频率特性的测量实验报告

合集下载

自动控制频率特性测试实验报告

自动控制频率特性测试实验报告

自动控制频率特性测试实验报告1. 引言在现代自动控制系统中,频率特性是一个重要的参数,对于系统的稳定性和性能起着决定性的作用。

频率特性测试实验旨在评估自动控制系统的频率响应,并分析系统在不同频率下的性能。

本实验报告将介绍自动控制频率特性测试实验的目的、实验器材、实验步骤和实验结果分析。

2. 实验目的本实验的主要目的是通过频率响应测试,评估自动控制系统的频率特性以及系统在不同频率下的性能。

具体目标包括:1.测试系统的幅频特性,即系统的增益与频率之间的关系;2.测试系统的相频特性,即系统的相移与频率之间的关系;3.分析系统的频率特性对系统的稳定性和性能的影响。

3. 实验器材本实验所需的器材包括:•信号发生器:用于产生不同频率的输入信号;•可变增益放大器:用于控制输入信号的幅度;•相位巡迥器:用于调节输入信号的相位;•示波器:用于观测输入信号和输出信号;•自动控制系统:接受输入信号并提供相应的控制输出。

4. 实验步骤4.1 准备工作1.确保实验器材连接正确,信号发生器连接到自动控制系统的输入端,示波器连接到自动控制系统的输出端。

2.将可变增益放大器和相位巡迥器分别接入信号发生器的输出端,用于调节输入信号的幅度和相位。

4.2 测试幅频特性1.设置信号发生器的频率为起始频率,将幅度设置为合适的值。

2.将相位巡迥器的相位设置为零,确保输入信号的相位与输出信号相位一致。

3.记录输入信号和输出信号的幅度,并计算增益。

4.逐渐增加信号发生器的频率,重复步骤3,直到达到结束频率。

4.3 测试相频特性1.设置信号发生器的频率为起始频率,将幅度和相位设置为合适的值。

2.记录输入信号和输出信号的相位差,并计算相移。

3.逐渐增加信号发生器的频率,重复步骤2,直到达到结束频率。

4.4 结果记录与分析1.将实验得到的数据记录下来,包括输入信号频率、幅度、输出信号频率、幅度、相位差等。

2.绘制幅频特性曲线图,分析系统的增益随频率变化的规律。

频率特性测试实验报告

频率特性测试实验报告

频率特性测试实验报告引言频率特性测试是一种常用的电子设备测试方法,用于评估电子设备在不同频率下的性能表现。

本实验旨在通过测试不同频率下的信号响应,来探究被测试物体的频率特性。

实验步骤1.准备测试设备和被测试物体:选择一台信号发生器作为测试设备,并选择一个被测试物体,如一个电子电路板或一个音响设备。

2.连接测试设备和被测试物体:将信号发生器的输出端与被测试物体的输入端相连接。

确保连接稳固可靠。

3.设置信号发生器的频率:根据实验要求,设置信号发生器的频率范围和步进值。

频率范围应覆盖被测试物体可能的工作频率。

4.开始测试:依次设置不同的频率,观察被测试物体的响应情况。

记录下每个频率下的测试数据。

5.分析测试数据:将记录的测试数据整理,并进行进一步的数据分析。

可以绘制频率-响应曲线图,以直观展示被测试物体的频率特性。

6.结果讨论:根据频率-响应曲线图和数据分析结果,讨论被测试物体的频率特性。

可以探讨其在不同频率下的增益、相位差等表现,并与预期的理论模型进行比较。

7.结论:总结被测试物体的频率特性,给出实验结果的解释和评价。

实验数据示例频率 (Hz) 响应幅度 (dB) 相位差 (°)100 0.5 10500 1.2 201000 2.0 302000 1.8 405000 1.0 4510000 0.8 50数据分析与讨论通过绘制频率-响应曲线图,我们可以清楚地观察到被测试物体的频率特性。

