of slices 费纽伦斯条分法5.Swedish circle method 瑞典圆弧滑动法6.slices method 条分法十五.挡土墙--retaining wall1.stability of retaining wall 挡土墙稳定性2.foundation wall 基础墙3.counter retaining wall 扶壁式挡土墙4.cantilever retaining wall 悬臂式挡土墙5.cantilever sheet pile wall 悬臂式板桩墙6.gravity retaining wall 重力式挡土墙7.anchored plate retaining wall 锚定板挡土墙8.anchored sheet pile wall 锚定板板桩墙十六.板桩结构物--sheet pile structure1.steel sheet pile 钢板桩2.reinforced concrete sheet pile 钢筋混凝土板桩3.steel piles 钢桩4.wooden sheet pile 木板桩5.timber piles 木桩十七.浅基础--shallow foundation1.box foundation 箱型基础2.mat(raft) foundation 片筏基础3.strip foundation 条形基础4.spread footing 扩展基础pensated foundation 补偿性基础6.bearing stratum 持力层7.rigid foundation 刚性基础8.flexible foundation 柔性基础9.emxxxxbedded depth of foundation 基础埋置深度 foundation pressure 基底附加应力11.structure-foundation-soil interaction analysis 上部结构-基础-地基共同作用分析十八.土的动力性质--dynamic properties of soils1.dynamic strength of soils 动强度2.wave velocity method 波速法3.material damping 材料阻尼4.geometric damping 几何阻尼5.damping ratio 阻尼比6.initial liquefaction 初始液化7.natural period of soil site 地基固有周期8.dynamic shear modulus of soils 动剪切模量9.dynamic ma二十.地基基础抗震1.earthquake engineering 地震工程2.soil dynamics 土动力学3.duration of earthquake 地震持续时间4.earthquake response spectrum 地震反应谱5.earthquake intensity 地震烈度6.earthquake magnitude 震级7.seismic predominant period 地震卓越周期8.maximum acceleration of earthquake 地震最大加速度二十一.室内土工实验1.high pressure consolidation test 高压固结试验2.consolidation under K0 condition K0 固结试验3.falling head permeability 变水头试验4.constant head permeability 常水头渗透试验5.unconsolidated-undrained triaxial test 不固结不排水试验(UU)6.consolidated undrained triaxial test 固结不排水试验(CU)7.consolidated drained triaxial test 固结排水试验(CD)paction test 击实试验9.consolidated quick direct shear test 固结快剪试验10.quick direct shear test 快剪试验11.consolidated drained direct shear test 慢剪试验12.sieve analysis 筛分析13.geotechnical model test 土工模型试验14.centrifugal model test 离心模型试验15.direct shear apparatus 直剪仪16.direct shear test 直剪试验17.direct simple shear test 直接单剪试验18.dynamic triaxial test 三轴试验19.dynamic simple shear 动单剪20.free(resonance)vibration column test 自(共)振柱试验二十二.原位测试1.standard penetration test (SPT)标准贯入试验2.surface wave test (SWT) 表面波试验3.dynamic penetration test(DPT) 动力触探试验4.static cone penetration (SPT) 静力触探试验5.plate loading test 静力荷载试验teral load test of pile 单桩横向载荷试验7.static load test of pile 单桩竖向荷载试验8.cross-hole test 跨孔试验9.screw plate test 螺旋板载荷试验10.pressuremeter test 旁压试验11.light sounding 轻便触探试验12.deep settlement measurement 深层沉降观测13.vane shear test 十字板剪切试验14.field permeability test 现场渗透试验15.in-situ pore water pressure measurement 原位孔隙水压量测16.in-situ soil test 原位试验第一部分必须掌握,第二部分尽量掌握第一部分:1 Finite Element Method 有限单元法2 专业英语 Specialty English3 水利工程 Hydraulic Engineering4 土木工程 Civil Engineering5 地下工程 Underground Engineering6 岩土工程 Geotechnical Engineering7 道路工程 Road (Highway) Engineering8 桥梁工程Bridge Engineering9 隧道工程 Tunnel Engineering10 工程力学 Engineering Mechanics11 交通工程 Traffic Engineering12 港口工程 Port Engineering13 安全性 safety17木结构 timber structure18 砌体结构 masonry structure19 混凝土结构concrete structure20 钢结构 steelstructure21 钢 - 混凝土复合结构 steel and concrete composite structure22 素混凝土 