最新中考数学选择填空最后一题汇总

合集下载

中考数学选择填空压轴题汇编 规律探索(含解析)-人教版初中九年级全册数学试题

中考数学选择填空压轴题汇编 规律探索(含解析)-人教版初中九年级全册数学试题

2020年中考数学选择填空压轴题汇编:规律探索1.(2020某某某某)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【解答】解:∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.故选:A.2.(2020某某某某)观察下列等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;2+22+23+24+25=26﹣2;…已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m,则220+221+222+223+224+…+238+239+240=m(2m﹣1)(结果用含m的代数式表示).【解答】解:∵220=m,∴220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+221﹣2)=m(2m﹣1).故答案为:m(2m﹣1).3.(2020某某鹤岗)如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1).过点B作EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x轴的垂线交MA于点A1,以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2.….则点B2020的坐标2×32020﹣1,32020.【解答】解:∵点B坐标为(1,1),∴OA=AB=BC=CO=CO1=1,∵A1(2,3),∴A1O1=A1B1=B1C1=C1O2=3,∴B1(5,3),∴A2(8,9),∴A2O2=A2B2=B2C2=C2O3=9,∴B2(17,9),同理可得B4(53,27),B5(161,81),…由上可知,Bn(2×3n﹣1,3n),∴当n=2020时,Bn(2×32020﹣1,32020).故答案为:(2×32020﹣1,32020).4.(2020某某某某)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4√2),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12√2,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是22020.【解答】解:∵点A1(0,2),×2×2=2,∴第1个等腰直角三角形的面积=12∵A2(6,0),=2√2,∴第2个等腰直角三角形的边长为√2×2√2×2√2=4=22,∴第2个等腰直角三角形的面积=12∵A4(10,4√2),∴第3个等腰直角三角形的边长为10﹣6=4,×4×4=8=23,∴第3个等腰直角三角形的面积=12…则第2020个等腰直角三角形的面积是22020;故答案为:22020(形式可以不同,正确即得分).5.(2020某某某某)如图各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,…,按此规律,第10个图中黑点的个数是119 .【解答】解:∵图1中黑点的个数2×1×(1+1)÷2+(1﹣1)=2,图2中黑点的个数2×2×(1+2)÷2+(2﹣1)=7,图3中黑点的个数2×3×(1+3)÷2+(3﹣1)=14,……∴第n个图形中黑点的个数为2n(n+1)÷2+(n﹣1)=n2+2n﹣1,∴第10个图形中黑点的个数为102+2×10﹣1=119.故答案为:119.(x>0)的图象上,点B1,B2,B3,…B n在y 6.(2020•某某某某)如图,点A1,A2,A3…在反比例函数y=1x轴上,且∠B1OA1=∠B2B1A2=∠B3B2A3=…,直线y=x与双曲线y=1交于点A1,B1A1⊥OA1,B2A2⊥B1A2,B3A3x⊥B2A3…,则B n(n为正整数)的坐标是()A.(2√x,0)B.(0,√2x+1)C.(0,√2x(x−1))D.(0,2√x)【解答】解:由题意,△OA1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,∵A1(1,1),∴OB1=2,设A2(m,2+m),则有m(2+m)=1,解得m=√2−1,∴OB2=2√2,设A3(a,2√2+n),则有n=a(2√2+a)=1,解得a=√3−√2,∴OB3=2√3,同法可得,OB4=2√4,∴OB n=2√x,∴B n(0,2√x).故选:D.7.(2020某某某某州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C (1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C 的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).8.(2020某某仙桃)如图,已知直线a:y=x,直线b:y=−12x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为21010.【解答】解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y=−12x上,∴1=−12x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=212x,∴P2020的横坐标为212×2020=21010,故答案为:21010.9.(2020某某某某)如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A .C 、EB .E 、FC .G 、C 、ED .E 、C 、F【解答】解:经实验或按下方法可求得顶点C ,E 和F 棋子不可能停到. 