从实验数据中可以看出,被测试物体在低频段(100 Hz和500 Hz)响应幅度较小,相位差也较小。

随着频率的增加,响应幅度逐渐增强,相位差也逐渐增大。

当频率达到2000 Hz时,响应幅度达到最大值,相位差也达到最大值。

随后,响应幅度逐渐减小,相位差也逐渐减小。

这种频率特性的变化可能与被测试物体的电路结构和元件特性有关。

与预期的理论模型进行比较后发现,实验结果与理论模型基本一致。

在低频段,被测试物体对输入信号的响应较弱,可能是由于电路的带宽限制或信号衰减等原因。

实验四 控制系统频率特性的测试 实验报告

实验四 控制系统频率特性的测试 实验报告

实验四控制系统频率特性的测试一.实验目的认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。

二.实验装置(1)微型计算机。

(2)自动控制实验教学系统软件。

三.实验原理及方法(1)基本概念一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下:幅频特性相频特性(2)实验方法设有两个正弦信号:若以)(y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以)(t化,)(y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和)(t曲线(通常是一个椭圆)。

这就是所谓“李沙育图形”。

由李沙育图形可求出Xm ,Ym,φ,四.实验步骤(1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。

(2)首先确定被测对象模型的传递函数, 预先设置好参数T1、T2、ξ、K(3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点五.数据处理(一)第一种处理方法:(1)得表格如下:(2)作图如下:(二)第二种方法:由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。

(三)误差分析两图形的大体趋势一直,从而验证了理论的正确性。

在拐点处有一定的差距,在某些点处也存在较大的误差。

分析:(1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。

(2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。

(3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异六.思考讨论(1)是否可以用“李沙育”图形同时测量幅频特性和想频特性答:可以。

在实验过程中一个频率可同时记录2Xm,2Ym,2y0。

(2)讨论用“李沙育图形”测量频率特性的精度,即误差分析(说明误差的主要来源)答:用“李沙育图形”测量频率特性的精度从上面的分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,这些误差主要来自于从“李沙育图形”上读取数据的时候存在的误差,也可能是计算机精度方面的误差。

频率特性实验报告

频率特性实验报告

一、实验目的1. 理解频率特性的基本概念和测量方法。

2. 掌握使用Bode图和尼奎斯特图分析系统频率特性的方法。

3. 了解频率特性在系统设计和稳定性分析中的应用。

二、实验原理频率特性描述了系统对正弦输入信号的响应,通常用幅频特性和相频特性来表示。

幅频特性表示输出信号幅度与输入信号幅度之间的关系,相频特性表示输出信号相位与输入信号相位之间的关系。

频率特性的测量通常通过以下步骤进行:1. 使用正弦信号发生器产生不同频率的正弦信号。

2. 将信号输入被测系统,并测量输出信号的幅度和相位。

3. 根据测量数据绘制幅频特性和相频特性曲线。

三、实验设备1. 正弦信号发生器2. 示波器3. 信号分析仪4. 被测系统(如电路、控制系统等)四、实验步骤1. 准备实验设备,确保各设备连接正确。

2. 设置正弦信号发生器,产生一系列不同频率的正弦信号。

3. 将正弦信号输入被测系统,并使用示波器或信号分析仪测量输出信号的幅度和相位。

4. 记录不同频率下的幅度和相位数据。

5. 使用绘图软件绘制幅频特性和相频特性曲线。

五、实验结果与分析1. 幅频特性分析通过绘制幅频特性曲线,可以观察到系统对不同频率信号的衰减程度。

一般来说,低频信号的衰减较小,高频信号的衰减较大。

根据幅频特性,可以判断系统的带宽和稳定性。

2. 相频特性分析通过绘制相频特性曲线,可以观察到系统对不同频率信号的相位延迟。

相频特性曲线通常呈现出滞后或超前特性。

根据相频特性,可以判断系统的相位裕度和增益裕度。

3. 系统稳定性分析根据幅频特性和相频特性,可以判断系统的稳定性。

如果系统的相位裕度和增益裕度都大于零,则系统是稳定的。

否则,系统可能是不稳定的。

六、实验结论通过本次实验,我们成功地测量了被测系统的频率特性,并分析了其幅频特性和相频特性。

实验结果表明,被测系统在低频段表现出较小的衰减,而在高频段表现出较大的衰减。

相频特性曲线显示出系统在低频段滞后,在高频段超前。

根据频率特性分析,可以得出被测系统是稳定的。

实验报告三_频率特性测量

实验报告三_频率特性测量

实验报告课程名称: 自动控制理论实验 指导老师: 吴越 成绩: 实验名称: 频率特性测量 实验类型: 同组学生姓名: 鲍婷婷一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得 一、实验目的1. 掌握用超低频信号发生器和示波器测定系统或环节频率特性的方法;2. 了解用TD4010型频率响应分析测试仪测定系统或环节的频率特性方法。