plain concrete23 钢筋混凝土reinforced concrete24 钢筋 rebar25 预应力混凝土 pre-stressed concrete26 静定结构statically determinate structure27 超静定结构 statically indeterminate structure28 桁架结构 truss structure29 空间网架结构 spatial grid structure30 近海工程 offshore engineering31 静力学 statics32运动学kinematics33 动力学dynamics34 简支梁 simply supported beam35 固定支座 fixed bearing36弹性力学 elasticity37 塑性力学 plasticity38 弹塑性力学 elaso-plasticity39 断裂力学 fracture Mechanics40 土力学 soil mechanics精品文库41 水力学 hydraulics42 流体力学 fluid mechanics43 固体力学solid mechanics44 集中力 concentrated force45 压力 pressure46 静水压力 hydrostatic pressure47 均布压力 uniform pressure48 体力 body force49 重力 gravity50 线荷载 line load51 弯矩 bending moment52 扭矩 torque53 应力 stress54 应变 stain55 正应力 normal stress56 剪应力 shearing stress57 主应力 principal stress58 变形 deformation59 内力 internal force60 偏移量挠度 deflection61 沉降settlement62 屈曲失稳 buckle63 轴力 axial force64 允许应力 allowable stress65 疲劳分析 fatigue analysis66 梁 beam67 壳 shell68 板 plate69 桥 bridge70 桩 pile71 主动土压力 active earth pressure72 被动土压力 passive earth pressure73 承载力 load-bearing capacity74 水位 water Height75 位移 displacement76 结构力学 structural mechanics77 材料力学 material mechanics78 经纬仪 altometer79 水准仪level80 学科 discipline81 子学科 sub-discipline82 期刊 journal periodical精品文库83 文献literature84 国际标准刊号ISSN International Standard Serial Number85 国际标准书号ISBN International Standard Book Number86 卷 volume87 期 number88 专著 monograph89 会议论文集 Proceeding90 学位论文 thesis dissertation91 专利 patent92 档案档案室 archive93 国际学术会议 conference94 导师 advisor95 学位论文答辩 defense of thesis96 博士研究生 doctorate student97 研究生 postgraduate98 工程索引EI Engineering Index99 科学引文索引SCI Science Citation Index100 科学技术会议论文集索引ISTP Index to Science and Tec hnology Proceedings101 题目 title102 摘要 abstract103 全文 full-text104 参考文献 reference105 联络单位、所属单位affiliation106 主题词 Subject107 关键字 keyword108 美国土木工程师协会ASCE American Society of Civil Engineers109 联邦公路总署FHWA Federal Highway Administration110 国际标准组织ISO International Standard Organization111 解析方法 analytical method112 数值方法 numerical method113 计算 computation114 说明书 instruction115 规范 Specification Code第二部分:岩土工程专业词汇1.geotechnical engineering 岩土工程2.foundation engineering 基础工程3.soil earth 土4.soil mechanics 土力学5.cyclic loading 周期荷载6.unloading 卸载7.reloading 再加载8.viscoelastic foundation 粘弹性地基精品文库9.viscous damping 粘滞阻尼10.shear modulus 剪切模量11.soil dynamics 土动力学12.stress path 应力路径13.numerical geotechanics 数值岩土力学二.土的分类1.residual soil 残积土 groundwater level 地下水位2.groundwater 地下水 groundwater table 地下水位3.clay minerals 粘土矿物4.secondary minerals 次生矿物ndslides 滑坡6.bore hole columnar section 钻孔柱状图7.engineering geologic investigation 工程地质勘察8.boulder 漂石9.cobble 卵石10.gravel 砂石11.gravelly sand 砾砂12.coarse sand 粗砂13.medium sand 中砂14.fine sand 细砂15.silty sand 粉土16.clayey soil 粘性土17.clay 粘土18.silty clay 粉质粘土19.silt 粉土20.sandy silt 砂质粉土21.clayey silt 粘质粉土22.saturated soil 饱和土23.unsaturated soil 非饱和土24.fill (soil) 填土25.overconsolidated soil 超固结土26.normally consolidated soil 正常固结土27.underconsolidated soil 欠固结土28.zonal soil 区域性土29.soft clay 软粘土30.expansive (swelling) soil 膨胀土31.peat 泥炭32.loess 黄土33.frozen soil 冻土24.degree of saturation 饱和度25.dry unit weight 干重度26.moist unit weight 湿重度精品文库45.ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering 国际土力学与岩土工程学会四.渗透性和渗流1.Darcy’s law 达西定律2.piping 管涌3.flowing soil 流土4.sand boiling 砂沸5.flow net 流网6.seepage 渗透(流)7.leakage 渗流8.seepage pressure 渗透压力9.permeability 渗透性10.seepage force 渗透力11.hydraulic gradient 水力梯度12.coefficient of permeability 渗透系数五.地基应力和变形1.soft soil 软土2.(negative) skin friction of driven pile 打入桩(负)摩阻力3.effective stress 有效应力4.total stress 总应力5.field vane shear strength 十字板抗剪强度6.low activity 低活性7.sensitivity 灵敏度8.triaxial test 三轴试验9.foundation design 基础设计10.recompaction 再压缩11.bearing capacity 承载力12.soil mass 土体13.contact stress (pressure)接触应力(压力)14.concentrated load 集中荷载15.a semi-infinite elastic solid 半无限弹性体16.homogeneous 均质17.isotropic 各向同性18.strip footing 条基19.square spread footing 方形独立基础20.underlying soil (stratum strata)下卧层(土)21.dead load =sustained load 恒载持续荷载22.live load 活载23.short –term transient load 短期瞬时荷载24.long-term transient load 长期荷载25.reduced load 折算荷载26.settlement 沉降精品文库27.deformation 变形28.casing 套管29.dike=dyke 堤(防)30.clay fraction 粘粒粒组31.physical properties 物理性质32.subgrade 路基33.well-graded soil 级配良好土34.poorly-graded soil 级配不良土35.normal stresses 正应力36.shear stresses 剪应力37.principal plane 主平面38.major (intermediate minor) principal stress 最大(中、最小)主应力39.Mohr-Coulomb failure condition 摩尔-库仑破坏条件40.FEM=finite element method 有限元法41.limit equilibrium method 极限平衡法42.pore water pressure 孔隙水压力43.preconsolidation pressure 先期固结压力44.modulus of compressibility 压缩模量45.coefficent of compressibility 压缩系数pression index 压缩指数47.swelling index 回弹指数48.geostatic stress 自重应力49.additional stress 附加应力50.total stress 总应力51.final settlement 最终沉降52.slip line 滑动线六.基坑开挖与降水1 excavation 开挖(挖方)2 dewatering (基坑)降水3 failure of foundation 基坑失稳4 bracing of foundation pit 基坑围护5 bottom heave=basal heave (基坑)底隆起6 retaining wall 挡土墙7 pore-pressure distribution 孔压分布8 dewatering method 降低地下水位法9 well point system 井点系统(轻型)10 deep well point 深井点11 vacuum well point 真空井点12 braced cuts 支撑围护13 braced excavation 支撑开挖14 braced sheeting 支撑挡板七.深基础--deep foundation1.pile foundation 桩基础1)cast –in-place 灌注桩diving casting cast-in-place pile 沉管灌注桩bored pile 钻孔桩special-shaped cast-in-place pile 机控异型灌注桩piles set into rock 嵌岩灌注桩rammed bulb pile 夯扩桩2)belled pier foundation 钻孔墩基础drilled-pier foundation 钻孔扩底墩under-reamed bored pier3)precast concrete pile 预制混凝土桩4)steel pile 钢桩steel pipe pile 钢管桩steel sheet pile 钢板桩5)prestressed concrete pile 预应力混凝土桩prestressed concrete pipe pile 预应力混凝土管桩2.caisson foundation 沉井(箱)3.diaphragm wall 地下连续墙截水墙4.friction pile 摩擦桩5.end-bearing pile 端承桩6.shaft 竖井;桩身7.wave equation analysis 波动方程分析8.pile caps 承台(桩帽)9.bearing capacity of single pile 单桩承载力teral pile load test 单桩横向载荷试验11.ultimate lateral resistance of single pile 单桩横向极限承载力12.static load test of pile 单桩竖向静荷载试验13.vertical allowable load capacity 单桩竖向容许承载力14.low pile cap 低桩承台15.high-rise pile cap 高桩承台16.vertical ultimate uplift resistance of single pile 单桩抗拔极限承载力17.silent piling 静力压桩18.uplift pile 抗拔桩19.anti-slide pile 抗滑桩20.pile groups 群桩21.efficiency factor of pile groups 群桩效率系数(η)22.efficiency of pile groups 群桩效应23.dynamic pile testing 桩基动测技术24.final set 最后贯入度25.dynamic load test of pile 桩动荷载试验26.pile integrity test 桩的完整性试验27.pile head=butt 桩头28.pile tip=pile point=pile toe 桩端(头)29.pile spacing 桩距30.pile plan 桩位布置图31.arrangement of piles =pile layout 桩的布置32.group action 群桩作用33.end bearing=tip resistance 桩端阻34.skin(side) friction=shaft resistance 桩侧阻35.pile cushion 桩垫36.pile driving(by vibration) (振动)打桩37.pile pulling test 拔桩试验38.pile shoe 桩靴39.pile noise 打桩噪音40.pile rig 打桩机九.