设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是1+2+3+…+k =12k (k +1),应停在第12k (k +1)﹣7p 格, 这时P 是整数,且使0≤12k (k +1)﹣7p ≤6,分别取k =1,2,3,4,5,6,7时,12k (k +1)﹣7p =1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k ≤2020,设k =7+t (t =1,2,3)代入可得,12k (k +1)﹣7p =7m +12t (t +1),由此可知,停棋的情形与k =t 时相同,故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到. 故选:D .10.(2020某某某某)如图,在平面直角坐标系中,点P 1的坐标为(√22,√22),将线段OP 1绕点O 按顺时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2;又将线段OP 2绕点O 按顺时针方向旋转45°,长度伸长为OP 2的2倍,得到线段OP 3;如此下去,得到线段OP 4,OP 5,…,OP n (n 为正整数),则点P 2020的坐标是 (0,﹣22019) .【解答】解:∵点P 1的坐标为(√22,√22),将线段OP 1绕点O 按逆时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2;∴OP 1=1,OP 2=2,∴OP 3=4,如此下去,得到线段OP 4=23,OP 5=24…, ∴OP n =2n ﹣1,由题意可得出线段每旋转8次旋转一周, ∵2020÷8=252…4,∴点P 2020的坐标与点P 4的坐标在同一直线上,正好在y 轴的负半轴上, ∴点P 2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).11.(2020某某某某)如图,△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…,△A n ﹣1B n A n ,都是一边在x 轴上的等边三角形,点B 1,B 2,B 3,…,B n 都在反比例函数y =√3x(x >0)的图象上,点A 1,A 2,A 3,…,A n ,都在x 轴上,则A n 的坐标为 (2√x ,0) .【解答】解:如图,过点B 1作B 1C ⊥x 轴于点C ,过点B 2作B 2D ⊥x 轴于点D ,过点B 3作B 3E ⊥x 轴于点E ,∵△OA1B1为等边三角形,∴∠B1OC=60°,OC=A1C,∴B1C=√3OC,设OC的长度为t,则B1的坐标为(t,√3t),得t•√3t=√3,解得t=1或t=﹣1(舍去),把B1(t,√3t)代入y=√3x∴OA1=2OC=2,∴A1(2,0),设A1D的长度为m,同理得到B2D=√3m,则B2的坐标表示为(2+m,√3m),得(2+m)×√3m=√3,解得m=√2−1或m=−√2−1(舍去),把B2(2+m,√3m)代入y=√3x∴A1D=√2−1,A1A2=2√2−2,OA2=2+2√2−2=2√2,∴A2(2√2,0)设A2E的长度为n,同理,B3E为√3n,B3的坐标表示为(2√2+n,√3n),得(2√2+n)•√3n=√3,把B3(2√2+n,√3n)代入y=√3x∴A2E=√3−√2,A2A3=2√3−2√2,OA3=2√2+2√3−2√2=2√3,∴A3(2√3,0),综上可得:A n(2√x,0),故答案为:(2√x,0).12.(2020某某湘西州)观察下列结论:(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3.上的点,且A1M=A2N,A1N与A n M相交于O.也会有类似的结论,你的结论是A1N=A n M,∠NOA n=(x−2)×180°x【解答】解:∵(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,=60°;∠NOC=(3−2)×180°3=90°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=(4−2)×180°4=108°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=(5−2)×180°5…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O..也有类似的结论是A1N=A n M,∠NOA n=(x−2)×180°x故答案为:A1N=A n M,∠NOA n=(x−2)×180°.x13.(2020某某某某)如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202【解答】解:根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.14.(2020某某某某)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,…按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是( )A .1100B .120C .1101D .2101【解答】解:由题意知,第100个图形中,正方体一共有1+2+3+……+99+100=5050(个),其中写有“心”字的正方体有100个,∴抽到带“心”字正方体的概率是1005050=2101, 故选:D .15.(2020某某威海)如图①,某广场地面是用A ,B ,C 三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B 型)地砖记作(2,1)…若(m ,n )位置恰好为A 型地砖,则正整数m ,n 须满足的条件是m 、n 同为奇数或m 、n 同为偶数 .