初二一次函数动点经典题型(全部题型)
一次函数之动点问题 (习题及答案).

一次函数之动点问题(习题)1.如图,在平面直角坐标系中,四边形AOBC 是正方形,已知点A 的坐标为(0,2),点D 在x 轴正半轴上,B 是线段OD 的中点,连接CD.动点P 从点O 出发,以每秒1 个单位长度的速度沿O→A→C→B 的路线向终点B 运动,动点Q 从点O 同时出发,以相同的速度沿O→B→D→B 的路线向终点B 运动.设△OPQ 的面积为S,点P 运动的时间为t 秒(0<t<6).求S 与t 之间的函数关系式,并写出自变量t 的取值范围.2 2. 如图,直线 y =x +4 与 x 轴、y 轴分别交于点 A ,B ,直线 y =-x +b过点 B ,且与 x 轴交于点 C .动点 P 从点 C 出发,沿 CA 方向以每秒 1 个单位长度的速度向终点 A 运动,动点 Q 从点 A 同 时出发,沿折线 AB -BC 以每秒 个单位长度的速度向终点 C 运动.设点 P 运动的时间为 t 秒.(1) 设△CPQ 的面积为 S ,求 S 与 t 之间的函数关系式,并写出自变量 t 的取值范围;(2) 当 t = 时,PQ ∥AB ;(3) 当 0<t ≤4 时,若△APQ 是等腰三角形,求 t 的值.⎨ 【参考答案】⎧ 1 t 2(0 < t ≤2) 2 1. S = ⎪ 2 < t ≤ 4) . ⎨t ( ⎪ 1 2⎪ t - 7t + 24(4 < t < 6) ⎩ 2⎧ 1 t 2(0 < t ≤ 4) 2. (1) S = ⎪ 2 ⎪- 1 ⎩ 2(2) 16 ;3; t 2 + 4t (4 < t < 8) (3)t 的值为8 - 8 , 8 或 4. 32 ⎪。
初二数学期末复习一次函数的应用—动点问题附练习及答案

课 题一次函数的应用——动点问题教学目标1.学会结合几何图形的性质,在平面直角坐标系中列函数关系式。
2.通过对几何图形的探究活动和对例题的分析,感悟探究动点问题列函数关系式的方法,提高解决问题的能力。
重点、难点理解在平面直角坐标系中,动点问题列函数关系式的方法。
小结:1用函数知识求解动点问题,需要将问题给合几何图形的性质,建立函数模型求解,解要符合题意,要注意数与形结合。
2.以一次函数为背景的问题,要充分运用方程、转化、函数以及数形结合等思想来研究解决,注意自变量的取值围例题1:如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .〔1〕求点D 的坐标;〔2〕求直线2l 的解析表达式;〔3〕求ADC △的面积;〔4〕在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标. 例题2:如图,在平面直角坐标系,点A 〔0,6〕、点B 〔8,0〕,动点P 从点A 开场在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开场在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 的面积为524个平方单位.当堂稳固:如图,直线6y kx =+与*轴、y 轴分别交于点E 、F ,点E 的坐标为〔-8,0〕,点A 的坐标为〔-6,0〕。
〔1〕求k 的值;〔2〕假设点P 〔x ,y 〕是第二象限的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与*的函数关系式,并写出自变量*的取值围;〔3〕探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。
课后检测:1、如果一次函数y=-*+1的图象与*轴、y 轴分别交于点A 点、B 点,点M 在*轴上,并且使以点A 、B 、M 为顶点的三角形是等腰三角形,则这样的点M 有〔〕。
八年级数学一次函数动点问题

八年级数学一次函数动点问题1、如图 , 以等边△ OAB 的边 OB 所在直线为 x 轴, 点 O 为坐标原点 , 使点 A 在第一象限成立平面直角坐标系,此中△ OAB 边长为 6 个单位,点 P 从 O 点出发沿折线 OAB 向 B 点以 3 单位 / 秒的速度向 B 点运动, 点 Q 从 O 点出发以 2 单位 / 秒的速度沿折线 OBA 向 A 点运动,两点同时出发, 运动时间为 t (单位:秒),当两点相遇时运动停止 .① 点 A 坐标为 ________, P 、 Q 两点相遇时交点的坐标为 ________;② 当 t =2 时, S ;当 t =3 时, △____________; △OPQ ____________ S OPQ ③ 设△ OPQ 的面积为 S ,试求 S 对于 t 的函数关系式 ;④ 当△ OPQ 的面积最大时,试求在 y 轴上可否找一点 M ,使得以 M 、 P 、 Q 为极点的三角形是 Rt △,若能找到恳求出 M 点的坐标,若不可以找到请简单说明原因。