二、主要仪器设备1.超低频信号发生器2.电子模拟实验装置3.超低频慢扫描示波器三、实验步骤1.测量微分积分环节的频率特性;(1)相频特性相频特性的测试线路如图4-3-1所示,其中R 1=10k Ω、C 1=1uF 、R 2=2k Ω、C 2=50uF 。

测量时,示波器的扫描旋钮指向X-Y 档。

把超低频信号发生器的正弦信号同时送入被测系统和X 轴,被测系统的输出信号送入示波器Y 轴,此时在示波器上可得到一李沙育图形。

然后将椭圆移至示波器屏幕中间,椭圆与X 轴两交点的间的距离即为2X 0,将Y 输入接地,此时得到的延X 轴光线长度即为2X m ,因此求得θ=sin -1 (2X 0/2X m ),变化输入信号频率ω(rad/s),即可得到一组θ(ω)。

测量时必须注意椭圆光点的转动方向,以判别相频特性是超前还是迟后。

当系统或环节的相频特性是迟后时,光点为逆时针转动;反之超前时,光点为顺时针转动。

测试时,ω取值应匀称,否则会影响曲线的准确度。

(2) 幅频特性:示波器选择停止扫描档,超低频信号发生的正弦信号同时送入X 轴和被测系统;被测环节的输出信号仍送入Y 轴;分别将X 通道和Y 通道接地,示波器上出现的两条光线对应的两条光线长度为2X m 、2Y m ,改变频率ω,则可得一组L(ω)。

专业: 电子信息技术及仪器 姓名: 杨泽兰学号: 3120102007 日期: 2014-5-24 地点: 玉泉教二-104装订线超低频信号发生器示波器C 1C 2R 1R 2微分积分环节YX u i u o2. 测量二阶系统的闭环幅频特性:二阶系统的方框图如右图所示。

频率特性测试_实验报告

频率特性测试_实验报告

频率特性测试_实验报告
实验名称:频率特性测试
实验目的:
1. 掌握频率特性测试的原理和方法。

2. 学习使用示波器进行频率特性测试。

3. 了解放大器的频率响应特性。

实验器材:
1. 示波器
2. 双极性电容
3. 电阻器
4. 信号发生器
5. 放大器
实验原理:
频率特性测试一般用于测试电路、放大器和滤波器等的频率响应特性。

在示波器的帮助下,我们可以通过使用信号发生器生成一个带有不同频率的正弦波进行测试,在不同的频率下测量放大器输出的电压,这样就可以分析出放大器的频率响应特性。

实验步骤:
1. 将信号发生器连接到放大器的输入端,将放大器的输出端连
接到示波器的通道1输入端。

2. 在信号发生器上设置正弦波频率为多个不同的值,例如
100Hz、1kHz、10kHz。

3. 在示波器上设置通道1为AC耦合并调整垂直调节和水平调节,使正弦波信号在屏幕上呈现符合要求的波形。

4. 记录示波器上显示的放大器输出电压,并将记录的数值制成表格,便于后续分析。

实验结果分析:
通过实验数据,我们可以绘制出放大器的幅频响应曲线,以表现放大器在不同频率下的增益特性。

在典型的幅频响应曲线中,我们会发现放大器的增益在低频时趋于平稳,在中频时达到峰值,在高频时进行了急剧的下降。

实验结论:
频率特性测试是一项非常常见的测试方法,适用于测试放大器、滤波器和其它电路的频率响应特性。

通过本次实验,我们学习了使用示波器进行频率特性测试的方法和技巧,掌握了测试和分析放大器幅频响应曲线的能力,为后续电路设计和优化提供了有力的支持。

实验四 系统频率特性测量

实验四 系统频率特性测量

实验四系统频率特性测量一、实验目的1、加深了解系统及元件频率特性的物理概念。

2、掌握系统及元件频率特性的测量方法。

二、实验设备1、D1CE-AT-∏型自动控制系统实验箱一台2、带串口计算机一台3、RS232串口线三、实验原理及电路1、被测系统的方块图及原理:系统(或环节)的频率特性G(jω)是一个复变量,可以表示成以角频率3为参数的幅值和相角:G(M=IG(%)I∕G(网本实验应用频率特性测试仪测量系统或环节的频率特牲。