【解答】解:观察图形,A 型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m ,n )位置恰好为A 型地砖,正整数m ,n 须满足的条件为m 、n 同为奇数或m 、n 同为偶数. 故答案为m 、n 同为奇数或m 、n 同为偶数.16.(2020某某潍坊)如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的.其中:xx 1̂的圆心为点A ,半径为AD ;x 1x 1̂的圆心为点B ,半径为BA 1;x 1x 1̂的圆心为点C ,半径为CB 1;x 1x 1̂的圆心为点D ,半径为DC 1;⋯xx 1̂,x 1x 1̂,x 1x 1̂,x 1x 1̂,…的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则x 2020x 2020̂的长是 4039π.【解答】解:由图可知,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD =AA 1=1,BA 1=BB 1=2,……,AD n ﹣1=AA n =4(n ﹣1)+1,BA n =BB n =4(n ﹣1)+2,故x 2020x 2020̂的半径为BA 2020=BB 2020=4(2020﹣1)+2=8078,x 2020x 2020̂的弧长=90180×8078x =4039x .故答案为:4039π.17.(2020某某达州)已知k 为正整数,无论k 取何值,直线11:y =kx +k +1与直线12:y =(k +1)x +k +2都交于一个固定的点,这个点的坐标是 (﹣1,1) ;记直线11和12与x 轴围成的三角形面积为S k ,则S 1=14,S 1+S 2+S 3+…+S 100的值为50101.【解答】解:∵直线11:y =kx +k +1=k (x +1)+1, ∴直线12:y =(k +1)x +k +2经过点(﹣1,1);∵直线12:y =(k +1)x +k +2=k (x +1)+(x +1)+1=(k +1)(x +1)+1, ∴直线12:y =(k +1)x +k +2经过点(﹣1,1).∴无论k 取何值,直线l 1与l 2的交点均为定点(﹣1,1).∵直线11:y =kx +k +1与x 轴的交点为(−x +1x,0), 直线12:y =(k +1)x +k +2与x 轴的交点为(−x +2x +1,0), ∴S K =12×|−x +1x +x +2x +1|×1=12x (x +1), ∴S 1=12×11×2=14;∴S 1+S 2+S 3+…+S 100=12[11×2+12×3+⋯1100×101] =12[(1−12)+(12−13)+…+(1100−1101)] =12×(1−1101)=12×100101=50101.故答案为(﹣1,1);14;50101.18.(2020某某某某)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a 1,第2幅图中“▱”的个数为a 2,第3幅图中“▱”的个数为a 3,…,以此类推,若2x 1+2x 2+2x 3+⋯+2x x=x2020.(n 为正整数),则n 的值为 4039 .【解答】解:由图形知a 1=1×2,a 2=2×3,a 3=3×4, ∴a n =n (n +1),∵2x 1+2x 2+2x 3+⋯+2x x=x2020,∴21×2+22×3+23×4+⋯+2x (x +1)=x2020, ∴2×(1−12+12−13+13−14+⋯⋯+1x −1x +1)=x 2020, ∴2×(1−1x +1)=x2020, 1−1x +1=x4040, 解得n =4039,经检验:n =4039是分式方程的解, 故答案为:4039.19.(2020某某某某)如图,直线y =−√3x +b 与y 轴交于点A ,与双曲线y =xx 在第三象限交于B 、C 两点,且AB •AC =16.下列等边三角形△OD 1E 1,△E 1D 2E 2,△E 2D 3E 3,…的边OE 1,E 1E 2,E 2E 3,…在x 轴上,顶点D 1,D 2,D 3,…在该双曲线第一象限的分支上,则k = 4√3,前25个等边三角形的周长之和为 60 .【解答】解:设直线y =−√3x +b 与x 轴交于点D ,作BE ⊥y 轴于E ,CF ⊥y 轴于F . ∵y =−√3x +b ,∴当y =0时,x =√33b ,即点D 的坐标为(√33b ,0), 当x =0时,y =b ,即A 点坐标为(0,b ),∴OA =﹣b ,OD =−√33b .∵在Rt △AOD 中,tan ∠ADO =xxxx=√3,∴∠ADO =60°.∵直线y =−√3x +b 与双曲线y =x x在第三象限交于B 、C 两点,∴−√3x +b =xx ,整理得,−√3x 2+bx ﹣k =0,由韦达定理得:x 1x 2=√33k ,即EB •FC =√33k ,∵xxxx =cos60°=12, ∴AB =2EB ,同理可得:AC=2FC,k=16,∴AB•AC=(2EB)(2FC)=4EB•FC=4√33解得:k=4√3.由题意可以假设D1(m,m√3),∴m2•√3=4√3,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,√3n),∵(4+n)•√3n=4√3,解得n=2√2−2,∴E1E2=4√2−4,即第二个三角形的周长为12√2−12,设D3(4√2+a,√3a),由题意(4√2+a)•√3a=4√3,解得a=2√3−2√2,即第三个三角形的周长为12√3−12√2,…,∴第四个三角形的周长为12√4−12√3,∴前25个等边三角形的周长之和12+12√2−12+12√3−12√2+12√4−12√3+⋯+12√25−12√24=12√25=60,故答案为4√3,60.。