yyyAAAO B x O B x O B x2、如图,在平面直角坐标系内,已知点 A ( 0, 6)、点 B (8,0),动点 P 从点 A 开始在线段 AO 上以每秒 1 个单位长度的速度向点 O 挪动,同时动点 Q 从点 B 开始在线段 BA 上以每秒 2 个单位长度的速度向点 A 挪动 , 设点 P 、Q 挪动的时间为 t 秒. (1) 求直线 AB 的分析式;24(2) 当 t 为何值时,△ APQ 的面积为 5 个平方单位?3、如图,在 Rt △AOB中,∠ AOB=90°, OA=3cm,OB=4cm,以点 O 为坐标原点成立坐标系,设P、 Q 分别为 AB、OB边上的动点它们同时分别从点 A、O向 B 点匀速运动,速度均为 1cm/秒,设 P、Q 挪动时间为 t ( 0≤ t ≤ 4)。
初二一次函数动点经典题型(全部题型)

一次函数动点问题例题如图,直线1l 的解析表达式为33y x,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.练习题如图,以等边△OAB 的边OB 所在直线为x 轴,点O 为坐标原点,使点A 在第一象限建立平面直角坐标系,其中△OAB 边长为6个单位,点P 从O 点出发沿折线OAB 向B 点以3单位/秒的速度向B 点运动,点Q从O 点出发以2单位/秒的速度沿折线OBA 向A 点运动,两点同时出发,运动时间为t (单位:秒),当两点相遇时运动停止.①点A 坐标为_____________,P 、Q 两点相遇时交点的坐标为________________;②当t =2时,S △OPQ ____________;当t =3时,OPQ S △____________;③设△OPQ 的面积为S ,试求S 关于t 的函数关系式; ④当△OPQ 的面积最大时,试求在y 轴上能否找一点M ,使得以M 、P 、Q 为顶点的三角形是Rt △,若能找到请求出M 点的坐标,若不能找到请简单说明理由。
x yOAB xyOAB xyOAB例题如图,在Rt △AOB 中,∠AOB=90°,OA=3cm ,OB=4cm ,以点O 为坐标原点建立坐标系,设P 、Q 分别为AB 、OB 边上的动点它们同时分别从点A 、O 向B 点匀速运动,速度均为1cm/秒,设P 、Q 移动时间为t (0≤t ≤4)(1)过点P 做PM ⊥OA 于M ,求证:AM :AO=PM :BO=AP :AB ,并求出P 点的坐标(用t 表示)(2)求△OPQ 面积S (cm 2),与运动时间t (秒)之间的函数关系式,当t 为何值时,S 有最大值?最大是多少?(3)当t 为何值时,△OPQ 为直角三角形?(4)证明无论t 为何值时,△OPQ 都不可能为正三角形。
一次函数动点问题专题练习(含答案)

动点问题专题练习
1、如图,已知在平面直角坐标系中,直线l:y=x+2分别交两坐标轴于A、B
两点,M是线段AB上一个动点,设M的横坐标为x,三角形OMB的面积为S;
(1)写出S与x的函数关系式,并画出函数图象;
(2)若△OMB的面积为3,求点M的坐标;
(3)当△OMB是以OB为底的等腰三角形时,求它的面积。
2、在边长为2的正方形ABCD的边BC上,点P从B点运动到C点,设PB=x,四
边形APCD的面积为 y,
(1)写出y与自变量x的函数关系式,并画出它的图象。
(2)当x为何值时,四边形APCD的面积等于
3、如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停
止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,
(1)求△ABC的面积。
(2)求Y关于x的函数解析式。
4、如图①在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD 的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P 从开始移动到停止移动一共用了多少秒(结果保留根号)
5、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=6.