图4-1所示系统的开环频率特性为:B(jω)B(ιω)B(jω)G3)GR3)H(j3)=叼舟I/追采用对数幅频特牲和相频特性表示,则式(4-2)表示为:(4—1) (4-2)图4-1被测系统方块图2。

IgGG3)G∕)Hg)H。

啕需I=2(Hg1BG3-2(Hg1EG3)I (4—3) C⅛Gω)G<jω)HGω)=/*线=∕BQω)-EGω)(4-4)E(j3)将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输人端Et)],然后分别测量相应的反馈信号[b⑴]和误差信号[e(t)]的对数幅值和相位。

频率特性测试仪测试数据经相关运算器后在显示器中显示。

根据式(4—3)和式(4—4)分别计算出各个频率下的开环对数幅值和相位,在半对数座标纸上作出实验曲线:开环对数幅频曲线和相频曲线。

根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。

所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符,如果测量所得的相位在高频(相对于转角频率)时不等于一900(q—p)[式中P和q分别表示传递函数分子和分母的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。

频率特性实验报告

频率特性实验报告

频率特性实验报告频率特性实验报告引言:频率特性是描述信号在不同频率下的响应性能的重要指标。

在电子领域中,频率特性实验是非常常见的实验之一。

本文将介绍频率特性实验的目的、实验原理、实验步骤以及实验结果的分析。

一、实验目的:频率特性实验的目的是研究电路或系统在不同频率下的响应特性,了解信号在不同频率下的传输和滤波性能。

通过实验,可以掌握频率特性的测试方法和实验技巧,提高实验操作能力和数据处理能力。

二、实验原理:频率特性实验通常涉及到信号的输入和输出,以及信号的幅度和相位响应。

在实验中,常用的测试仪器有函数发生器、示波器和频谱分析仪。

1. 函数发生器:用于产生不同频率的信号作为输入信号。

可以调节函数发生器的频率、幅度和波形等参数。

2. 示波器:用于观测电路或系统的输入和输出信号波形。

示波器可以显示信号的幅度、相位和频率等信息。

3. 频谱分析仪:用于分析信号的频谱成分。

频谱分析仪可以显示信号在不同频率下的幅度谱和相位谱。

实验步骤:1. 准备实验所需的仪器和器材,包括函数发生器、示波器和频谱分析仪。

2. 连接电路或系统,将函数发生器的输出信号连接到被测电路或系统的输入端,将示波器或频谱分析仪连接到电路或系统的输出端。

3. 设置函数发生器的频率和幅度,选择适当的波形。

4. 调节示波器或频谱分析仪的参数,观测信号的波形和频谱。

5. 重复步骤3和步骤4,改变函数发生器的频率,记录不同频率下的信号波形和频谱。

实验结果分析:根据实验记录的信号波形和频谱数据,可以进行以下分析:1. 幅度响应:通过观察信号的幅度谱,可以了解电路或系统在不同频率下信号的衰减或增益情况。

如果幅度谱在不同频率下保持不变,则说明电路或系统具有平坦的幅度响应特性。

如果幅度谱在某些频率点出现峰值或谷值,则说明电路或系统对该频率具有增益或衰减。

2. 相位响应:通过观察信号的相位谱,可以了解电路或系统在不同频率下信号的相位变化情况。

相位谱可以显示信号的相位延迟或提前。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称: 控制理论乙 指导老师: 成绩:实验名称: 频率特性的测量实验类型:冋组学生姓名:一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填)七、讨论、心得、实验目的和要求1掌握用李沙育图形法,测量各典型环节的频率特性;2 •根据所测得的频率特性,作出伯德图,据此求得环节的传递函数。