中考数学---几何选择填空压轴题精选1

中考数学---几何选择填空压轴题精选1

中考数学---几何选择填空压轴题精选1一.选择题:1.如下图1,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A. 1个B. 2个C. 3个D. 4个2、如上图2,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个3.如上图3,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGE;④图中有8个等腰三角形.其中正确的是()A.①③ B.②④ C.①④ D.②③4.如下图1,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A.B. C. D.5、如上图2,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个 B.2个 C.3个 D.4个6.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下图1,下列结论:①(BE+CF)=BC;②S△AEF ≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个7.如上图2,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD =S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有()A.①④⑤B.①②④C.③④⑤D.②③④8.如上图3,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE 交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是()A.①②③B.①②④C.①②⑤D.②④⑤9.如下图1,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④10.正方形ABCD、正方形BEFG和正方形RKPF的位置如上图2所示,点G在线段DK上,正方形BEFG 的边长为4,则△DEK的面积为()A. 10B. 12C. 14D. 16二.填空题1.如下图1,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形, 图4中有30个菱形…,则第6个图中菱形的个数是 个.2.如下图2,在△ABC 中,∠A=α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1; ∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; …;∠A 2011BC 与∠A 2011CD 的平分线相交于点A 2012,得∠A 2012,则∠A 2012= .3.如下图1,已知Rt △ABC 中,AC=3,BC=4,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,C 1A 2,…,则CA 1= ,= .4、如上图2,点A 1,A 2,A 3,A 4,…,A n 在射线OA 上,点B 1,B 2,B 3,…,B n ﹣1在射线OB 上, 且A 1B 1∥A 2B 2∥A 3B 3∥…∥A n ﹣1B n ﹣1,A 2B 1∥A 3B 2∥A 4B 3∥…∥A n B n ﹣1,△A 1A 2B 1,△A 2A 3B 2,…,△A n ﹣1A n B n ﹣1为阴影三角形,若△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,则△A 1A 2B 1的面为 ; 面积小于2011的阴影三角形共有 个. 5、如下图1,已知点A 1(a ,1)在直线l :上,以点A 1为圆心,以为半径画弧,交x 轴于点B 1、B 2,过点B 2作A 1B 1的平行线交直线l 于点A 2,在x 轴上取一点B 3,使得A 2B 3=A 2B 2,再过点B 3作A 2B 2的平行线交直线l 于点A 3,在x 轴上取一点B 4,使得A 3B 4=A 3B 3,按此规律继续作下去, 则①a= ;②△A 4B 4B 5的面积是 .6、如下图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有.7、如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为.8、如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于.9.如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD =15cm2,S△BQC=25cm2,则阴影部分的面积为cm2.中考数学---几何选择填空压轴题精选1答案一.选择题:1、解:作EJ⊥BD于J,连接EF①∵BE平分∠DBC ∴EC=EJ,∴△DJE≌△ECF ∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22.5°∴∠EHF=180°﹣67.5°﹣22.5°=90°∵DH=HF,OH是△DBF的中位线∴OH∥BF ∴OH=BF②∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF,∴∠EBC=∠CDF=22.5°,∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,故②正确;③∵OH是△BFD的中位线,∴DG=CG=BC,GH=CF,∵CE=CF,∴GH=CF=CE∵CE<CG=BC,∴GH<BC,故此结论不成立;④∵∠DBE=45°,BE是∠DBF的平分线,∴∠DBH=22.5°,由②知∠HBC=∠CDF=22.5°,∴∠DBH=∠CDF,∵∠BHD=∠BHD,∴△DHE∽△BHD,∴=∴DH=HE•HB,故④成立;所以①②④正确.故选C.(第5题图)2、解:根据BE=AE,∠GBE=∠CAE,∠BEG=∠CEA可判定①△BEG≌△AEC;用反证法证明②∠GAC≠∠GCA,假设∠GAC=∠GCA,则有△AGC为等腰三角形,F为AC的中点,又BF⊥AC,可证得AB=BC,与题设不符;由①知△BEG≌△AEC 所以GE=CE 连接ED、四边形ABED为平行四边形,∵∠ABC=45°,AE⊥BC于点E,∴∠GED=∠CED=45°,∴△GED≌△CED,∴DG=DC;④设AG为X,则易求出GE=EC=2﹣X 因此,S△AGC =SAEC﹣SGEC=﹣+x=﹣(x2﹣2x)=﹣(x2﹣2x+1﹣1)=﹣(x﹣1)2+,当X取1时,面积最大,所以AG等于1,所以G是AE中点,故G为AE中点时,GF最长,故此时△AGC的面积有最大值.故正确的个数有3个.故选C.3、解:∵DF=BD,∴∠DFB=∠DBF,∵AD∥BC,DE=BC,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE,∵DE=DC,∴∠DEG=∠DCE,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°﹣(∠BGD+∠EGF)=180°﹣(∠BGD+∠BGC),=180°﹣(180°﹣∠DCG)÷2=180°﹣(180°﹣45°)÷2=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD,∴∠EDG=∠CGB=∠CBF,∴∠GDH=∠GHD,∴S△CDG =S▭DHGE.故选D.4、解:∵矩形ABCD的对角线互相平分,面积为5,∴平行四边形ABC1O1的面积为,∵平行四边形ABC1O1的对角线互相平分,∴平行四边形ABC2O2的面积为×=,…,依此类推,平行四边形ABC2009O2009的面积为.