固结 consolidation1.Terzzaghi’s consolidation theory 太沙基固结理论2.Barraon’s consolidation theory 巴隆固结理论3.Biot’s consolidation theory 比奥固结理论4.over consolidation ration (OCR)超固结比5.overconsolidation soil 超固结土6.excess pore water pressure 超孔压力7.multi-dimensional consolidation 多维固结8.one-dimensional consolidation 一维固结9.primary consolidation 主固结10.secondary consolidation 次固结11.degree of consolidation 固结度12.consolidation test 固结试验13.consolidation curve 固结曲线14.time factor Tv 时间因子15.coefficient of consolidation 固结系数16.preconsolidation pressure 前期固结压力17.principle of effective stress 有效应力原理18.consolidation under K0 condition K0 固结十.抗剪强度 shear strength1.undrained shear strength 不排水抗剪强度2.residual strength 残余强度3.long-term strength 长期强度4.peak strength 峰值强度5.shear strain rate 剪切应变速率6.dilatation 剪胀7.effective stress approach of shear strength 剪胀抗剪强度有效应力法 8.total stress approach of shear strength 抗剪强度总应力法9.Mohr-Coulomb theory 莫尔-库仑理论10.angle of internal friction 内摩擦角11.cohesion 粘聚力12.failure criterion 破坏准则13.vane strength 十字板抗剪强度14.unconfined compression 无侧限抗压强度15.effective stress failure envelop 有效应力破坏包线16.effective stress strength parameter 有效应力强度参数十一.本构模型--constitutive model1.elastic model 弹性模型2.nonlinear elastic model 非线性弹性模型3.elastoplastic model 弹塑性模型4.viscoelastic model 粘弹性模型5.boundary surface model 边界面模型6.Du ncan-Chang model 邓肯-张模型7.rigid plastic model 刚塑性模型8.cap model 盖帽模型9.work softening 加工软化10.work hardening 加工硬化11.Cambridge model 剑桥模型12.ideal elastoplastic model 理想弹塑性模型13.Mohr-Coulomb yield criterion 莫尔-库仑屈服准则14.yield surface 屈服面15.elastic half-space foundation model 弹性半空间地基模型16.elastic modulus 弹性模量17.Winkler foundation model 文克尔地基模型十二.地基承载力--bearing capacity of foundation soil1.punching shear failure 冲剪破坏2.general shear failure 整体剪切破化3.local shear failure 局部剪切破坏4.state of limit equilibrium 极限平衡状态5.critical edge pressure 临塑荷载6.stability of foundation soil 地基稳定性7.ultimate bearing capacity of foundation soil 地基极限承载力8.allowable bearing capacity of foundation soil 地基容许承载力十三.土压力--earth pressure1.active earth pressure 主动土压力2.passive earth pressure 被动土压力3.earth pressure at rest 静止土压力4.Coulomb’s earth pressure theory 库仑土压力理论5.Rankine’s earth pressure theo ry 朗金土压力理论十四.土坡稳定分析--slope stability analysis1.angle of repose 休止角2.Bishop method 毕肖普法3.safety factor of slope 边坡稳定安全系数4.Fellenius method of slices 费纽伦斯条分法5.Swedish circle method 瑞典圆弧滑动法6.slices method 条分法十五.挡土墙--retaining wall1.stability of retaining wall 挡土墙稳定性2.foundation wall 基础墙3.counter retaining wall 扶壁式挡土墙4.cantilever retaining wall 悬臂式挡土墙5.cantilever sheet pile wall 悬臂式板桩墙6.gravity retaining wall 重力式挡土墙7.anchored plate retaining wall 锚定板挡土墙8.anchored sheet pile wall 锚定板板桩墙十六.