、实验内容和原理1. 实验内容(1) R-C 网络的频率特性。

图 5-2为滞后--超前校正网络的接线图,分别测试其幅频特性和相频特性。

1(2)闭环频率特性的测试2. 实验原理对于稳定的线性定常系统或环节,当其输入端加入一正弦信号X (t )二X m sin •,t ,它的稳态输出是T---------110K1O-QIuFI RJCi1DKUrUc被测的二阶系统如图5-3所示,图5-4为它的模拟电路图。

取参考值 R 。

=51K , R i 接470K 的电位器,R^510K , 200K与输入信号同频率的正弦信号,但其幅值和相位随着输入信号频率Y(t) =Y m Sin (co t 十护)=G( j co ) sin (^t只要改变输入信号的频率,就可以测得输出信号与输入信号的幅值比 ■■(■ ■)。

不断改变x(t)的频率,就可测得被测环节(系统)的幅频特性和相频特性。

本实验采用李沙育图形法,图 5-1为测试的方框图在表(1)中列出了超前于滞后时相位的计算公式和光点的转向。

相角9前 超丄J虽/计算公式in 1m)-1 zE<rsx盹z / 1 o) X SI :2 抄n m) &=si(2x一3k (2=s (2-V XJ光点转向针 fl ®针 时慣针 时逆逆表中2Y 。

为椭圆与Y 轴交点之间的长度,2X 0为椭圆与X 轴交点之间的距离, X m 和Y m 分别为X (t)和.的改变而改变。

输出信号为其中G(j 时) Y m X m:(,)=arg G (j ■.)G ( ^)和它们的相位差Y (t)的幅值。

三、 主要仪器设备1控制理论电子模拟实验箱一台; 2 •慢扫描示波器一台; 3. 任意函数信号发生器一台; 4. 万用表一只。

四、 操作方法和实验步骤1•实验一(1) 根据连接图,将导线连接好(2)由于示波器的CH1已经与函数发生器的正极相连, 所以接下来就要将 CH2接在串联电阻电容上, 将函数发生器的正极接入总电路两端,并且示波器和函数发生器的黑表笔连接在一起接地。

Y-t 变为X-Y 显示。

(4) 改变函数发生器的频率,记录数据及波形。

2.实验二:基本与实验一的实验步骤相同。

五、实验数据记录和处理实验一:求计算的相频特性与幅频特性的公式为:(3) 调整适当的扫描时间,将函数发生器的幅值定为 5V 不变,然后摁下扫描时间框中的menu ,点击从R(s) G (s)C(s)108410, 3 , 4(s ■ 10 )(s 10 )3 44(s - 10 )( s 10 ) - 10 ss 211000 s - 1027s 21000 s 1010410810+—G(?.)72,(10 - ■ ■ ) ■ j (11000 - ■) 72(1^- ■ . ) ■ j (21000 - ■)a - bj c dj72a = e = 10 - - ■b =11000 -. d 二 21000 - ■-■/(ac ■ bd ) 2 - (be —ad )2二 20 Igbe — adC ■) = arctan --------------ac +bdO (ra d / s) f (Hz)2X(V)2 Xm(V) 2Ym(V) 实测计算2Y m 2X m实测L@)计算L ®)94.2515 0.48 5.12 4.96 -0.094 -0.092 0.969 -0.276 -0.121 314.1650 1.45.124.48-0.277 -0.2520.875-1.160-1.096107s1050G (s)厂s(0.2 +s) +10 s +5s +50一 5:「(.辻)=arctan250 -CO50LC ■) =20 lg2 2, 2.[(50 - • , )2^ .]50G ( r ■)厂(50 _时)+52 2 , 2[(50 — • )2.]1•实验结果分析(1)实验一根据测得的数据,并经过一系列计算之后,得到的实验一幅频相频特性曲线如图所示:实验一幅频特性曲线(实验)实验一相频特性曲线(实验)通过运用公式理论计算得到的曲线如下图所示:实验一相频特性曲线(计算) 通过matlab 仿真所得实验一中的幅频相频特性曲线如下图所示:由此可以看出,所测并计算之后得到的幅频特性曲线与相频特性曲线和公式计算结果所得到的曲线非常相 近,并且与通过 matlab 仿真得到的波特图之间的差距很小,但仍然存在一定误差。