故选B.5、解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,正确;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;(见上图)④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形;∴BN=PB=PC,正确.故选D.6、解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠MDN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF.在△AED与△CFD中,∵,∴△AED≌△CFD(ASA),∴AE=CF,在Rt△ABD中,BE+CF=BE+AE=AB==BD=BC.故①正确;设AB=AC=a,AE=CF=x,则AF=a﹣x.∵S△AEF =AE•AF=x(a﹣x)=﹣(x﹣a)2+a2,∴当x=a时,S△AEF有最大值a2,又∵S△ABC =×a2=a2,∴S△AEF≤S△ABC.故②正确;EF2=AE2+AF2=x2+(a﹣x)2=2(x﹣a)2+a2,∴当x=a时,EF2取得最小值a2,∴EF≥a(等号当且仅当x=a时成立),而AD=a,∴EF≥AD.故④错误;由①的证明知△AED≌△CFD,∴S四边形AEDF =S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,∵EF≥AD,∴AD•EF≥AD2,∴AD•EF>S四边形AEDF故③错误;当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.故⑤正确.综上所述,正确的有:①②⑤,共3个.故选C.7、解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵tan∠AED=,由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴tan∠AED=>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD >S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∴其中正确结论的序号是:①④⑤.故选:A.8、解:①由∠ABC=90°,△BEC为等边三角形,△ABE为等腰三角形,∠AEB+∠BEC+∠CEH=180°,可求得∠CEH=45°,此结论正确;②由△EGD≌△DFE,EF=GD,再由△HDE为等腰三角形,∠DEH=30°,得出△HGF为等腰三角形,∠HFG=30°,可求得GF∥DE,此结论正确;③由图可知2(OH+HD)=2OD=BD,所以2OH+DH=BD此结论不正确;④如图,过点G作GM⊥CD垂足为M,GN⊥BC垂足为N,设GM=x,则GN=x,进一步利用勾股定理求得GD=x,BG=x,得出BG=GD,此结论不正确;⑤由图可知△BCE和△BCG同底不等高,它们的面积比即是两个三角形的高之比,由④可知△BCE的高为(x+x)和△BCG的高为x,因此S△BCE :S△BCG=(x+x):x=,此结论正确;故正确的结论有①②⑤.故选C.9、解:(1)连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.(上图2)(2)∵FH⊥AE,FH=AF,∴∠HAE=45°.(3)连接AC交BD于点O,可知:BD=2OA,(上图3)∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.(4)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,根据△MEC≌△CIM,(见下图2)可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故(1)(2)(3)(4)结论都正确.故选D.10、解:如下图1,连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△DGE =S△GEB(同底等高的两三角形面积相等),同理S△GKE=S△GFE.∴S阴影=S△DGE+S△GKE=S△GEB+S△GEF=S正方形GBEF=4×4=16 故选D.二.填空题:1、解:观察图形,发现规律:图1中有1个菱形,图2中有1+22=5个菱形,图3中有5+32=14个菱形,图4中有14+42=30个菱形,则第5个图中菱形的个数是30+52=55,第6个图中菱形的个数是55+62=91个.故答案为91.2、解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=(∠A+∠ABC),整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2012=.故答案为:.3、解:在Rt△ABC中,AC=3,BC=4,∴AB=,又因为CA1⊥AB,∴AB•CA1=AC•BC,即CA1===.∵C4A5⊥AB,∴△BA5C4∽△BCA,∴,∴==.所以应填和.4、解:由题意得,△A2B1B2∽△A3B2B3,∴==,==,又∵A1B1∥A2B2∥A3B3,∴===,==,∴OA1=A1A2,B1B2=B2B3继而可得出规律:A1A2=A2A3=A3A4…;B1B2=B2B3=B3B4…又△A2B1B2,△A3B2B3的面积分别为1、4,∴S△A1B1A2=,S△A2B2A3=2,继而可推出S△A3B3A4=8,S△A4B4A5=32,S△A5B5A6=128,S△A6B6A7=512,S△A7B7A8=2048,故可得小于2011的阴影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6个.故答案是:;6.5、解:如图所示:①将点A1(a,1)代入直线1中,可得,所以a=.②△A1B1B2的面积为:S==;因为△OA1B1∽△OA2B2,所以2A1B1=A2B2,又因为两线段平行,可知△A1B1B2∽△A2B2B3,所以△A2B2B3的面积为S1=4S;以此类推,△A4B4B5的面积等于64S=.6、解:∵梯形ABCD中,AD∥BC,EA⊥AD,∴AE⊥BC,即②正确.∵∠MBE=45°,∴BE=ME.在△ABE与△CME中,∵∠BAE=∠MCE,∠AEB=∠CEM=90°,BE=ME,∴△ABE≌△CME,∴AB=CM,即①正确.∵∠MCE=∠BAE=90°﹣∠ABE<90°﹣∠MBE=45°,∴∠MCE+∠MBC<90°,∴∠BMC>90°,即③⑤错误.∵∠AEB=∠CEM=90°,F、G分别是AB、CM的中点,∴EF=AB,EG=CM.又∵AB=CM,∴EF=EG,即④正确.故正确的是①②④.7、解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM==,∴AC=,同理可得AC1=AC=()2,AC2=AC1=3=()3,按此规律所作的第n个菱形的边长为()n﹣1故答案为()n﹣1.8、解:∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,(见上图3)同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形.∴EH=FG(矩形的对边相等);又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF=,∴HF=5,又∵HE•EF=HF•EM,∴EM=,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=,∴AD:AB=5:=.故答案为:.9、解:如图,连接EF;∵△ADF与△DEF同底等高,∴S△ADF =S△DEF即S△ADF﹣S△DPF=S△DEF﹣S△DPF,即S△APD =S△EPF=15cm2,同理可得S△BQC=S△EFQ=25cm2,∴阴影部分的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为40.。