(1)求△COP的面积
(2)求点A的坐标及P的值
(3)若S△AOP=S△BOP,求直线BD的函数解析式。
一次函数之动点问题(作业及答案)

一次函数之动点问题(作业)例1:如图,直线y =x +4与x 轴、y 轴分别交于点A ,B ,直线y =-x +b 过点B ,且与x 轴交于点C . (1)求直线BC 的表达式.(2)动点P 从点C 出发,沿CA 方向以每秒1个单位长度的速度向点A 运动(点P 不与点A ,C 重合),动点Q 从点A 同时出发,沿折线AB -BC 以每秒2个单位长度的速度向点C 运动(点Q 不与点A ,C 重合),当其中一点到达终点时,另一点也随之停止.设△CPQ 的面积为S ,运动的时间为t 秒,求S 与t 之间的函数关系式,并写出自变量t 的取值范围.【思路分析】1.研究背景图形,如图 (把函数信息转为几何信息)2.分析运动过程0 < t < 8CA 4s4s8s B (2/s ) Q :A(1/s ) P :C3.画图,设计方案计算当04t <≤时,21122S t t t =⋅⋅= 当48t <<时,211(8)422S t t t t =-=-+221(04)214(48)2t t S t t t ⎧<≤⎪⎪=⎨⎪-+<<⎪⎩8-t t82-2t E P Q xy A BCOt Q P E 2tt 445°42424445°y=-x+4y=x+4xyAB C Oxy A BC O1. 如图,在平面直角坐标系xOy 中,四边形AOBC 是正方形,已知点A 的坐标为(0,2),点D 在x 轴正半轴上,B 是OD 的中点,连接CD .动点P 从点O 出发,以每秒1个单位长度的速度沿O →A →C →B 的方向匀速运动,动点Q 从点O 同时出发,以相同的速度沿O →B →D →B 的方向匀速运动.过点P 作PE ⊥x 轴于点E ,设△PEQ 的面积为S ,点P 运动的时间为t 秒(06t <<).求S 与t 之间的函数关系式.Q PxO y A CD B (E )xO y ACD BxO y ACD B2. 如图,直线y =-x +42与x 轴交于点A ,与直线y =x 交于点B . (1)求点B 的坐标.(2)判断△AOB 的形状,并说明理由.(3)动点D 从原点O 出发,以每秒2个单位长度的速度沿OA 向终点A 运动(不与点O ,A 重合),过点D 作DC ⊥x 轴,交线段OB 或线段AB 于点C ,过点C 作CE ⊥y 轴于点E .设运动的时间为t 秒,矩形ODCE 与△AOB 重叠部分的面积为S ,求S 与t 之间的函数关系式.EDAO C x ByyBx O AyBxO A3. 如图,直线33334y x =-+与x 轴、y 轴分别交于点A ,B ,与直线3y x =交于点C .动点E 从点A 出发,以每秒1个单位长度的速度沿AO 向终点O 运动,动点F 从原点O 同时出发,以相同的速度沿折线OC -CA 向终点A 运动,设点F 运动时间为t 秒.(1)设△EOF 的面积为S ,求S 与t 之间的函数关系式,并写出自变量t 的取值范围.(这里规定线段是面积为0的三角形) (2)当24t ≤≤时,是否存在某一时刻,使得△AEF 是等腰三角形?若存在,求出相应的t 值;若不存在,请说明理由.xO yA CBxO yA CBx O yA CB【参考答案】1.2210222241618 462tt S t t t t ⎧<⎪⎪=<⎨⎪⎪-+<<⎩≤≤()()()2.(1)(2222)B ,(2)△OAB 是等腰直角三角形,理由略(3)22023161624tt S t t t ⎧<⎪=⎨-+-<<⎪⎩≤()()3.(1)2233024133232 24420 42+23t t t S t t t t ⎧-+⎪⎪⎪+⎪=-++<⎨⎪⎪<⎪⎪⎩≤≤≤≤()()()(2)存在,t 的值为2,31+或23(资料素材和资料部分来自网络,供参考。
一次函数动点综合题(含解析)

一次函数综合题(含解析)一.解答题(共12小题)1.求出将直线y=﹣x+绕点A(2,1)顺时针旋转45度得到的直线表达式.2.如图1,一次函数y=﹣2x+2的图象与y轴交于点A,与x轴交于点B,过点B 作线段BC⊥AB且BC=AB,直线AC交x轴于点D.(1)求A,B两点的坐标;(2)求点C的坐标,并直接写出直线AC的函数关系式;(3)若点P是图1中直线AC上的一点,连接OP,得到图2.请在下面的A,B两题中任选一题解答,我选择.A.当点P的纵坐标为3时,求△AOP的面积;B.当点P在第二象限,且到x轴,y轴的距离相等时,求△AOP的面积;(4)若点Q是图1中坐标平面内不同于点B、点C的一点.请在下面的A,B两题中任选一题解答,我选择A.当以点B,D,Q为顶点的三角形与△BCD全等时,直接写出点Q的坐标;B.当以点C,D,Q为顶点的三角形与△BCD全等时,直接写出点Q的坐标.3.如图,直线OB是一次函数y=2x的图象,点A的坐标是(0,2),点C在直线OB上且△ACO为等腰三角形,求C点坐标.4.如图,直线y=4﹣x与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D.(1)当点M在AB上运动时,则四边形OCMD的周长=.