板桩结构物--sheet pile structure1.steel sheet pile 钢板桩2.reinforced concrete sheet pile 钢筋混凝土板桩3.steel piles 钢桩4.wooden sheet pile 木板桩5.timber piles 木桩十七.浅基础--shallow foundation1.box foundation 箱型基础2.mat(raft) foundation 片筏基础3.strip foundation 条形基础4.spread footing 扩展基础pensated foundation 补偿性基础6.bearing stratum 持力层7.rigid foundation 刚性基础8.flexible foundation 柔性基础9.emxxxxbedded depth of foundation 基础埋置深度 foundation pressure 基底附加应力11.structure-foundation-soil interaction analysis 上部结构-基础-地基共同作用分析十八.土的动力性质--dynamic properties of soils1.dynamic strength of soils 动强度2.wave velocity method 波速法3.material damping 材料阻尼4.geometric damping 几何阻尼5.damping ratio 阻尼比6.initial liquefaction 初始液化7.natural period of soil site 地基固有周期8.dynamic shear modulus of soils 动剪切模量9.dynamic ma二十.地基基础抗震1.earthquake engineering 地震工程2.soil dynamics 土动力学3.duration of earthquake 地震持续时间4.earthquake response spectrum 地震反应谱5.earthquake intensity 地震烈度6.earthquake magnitude 震级7.seismic predominant period 地震卓越周期8.maximum acceleration of earthquake 地震最大加速度二十一.室内土工实验1.high pressure consolidation test 高压固结试验2.consolidation under K0 condition K0 固结试验3.falling head permeability 变水头试验4.constant head permeability 常水头渗透试验5.unconsolidated-undrained triaxial test 不固结不排水试验(UU)6.consolidated undrained triaxial test 固结不排水试验(CU)7.consolidated drained triaxial test 固结排水试验(CD)paction test 击实试验9.consolidated quick direct shear test 固结快剪试验10.quick direct shear test 快剪试验11.consolidated drained direct shear test 慢剪试验12.sieve analysis 筛分析13.geotechnical model test 土工模型试验14.centrifugal model test 离心模型试验15.direct shear apparatus 直剪仪16.direct shear test 直剪试验17.direct simple shear test 直接单剪试验18.dynamic triaxial test 三轴试验19.dynamic simple shear 动单剪20.free(resonance)vibration column test 自(共)振柱试验二十二.原位测试1.standard penetration test (SPT)标准贯入试验2.surface wave test (SWT) 表面波试验3.dynamic penetration test(DPT) 动力触探试验4.static cone penetration (SPT) 静力触探试验5.plate loading test 静力荷载试验teral load test of pile 单桩横向载荷试验7.static load test of pile 单桩竖向荷载试验8.cross-hole test 跨孔试验9.screw plate test 螺旋板载荷试验10.pressuremeter test 旁压试验11.light sounding 轻便触探试验12.deep settlement measurement 深层沉降观测13.vane shear test 十字板剪切试验14.field permeability test 现场渗透试验15.in-situ pore water pressure measurement 原位孔隙水压量测16.in-situ soil test 原位试验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录1翻译适当有效的建筑材料是限制富有经验的结构工程师成就的主要原因之一。
早期的建筑者几乎都只使用木材,石头,砖块和混凝土。
尽管铸铁在修建埃及的金字塔中已被人们使用, 但是把它作为建筑材料却由于大量熔炼它比较困难而被限制。
藉由产业革命,然而,受到把铸铁作为建筑材料和在大量融炼它的能力的两者对其双重需要的影响。
John Smeaton,一个英国土木工程师, 在十八的世纪中时,是第一广泛地使用铸铁作为建筑材料的。
在1841之后,可锻金属被发展成更可靠的材料并且广泛地被应用。
尽管可锻金属优于铸铁,但仍有很多结构破坏从而需要有更可靠的材料。
钢便是这一需要的答案。
1856年的贝色麦转转炉炼钢法和后来发展的马丁平炉炼钢法的发明使以竞争的价格形成了生产建筑用钢并且兴起了建筑用钢在下个百年的快速发展。
钢的最严重缺点是它容易被氧化而需要被油漆或一些其他的适当涂料保护。
当钢被用于可能发生火灾环境时, 钢应该包围在一些耐火的材料中, 例如石料或混凝土。
通常,钢的组合结构不易被压碎除非是在冶金成分不好,低温的不利组合, 或空间压力存在的情况下。
建筑用铝仍然不广泛被在土木工程结构中用,虽然它的使用正在稳定地增加。
藉着铝合金作为一个适当的选择和对其进行热处理,可获得各式各样的强度特性。
一些合金所展现的抗压强度特性相似于钢, 除线形弹性模量大约是7,000,000 牛/平方厘米,相当于刚的三分之一。
质量轻和耐氧化是铝的两个主要优点。
因为它的特性对热处理是非常敏感的,当铆接或焊接铝的时候,一定要小心仔细。
一些技术已为制造预制铝组合配件及形成若干的美丽的设计良好的外型结构的铝制结构而发展起来。
组合房屋配件制造的一般程序藉由螺栓连接,这似乎是利用建筑用铝的最有前途的方法。
加强和预应力混凝土是主要的建筑材料。
天然的水泥混凝土已经被使用长达数世纪之久。
现代的混凝土建筑兴起于十九世纪中叶,尽管人造水泥被Aspidin ,一个英国人于1825年申请了专利. 虽然一些建筑者和工程师在十九世纪后期用钢筋混凝土作实验, 但作为一种建筑材料它占统治地位是在二十世纪初期。