中考数学填空、选择、解答题最后一题

中考数学填空、选择、解答题最后一题

1、如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为,△APO 的面积为,则下列图象中,能表示与的函数关系的图象大致是()2、如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则弧DE的长度是()3、如图,在平面直角坐标系xOy中,已知直线l:y=-x-1,双曲线,在l上取一点A 1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,An,….记点An的横坐标为an,若a1=2,则a2=________,a2013=________;若要将上述操作无限次地进行下去,则a1不能取的值是=________.4、如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是 ________5、如图,AD 是圆O 的切线,切点为A ,AB 是圆O 的弦。

过点B 作BC//AD ,交圆O 于点C ,连接AC ,过点C 作CD//AB ,交AD 于点D 。

连接AO 并延长交BC 于点M ,交过点C 的直线于点P ,且角BCP=角ACD 。

(1) 判断直线PC 与圆O 的位置关系,并说明理由:(2) 若AB=9,BC=6,求PC 的长。

6、如图,在梯形ABCD 中,AD BC ∥,6cm AD =,4cm CD =,10cm BC BD ==,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(05t <<).解答下列问题: (1)当t 为何值时,PE AB ∥?(2)设PEQ △的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使225PEQ BCD S S =△△?若存在,求出此时t 的值;若不存在,说明理由. (4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.5、解:(1)直线PC 与圆O 相切。