(2)实验二根据测得的实验结果,在matlab 上绘制幅频特性曲线图如下图所示:实验二幅频特性曲线(实验)W 1实验一幅频特性曲线(计算)Sadi KMwin*w aF 科 M T10*实验二相频特性曲线(实验)根据计算结果,在matlab上绘制幅频曲线如下图所示实验二幅频特性曲线(计算)实验二相频特性曲线(计算)通过matlab程序仿真得到的幅频与相频曲线如下图所示:由上图分析可以得到,实验所测得到的幅频特性曲线与计算结果得到的曲线几乎一样,并且与matlab仿真的波特图非常相近。

但是实验所测得到的相频特性曲线虽然和计算结果得到的曲线较为温和,但是却与matlab仿真得到的相频曲线有着非常大的差别。

这一点的主要原因为:。

2. 实验误差分析本次实验的误差相对于其他实验的误差而言比较大,主要原因有以下几点:(1)示波器读取幅值的时候,由于是用光标测量,观测到的误差相对来说非常大,尤其是当李萨如图像与x轴的交点接近于零的时候,示波器的光标测量读数就非常困难了。

(2)在调整函数发生器的频率过程中,由于示波器的李萨如图像模型对于横坐标扫描时间的要求,导致当频率增加的时候,可观测的点寥寥无几。

只能用display里面的连续记录显示功能来记录波形。

这样记录下来的波形,由于本身点走动的时候带有一定厚度,导致记录波形的宽度非常大,并且亮度基本一致,无法判断曲线边界的具体值,造成的误差也是非常大的。

(3)在绘制曲线过程中,由于测量数据点有限,而造成绘制曲线与计算值存在一定误差。

(4)本次实验的计算量非常繁琐且冗杂,对于实验误差的影响也是非常大的。

(5)电阻和电容等非理想元件造成的误差3. 思考题(1)在实验中如何选择输入的正弦信号的幅值?解:先将频率调到很大,再是信号幅值应该调节信号发生器的信号增益按钮,令示波器显示方式为信号-时间模式,然后观测输出信号,调节频率,观察在各个频段是否失真。

(2)测试频率特性时,示波器Y轴输入开关为什么选择直流?便于读取数据,使测量结果更加准确。

(3)测试相频特性时,若把信号发生器的正弦信号送入Y轴,被测系统的输出信号送入X轴,则根据椭圆光点的转动方向,如何确定相位的超前和迟后?若将输入和输出信号所在的坐标轴变换,则判断超前和滞后的办法也要反过来,即顺时针为滞后,逆时针为超前。

七、讨论、心得1. 在实验过程中,一定要耐心仔细,因为可能会出现李萨如图像与光轴的两个交点非常接近于原点,由于曲线本身的宽度,造成的视觉误差会非常大。

所以在用光标测量数据的时候,一定要非常仔细耐心,尽可能让误差降到最小。

2. 在实验过程中,随着频率的增加,李萨如图像的显示光点也会随之减少,这个时候一定要适当调节扫描时间,尽量往小调,让扫描光点增加,形成比较完整的曲线,以便于测量与观察。

3. 在做第二个实验的时候,即使扫描时间已经调到了最小,仍然无法看见完整的曲线,这时,需要摁下示波器上display按钮,然后点击是否记录轨迹,然后就可以让点完整清晰地将曲线还原回来,从而减小误差。

4. 在计算过程中,注意认真仔细。

计算量繁杂,容易导致计算错误,可以多设几个变量来解决。

5. 在绘制曲线过程中,如果直接用角速度w 的话,有可能会出现小频率的点比较密集,大频率的点比较疏松,得到的曲线误差比较大,并且并不美观。

当数据相差较大时,我采用了将横坐标求对数之后,再将新得到的数据作为横坐标绘制图像,则实验图像变得非常美观和清晰,并且具有说服力。

6. 通过本次实验,我了解到了频率特性测量的方法以及怎样求幅频特性|G(w)|和相频特性$ (w)的值,并且通过将自己实验所得曲线、实际计算曲线与matlab 仿真之间的对比,将理论、实践、仿真融为一体,使我更加加深了频率响应曲线的认识。

这样的方法,在以后的学习过程中,会应用的更加广泛,并且具有非常深远的意义。

相关文档
最新文档