(2)当四边形OCMD为正方形时,将正方形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a≤4),在平移过程中,当平移距离a为多少时,正方形OCMD的面积被直线AB分成1:3两个部分?5.如图,在平面直角坐标系中,直线AB交x轴于点A(﹣4,0),交y轴于点B (0,2),P为线段OA上一个动点,Q为第二象限的一个动点,且满足PQ=PA,OQ=OB.(1)求直线AB的函数关系式;(2)若△OPQ为直角三角形,试求点P的坐标,并判断点Q是否在直线AB上.6.矩形ABCD在如图所示的直角坐标系中,点A的坐标为(0,3),BC=2AB、直线l经过点B,交AD边于点P1,此时直线l的函数表达式是y=2x+1.(1)求BC、AP1的长;(2)沿y轴负方向平移直线l,分别交AD、BC边于点P、E.①当四边形BEPP1,是菱形时,求平移的距离;②设AP=m,当直线l把矩形ABCD分成两部分的面积之比为3:5时,求m的值.7.如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,4),交x轴于点B.(1)求直线AB的表达式和点B的坐标;(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①用含n的代数式表示△ABP的面积;②当S=8时,求点P的坐标;△ABP③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.8.如图,点A的坐标是(﹣2,0),点B的坐标是(6,0),点C在第一象限内且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD,垂足为E,交OC于点F.(1)求直线BD的函数表达式;(2)求线段OF的长;(3)连接BF,OE,试判断线段BF和OE的数量关系,并说明理由.9.在直角坐标系xOy中,点A、点B、点C坐标分别为(4,0)、(8,0)、(0,﹣4).(1)求过B、C两点的一次函数解析式;(2)若直线BC上有一动点P(x,y),以点O、A、P为顶点的三角形面积和以点O、C、P为顶点的三角形面积相等,求P点坐标;(3)若y轴上有一动点Q,使以点Q、A、C为顶点的三角形为等腰三角形,求Q点坐标.10.已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为A(4,0),B (0,﹣4),P为y轴上B点下方一点,PB=m(m>0),以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限.(1)求直线AB的解析式;(2)用m的代数式表示点M的坐标;(3)若直线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,写出你的结论并说明理由.。
初二数学期末复习一次函数的应用动点问题附练习及答案

课题一次函数的应用——动点问题教学目的1.学会结合几何图形的性质,在平面直角坐标系中列函数关系式。
2.通过对几何图形的探究活动和对例题的分析,感悟探究动点问题列函数关系式的方法,进步解决问题的实力。
重点、难点理解在平面直角坐标系中,动点问题列函数关系式的方法。
小结:1用函数学问求解动点问题,须要将问题给合几何图形的性质,建立函数模型求解,解要符合题意,要留意数及形结合。
2.以一次函数为背景的问题,要充分运用方程、转化、函数以及数形结合等思想来探讨解决,留意自变量的取值范围例题1:如图,直线1l的解析表达式为33y x=-+,且1l及x轴交于点D,直线2l经过点A B,,直线1l,2l交于点C.〔1〕求点D的坐标;〔2〕求直线2l的解析表达式;〔3〕求ADC△的面积;〔4〕在直线2l上存在异于点C的另一点P,使得ADP△及ADC△的面积相等,请干脆..写出点P的坐标.例题2:如图,在平面直角坐标系内,点A〔0,6〕、点B〔8,0〕,动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O挪动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A挪动,设点P、Q挪动的时间为t秒.(1) 求直线AB的解析式;(2) 当t为何值时,△APQ的面积为524个平方单位?当堂稳固:如图,直线6y kx=+及x轴、y轴分别交于点E、F,点E的坐标为〔-8,0〕,点A的坐标为〔-6,0〕。
〔1〕求k 的值;〔2〕假设点P 〔x ,y 〕是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 及x 的函数关系式,并写出自变量x 的取值范围;〔3〕探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。