2022届天津市中考数学考前最后一卷及答案解析

2022届天津市中考数学考前最后一卷及答案解析

2022届天津市中考数学考前最后一卷一、选择题(本大题共12小题,每小题3分:共36分,在每小题给出的四个途项中,只有一项是符合题区要求的)1.计算(﹣18)÷9的值是()A.﹣27B.﹣9C.﹣2D.22.tan60°的值为()A.33B.23C.3D.23.下列图形中,可以看作中心对称图形的是()A.B.C.D.4.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为()A.0.8×1011B.8×1010C.80×109D.800×108 5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.估计40的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.计算2K1−a﹣1的结果为()A.1B.﹣1C.1K1D.22+1K18.方程x(x﹣2)+x﹣2=0的解是()A.x1=0,x2=0B.x1=﹣1,x2=﹣2C.x1=﹣1,x2=2D.x1=0,x2=﹣29.如图,△ABC纸片中,∠A=56°,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD、则∠EDB的度数为()A.76°B.74°C.72°D.70°10.如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM=4,AB =6,则BD的长为()A.4B.5C.8D.10 11.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=1的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3 12.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c =4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分13.计算(2a)3的结果等于.14.计算(3+2)2的结果等于.15.掷两枚质地均匀的骰子,两次出现的点数相同的概率是.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是(写出一个即可).17.如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH的长为.18.如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点.(Ⅰ)MN的长等于.(Ⅱ)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎样画的.(不要求证明).三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.(8分)解不等式组2≥−1①−3(−2)≥4②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.(8分)某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生成绩(单位:分),得到如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图中m的值为;(Ⅱ)求这40个样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生.21.(10分)已知PA与⊙O相切于点A,B、C是⊙O上的两点.(Ⅰ)如图①,PB与⊙O相切于点B,AC是⊙O的直径,若∠BAC=25°;求∠P的大小;(Ⅱ)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小.22.(10分)如图,某校数学兴趣小组要测量大楼AB的高度.他们在点C处测得楼顶B的仰角为30°,再往大楼AB方向前进至点D处测得楼顶B的仰角为48°,CD=96m,其中点A、D、C在同一直线上.求AD的长和大楼AB的高度(结果精确到1m).参考数据:sin48°=0.74,cos48°=0.67,tan48°=1.11.3=1.73.23.(10分)某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表).收费方式月使用费/元包月上网时间/h超时费/(元/min)A30250.05B50500.05设月上网时间为xh(x为非负整数),请根据表中提供的信息回答下列问题:(Ⅰ)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x 的函数关系式;(Ⅱ)当35<x<50时,选取哪种方式能节省上网费?请说明理由.24.(10分)如图(1),在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合.连接OD,PD,得△ABD.(Ⅰ)当t=3时,求DP的长;(Ⅱ)在点P运动过程中,依照条件所形成的△OPD面积为S.①求t>0时,求S与②当t≤0时,要使S=P的坐标.25.(10分)已知抛物线y=ax2+bx+3的开口向上,顶点为P.(Ⅰ)若P点坐标为(4,1),求抛物线的解析式;(Ⅱ)若此抛物线经过(4,﹣1),当﹣1≤x≤2时,求y的取值范围(用含a的代数式表示);(Ⅲ)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值.2022届天津市中考数学考前最后一卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分:共36分,在每小题给出的四个途项中,只有一项是符合题区要求的)1.计算(﹣18)÷9的值是()A.﹣27B.﹣9C.﹣2D.2【解答】解:(﹣18)÷9=﹣2.故选:C.2.tan60°的值为()A.33B.23C.3D.2【解答】解:tan60°=3.故选:C.3.下列图形中,可以看作中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.4.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为()A.0.8×1011B.8×1010C.80×109D.800×108【解答】解:将800亿用科学记数法表示为:8×1010.故选:B.5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:A.6.估计40的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【解答】解:∵36<40<49,即6<40<7,故选:C.7.计算2K1−a﹣1的结果为()A.1B.﹣1C.1K1D.22+1K1【解答】解:原式=2K1−(r1)(K1)K1=1K1故选:C.8.