后五十年钢筋混凝土结构设计和建筑得到迅速发展, 早期在法国的Freyssinet 和比利时的 Magnel被大量使用。
素混凝土作为建筑材料有一个非常严重的缺点:就是它的抗拉强度非常有限, 只是它的抗压强度的十分之一。
素混凝土不仅受拉破坏是脆性破坏,而且受压破坏也是在没有多大变形预兆的情况下发生的准脆性破坏。
(当然,在钢筋混凝土建筑中,可以得到适当的延性)。
只有进行适当的养护和合理的选择并且掺加适当的混合天加剂,否则霜冻破坏能严重的损害混凝土。
在长期荷载作用下混凝土在选择设计受压情况方面要仔细考虑。
在硬化的时候和它的早期养护下,混凝土收缩占主要地位, 因此需要添加适当地比例的添加剂而且用适当的建筑技术来控制。
藉由所有的这些可能的严重缺点,工程师已经试着为各种实际结构设计建立美丽的,持久的,和经济的钢筋混凝土结构。
这是藉着设计尺寸和钢筋排列安排的谨慎选择,和适当的水泥的发展已经趋于同步, 适当添加剂混合比例, 混合配置, 而且养护技术和建筑方法,仪器的快速发展。
混凝土具有多种用途,其组成材料广泛可取,并且能非常方便地浇制成满足强度及功能要求的形状,同时,随着新型预应力混凝土、预制混凝土以及普通混凝土施工方法令人兴奋的进一步改善和发展的潜力,这些因素综合起来使得混凝土在绝大多数结构中有着比其他材料更大的竞争力。
在现代,藉由钢和加强钢筋的使用量在建筑结构中的增加,木材在建筑期间主要地已经被撤离到附属的、暂时的和次要的结构中使用,成为建筑材料的次要成员。
然而, 现代的技术在最后六十年中已经有使木材作为建筑材料恢复生气的迹象,藉由大量的改良了木材的加工方法,各种不同的处理方法增加了木材的耐久性, 而且叠片木材连同使用黏结技术的革命使得木材的性能有了更好的保证。
各向同性的胶合板是最广泛使用的压层胶合板,随着技术的发展,压层胶合板已经发展成为特定的结构材料并对混凝土和钢造成了强大的竞争力。
将来可能发展的材料是工程塑料和稀有金属及他们的合金,如铍,钨,钽,钛,钼,铬,钒和铌。
有许多不同的塑料可以用,而且这些材料所展现的力学性能在很大的范围内改变。
在如此许多的特性中我比较设计方案选择适当的可能的塑料材料是可能的。
对塑料的使用受经验的限制。
一般而言,塑料一定要与空气隔离。
设计的这一个方面要求主要是对塑料结构元素在使用中的考虑。
塑料被应用的最有希望的潜能之一是嵌板和贝壳型结构。
叠片或夹心嵌板已经被用于此种结构以鼓励未来建筑大量应用这一个类型材料。
另一种引起注意的材料由纤维或像粒子的胶结加筋的微粒组成的合成物材料正在开发。
虽然一种由玻璃或塑料胶结材料组成的玻璃纤维加筋合成物已经被用长达数年之久, 但是他们很可能退落为次要的结构材料。
加筋混凝土是另一个积极地被学习而且发展的混合料。
一些实验正在工作情况下进行。
实验主要内容为钢和玻璃纤维,但是大部份的使用经验在钢纤维方面比较先进。
附录 2英文文献原文The availability of suitable structural materials is one of the principal limitations on the accomplishment of an experienced structural engineer. Early builders depended almost exclusively on wood, stone, brick, and concrete. Although iron had been used by humans at least since the building of the Egyptian pyramids, use of it as a structural material was limited because of the difficulties of smelting it in large quantities. With the industrial revolution, however, came both the need for iron as a structural material and the capability of smelting it in quantity.John Smeaton, an English civil engineer, was the first to use cast iron extensively as a structural material in the mid-eighteenth century. After 1841, malleable iron was developed as a more reliable material and was widely used. Whereas malleable iron was superior to cast iron, there were still too many structural failures and there was a need for a more reliable material. Steel was the answer to this demand. The invention of the Bessemer converter in 1856 and the subsequent development of the Siemens-Martin open-hearth process for making steel made it possible to produce structural steel at competitive prices and triggered the tremendous developments and accomplishments in the use of structural steel over the next hundred years.The most serious disadvantage of steel is that it oxidizes easily and must be protected by paint or some other suitable coating. When steel is used in an enclosure where a fire could occur, the steel members must be encased in a suitable fire-resistant enclosure such as masonry, concrete. Normally, steel members will not fail in a brittle manner unless an unfortunate combination of metallurgical composition, low temperature, and bi-or triaxial stress exists.Structural aluminum is still not widely used in civil engineering structures, though its use is steadily