课后检测:1、假如一次函数y=-x+1的图象及x 轴、y 轴分别交于点A 点、B 点,点M 在x 轴上,并且使以点A 、B 、M 为顶点的三角形是等腰三角形,那么这样的点M 有〔 〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数动点问题例题如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.练习题 如图,以等边△OAB 的边OB 所在直线为x 轴,点O 为坐标原点,使点A 在第一象限建立平面直角坐标系,其中△OAB 边长为6个单位,点P 从O 点出发沿折线OAB 向B 点以3单位/秒的速度向B 点运动,点Q 从O 点出发以2单位/秒的速度沿折线OBA 向A 点运动,两点同时出发,运动时间为t (单位:秒),当两点相遇时运动停止.① 点A 坐标为_____________,P 、Q 两点相遇时交点的坐标为________________; ②当t =2时,S =△OPQ ____________;当t =3时,OPQ S =△____________;③ 设△OPQ 的面积为S ,试求S 关于t 的函数关系式;④ 当△OPQ 的面积最大时,试求在y 轴上能否找一点M ,使得以M 、P 、Q 为顶点的三角形是Rt △,若能找到请求出M 点的坐标,若不能找到请简单说明理由。
x yOAB xyOABxyOAB例题如图,在Rt △AOB 中,∠AOB=90°,OA=3cm ,OB=4cm ,以点O 为坐标原点建立坐标系,设P 、Q 分别为AB 、OB 边上的动点它们同时分别从点A 、O 向B 点匀速运动,速度均为1cm/秒,设P 、Q 移动时间为t (0≤t ≤4)(1)过点P 做PM ⊥OA 于M ,求证:AM :AO=PM :BO=AP :AB ,并求出P 点的坐标(用t 表示)(2)求△OPQ 面积S (cm 2),与运动时间t (秒)之间的函数关系式,当t 为何值时,S 有最大值最大是多少(3)当t 为何值时,△OPQ 为直角三角形(4)证明无论t 为何值时,△OPQ 都不可能为正三角形。
若点P 运动速度不变改变Q 的运动速度,使△OPQ 为正三角形,求Q 点运动的速度和此时t 的值。
练习题己知如图在直角坐标系中,矩形OABC 的对角线AC 所在直线的解析式为31y x 。
(1)求线段AC 的长和ACO 的度数。
(2)动点P 从点C 开始在线段CO 3个 单位长度的速度向点O 移动,动点Q 从点O 开始在线段OA 上以每秒1个单位长度的速度向点A 移动, (P 、Q 两点同时开始移动)设P 、Q 移动的时间为t 秒。
①设BPQ 的面积为S ,求S 与t 之间的函数关系式,并求出当t 为何值时,S 有最小值。
(3)在坐标平面内存在这样的点M ,使得MAC 为等腰三角形且底角为30°,写出所有符合要求的点M 的坐标。
yO第33题图 QPCBA例题如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(3) 当t 为何值时,△APQ 的面积为524个平方单位练习题如图,在平面直角坐标系中.四边形OABC 是平行四边形.直线l 经过O 、C 两点.点A 的坐标为(8,o),点B 的坐标为(11.4),动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O 一C —B 相交于点M 。
当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t 秒(0t ).△MPQ 的面积为S .(1)点C 的坐标为___________,直线l 的解析式为___________.(每空l 分,共2分) (2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围。
(3)试求题(2)中当t 为何值时,S 的值最大,并求出S 的最大值。
(4)随着P 、Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N 。
试探究:当t 为何值时,△QMN 为等腰三角形请直接写出t 的值.例题如图(1),在矩形ABCD 中,AB=10cm,BC=8cm,点P 从A 出发, 沿A →B →C →D 路线运动,到D 停止;点Q 从D 出发,沿D →C →B →A 路线运动,到A 停止. 若点P 、点Q 同时出发,点P 的速度为1cm/s,点Q 的速度为2cm/s,as 时点P 、点Q 同时改变速度,点P 的速度变为bcm/s,点Q 的速度变为dcm/s .图(2)是点P 出发x 秒后△APD 的面积S1(cm 2)与x(s)的函数关系图象;图(3)是点Q 出发x 秒后△AQD 的面积S 2(cm 2)与x(s)的函数关系图象.(1)参照图(2),求a 、b 及图(2)中c 的值; (2)求d 的值;(3)设点P 离开点A 的路程为y 1(cm),点Q 到A 还需走的路程为y 2(cm), 请分别写出动点P 、Q 改变速度后y 1、y 2与出发后的运动时间x(s)的函数关系式,并求出P 、Q 相遇时x 的值;(4)当点Q 出发_______s 时,点P 、点Q 在运动路线上相距的路程为25cm.(1)PQCBA D x(秒)(2)20840caOS 1(cm 2)x(秒)(3)2240OS 2(cm 2)练习题、如图,正方形ABCD 的边长为5,P 为CD 边上一动点,设DP 的长为x ,ADP 的面积为y ,y 与x 之间的函数关系式,及自变量x 的取值范围12.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )A .3B .4C .5D .613.如图,△ABC 和的△DEF 是等腰直角三角形,∠C=∠F=90°,AB==4.点B 与点D 重合,点A,B(D),E在同一条直线上,将△ABC 沿D E 方向平移,至点A 与点 E 重合时停止.设点B,D 之间的距离为x ,△ABC 与△DEF 重叠 部分的面积为y ,则准确反映y 与x 之间对应关系的图象是( ) 图2O5xB CP D 图40.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( )45.(2009年牡丹江)如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( ) G EB a(第AB C DO OOOABCD46.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度大小不变,则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为( )8.如图,正方形ABCD 的边长为10,点E 在CB 的延长线上,10EB =,点P 在边CD 上运动(C 、D 两点除外),EP 与AB 相交于点F ,若CP x =,四边形FBCP 的面积为y ,则y 关于x 的函数关系式是 .2、如图,直线6y kx =+与x 轴、y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。
(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。
tBABCD(第8P D CBFA E八年级数学《一次函数动点问题》练习题1、如果一次函数y=-x+1的图象与x 轴、y 轴分别交于点A 点、B 点,点M 在x 轴上,并且使以点A 、B 、M 为顶点的三角形是等腰三角形,那么这样的点M 有( )。
A .3个 B .4个 C .5个 D .7个2、直线与y=x-1与两坐标轴分别交于A 、B 两点,点C 在坐标轴上,若△ABC 为等腰三角形,则满足条件的点C 最多有( ).A .4个B .5个C .6个D .7个 3、直线643+-=x y 与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O ⇒B ⇒A 运动. (1)直接写出A 、B 两点的坐标; (2)设点Q 的运动时间为t (秒),△OPQ 的面积为S ,求出S 与t 之间的函数关系式; (3)当548=S 时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.4、如图,在平面直角坐标系xOy 中,直线1y x =+与334y x =-+交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点. (1)求点A B C ,,的坐标.(2)当CBD △为等腰三角形时,求点D 的坐标. (3)在直线AB 上是否存在点E ,使得以点E D O A ,,, 为顶点的四边形是平行四边形 yxD COBxOBA5、如图:直线3+=kx y 与x 轴、y 轴分别交于A 、B 两点,43=OA OB ,点C(x ,y)是直线y =kx +3上与A 、B 不重合的动点。
(1)求直线3+=kx y 的解析式;(2)当点C 运动到什么位置时△AOC 的面积是6; (3)过点C 的另一直线CD 与y 轴相交于D 点,是否存在点C 使△BCD 与△AOB 全等若存在,请求出点C 的坐标;若不存在,请说明理由。
二、经典例题:1、已知,如图在边长为2的等边△ABC 中,E 是AB 边上不同于点A 、点B 的一动点,过点E 作ED ⊥BC 于点D ,过点D 作DH ⊥AC 于点H ,过点H 作HF ⊥AB 于点F ,设BE 的长为x ,AF 的长为y ;⑴求y 与x 的函数关系式,并写出自变量的范围;⑵当x 为何值时,点E 与点F 重合,判断这时△EDH 为什么三角形(判断形状,不需证明).2、如图,点A 、B 、C 的坐标分别是(0,4),(2,4),(6,0).点M 是折线ABC 上一个动点,MN ⊥x 轴于N ,设ON 的长为x ,MN 左侧部分多边形的面积为S.⑴写出S 与x 的函数关系式; ⑵当x =3时,求S 的值.3、如图,已知在平面直角坐标系中,直线l :y=-21x +2分别交两坐标轴于A 、B 两点,M 是线段AB 上一个动点,设M 的横坐标为x ,△OMB 的面积为S ;⑴写出S 与x 的函数关系式;⑵若△OMB 的面积为3,求点M 的坐标;⑶当△OMB 是以OB 为底的等腰三角形时,求它的面积; ⑷画出函数s 图象.lM y xO BA四、自我检测: 如图,直线OC 、BC 的函数关系式分别为y =x 和y =-2x +6,动点P(x ,0)在OB 上移动(0<x <3), ⑴求点C 的坐标;⑵若A 点坐标为(0,1),当点P 运动到什么位置时(它的坐标是什么),AP+CP 最小; ⑶设△OBC 中位于直线PC 左侧部分的面积为S ,求S 与x 之间的函数关系式。