increasing. By a proper selection of the aluminum alloy and its heat treatment, a wide variety of strength characteristics may be obtained. Some of the alloys exhibit stress-strain characteristics similar those of structuralsteel, except that the modulus of elasticity for the initial linearly elastic portion is about 10,000,000 psi (700,000 kgf/cm*cm) or about one-third that of steel. Lightness and resistance to oxidation are, of course, two of the major advantages of aluminum. Because its properties are very sensitive to its heat treatment, care must be used when riveting or welding aluminum. Several techniques have been developed for prefabricating aluminum subassemblies that can be readily erected and bolted together in the field to form a number of beautiful and well-designed shell structures. This general procedure of prefabrication and held assembly by bolting seems to be the most promising way of utilizing structural aluminum.Reinforced and prestesses concrete share with structural material. Natural cement concretes have been used for centuries. Modern concrete construction dates from the middle of the nineteenth century, though artificial Portland cement was patented by Aspidin, an Englishman, about 1825. Although several builders and engineers experimented with the use of steel-reinforced concrete in the last half of the nineteenth century, its dominant use as a building material dates from the early decades of the twentieth century. The last fifty years have seen the rapid and vigorous development of prestressed concrete design and construction, founded largely on early work by Freyssinet in France and Magnel in Belgium.Plain (unreinforced) concrete not only is a heterogeneous material but also has one very serious defect as a structural material, namely, its very limited tensile strength, which is only of the order of one-tenth its compressive strength. Not only is tensile failure in concrete of a brittle type, but likewise compression failure occurs in a relatively brittle fashion without being preceded by the forewarning of large deformations. (Of course, in reinforced-concrete construction, ductile behavior can be obtained by proper selection and arrangement of the reinforcement.) Unless proper care is used in the selection of aggregates and in the mixing and placing of concrete, frost action can cause serious damage to concrete masonry. Concrete creeps under long-term loading to a degree that must be considered carefully in selecting the design stress conditions. During the curing process and its early life, concrete shrinks a significant amount, which to a degree can be controlled by properly proportioning the mix and utilizing suitable construction techniques.With all these potentially serious disadvantages, engineers have learned to design and build beautiful, durable, and economical reinforced-concrete structuresfor practically all kinds of structural requirements. This has been accomplished by careful selection of the design dimensions and the arrangement of the steel reinforcement, development of proper cements, selection of proper aggregates and mix proportions, careful control of mixing, placing, and curing techniques and imaginative development of construction methods, equipment and procedures.The versatility of concrete, the wide availability of its component materials, the unique ease of shaping its form to meet strength and functional requirements, together with the exciting potential of further improvements and development of not only the newer prestressed and precast concrete construction but also the conventional reinforced concrete construction, combine to make concrete a strong competitor of other materials in a very large fraction of structures.In modern times, with the increased use of steel and reinforced-concrete construction, wood has been relegated largely to accessory use during construction, to use in temporary and secondary structures, and to use for secondary members of permanent construction. Modern technology in the last sixty years has revitalized wood as a structural material, however, by developing vastly improved timber connectors, various treatments to increase the durability of wood, and laminated wood made of thin layers bonded together with synthetic glues using revolutionary gluing techniques. Plywood with essentially nondirectional strength properties is the most widely used laminated wood, but techniques have also been developed for building large laminated wood members that for certain structures are competitive with concrete and steel.Materials with future possibilities are the engineering plastics and the exotic metals and their alloys, such as beryllium, tungsten, tantalum, titanium, molybdenum, chromium, vanadium, and niobium. There are many different plastics available, and the mechanical properties exhibited by this group of materials vary over a wide range that encompasses the range of properties available among the more commonly used structural materials. Thus in many specific design applications it is possible to select a suitable plastic material for an alternative design. Experience with the use of plastics outdoors is limited. Generally speaking, however, plastics must be protected from the weather. This aspect of design is therefore a major consideration in the use of plastics for primary structural elements. One of the most promising potential used of plastics is for panel andshell-type structures. Laminated or sandwich panels have been used in such structures with encouraging results that indicate an increased use in this type of construction in the future.Another materials development with interesting possibilities is that of composites consisting of a matrix reinforced by fibers or fiber like particles. Although glass-fiber-reinforced composites with a glass or plastic matrix have been used for years, they appear to have much broader possibilities for a large variety of secondary structural components. Fiber-reinforced concrete is another composite being actively studied and developed. Several experimental applications are being observed under service conditions. Experiments have been conducted with both steel and glass fibers, but most of the service experience has been with steel fibers.。