方程x(x﹣2)+x﹣2=0的解是()A.x1=0,x2=0B.x1=﹣1,x2=﹣2C.x1=﹣1,x2=2D.x1=0,x2=﹣2【解答】解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故选:C.9.如图,△ABC纸片中,∠A=56°,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD、则∠EDB的度数为()A.76°B.74°C.72°D.70°【解答】解:∵∠A=56°,∠C=88°,∴∠ABC=180°﹣56°﹣88°=36°,∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,∴∠EDB=180°﹣18°﹣88°=74°.故选:B.10.如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM=4,AB =6,则BD的长为()A.4B.5C.8D.10【解答】解:∵矩形ABCD的对角线AC,BD相交于点O,∴∠BAD=90°,点O是线段BD的中点,∵点M是AB的中点,∴OM是△ABD的中位线,∴AD=2OM=8.∴在直角△ABD中,由勾股定理知:BD=B2+B2=82+62=10.故选:D.11.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=1的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3【解答】解:∵反比例函数y=1中,k=1>0,∴此函数图象的两个分支在一、三象限,∵x1<x2<0<x3,∴A、B在第三象限,点C在第一象限,∴y1<0,y2<0,y3>0,∵在第三象限y随x的增大而减小,∴y1>y2,∴y2<y1<y3.故选:D.12.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c =4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个B.3个C.2个D.1个【解答】解:由图象可知,抛物线开口向下,则a<0,c>0∵抛物线的顶点坐标是A(1,4)∴抛物线对称轴为直线x=−2=1∴b=﹣2a∴b>0,则①错误,②正确;方程ax2+bx+c=4方程的解,可以看做直线y=4与抛物线y=ax2+bx+c的交点的横坐标.由图象可知,直线y=4经过抛物线顶点,则直线y=4与抛物线有且只有一个交点.则方程ax2+bx+c=4有两个相等的实数根,③正确;由抛物线对称性,抛物线与x轴的另一个交点是(﹣1.0)则④错误;不等式x(ax+b)≤a+b可以化为ax2+bx+c≤a+b+c∵抛物线顶点为(1,4)∴当x=1时,y=a+b+c最大∴ax2+bx+c≤a+b+c故⑤正确故选:B.二、填空题(本大题共6小题,每小题3分,共18分13.计算(2a)3的结果等于8a3.【解答】解:(2a)3=8a3.故答案为:8a3.14.计算(3+2)2【解答】解:(3+2)2=3+43+4=7+43,故答案为:7+43.15.掷两枚质地均匀的骰子,两次出现的点数相同的概率是16.【解答】解:列表得:∴一共有36种情况,两个骰子的点数相同的有6种情况,∴这两个骰子的点数相同的概率=636=16.故答案为16.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是﹣1(写出一个即可).【解答】解:∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,∴k<0,b<0.故答案为:﹣1.17.如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH【解答】解:如图,连接AC、CF,∵菱形ABCD和菱形CEFG中,BC=1,CE=3,∠ABC=60°,∴AC=BC=1,CF=33,∠ACD=60°,∠GCF=30°,∴∠ACF=90°,由勾股定理得,AF=B2+B2=27,∵H是AF的中点,∴CH=12AF=12×27=7.故答案为:7.18.如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点.(Ⅰ)MN(Ⅱ)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎样画的.(不要求证明)取格点S,T,得点R;取格点A,B,得点E,连接ER交MN于点Q.【解答】解:(1)MN=32+52=34,(2)取格点S,T,得点R;取格点A,B,得点E,连接ER交MN于点Q.则点Q即为所求.故答案为:34;取格点S,T,得点R;取格点A,B,得点E,连接ER交MN于点Q.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.(8分)解不等式组2≥−1①−3(−2)≥4②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x≤1;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣1≤x≤1..【解答】解:2≥−1①−3(−2)≥4②解不等式①,得x≥﹣1;解不等式②,得x≤1;原不等式组的解集为﹣1≤x≤1,不等式组的解集在数轴上表示出来为:故答案为:x≥﹣1;x≤1;﹣1≤x≤1.20.(8分)某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生成绩(单位:分),得到如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图中m的值为25;(Ⅱ)求这40个样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生.【解答】解:(Ⅰ)m%=10÷40×100%=25%,故答案为:25;(Ⅱ)=4×26+8×27+12×28+10×29+6×3040=28.15,众数是28,中位数是28;(Ⅲ)2000×640=300(名),答:该中学九年级2000名学生中,体育测试成绩得满分的大约有300名学生.21.(10分)已知PA与⊙O相切于点A,B、C是⊙O上的两点.(Ⅰ)如图①,PB与⊙O相切于点B,AC是⊙O的直径,若∠BAC=25°;求∠P的大小;(Ⅱ)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小.【解答】解:(Ⅰ)连接OB,∵PA,PB与⊙O相切于点A,B,∴PA=PB,∠PAO=∠PBO=90°,∴∠PAB=∠PBA,∵∠BAC=25°,∴∠PBA=90°﹣∠BAC=65°,∴∠P=180°﹣65°×2=50°;(Ⅱ)连接AB、AD,∵∠ACB=90°,∴AB为⊙O的直径,∴∠ADB=90°,∵PD=DB,∴AP=AB,∵PA与⊙O相切于点A,∴BA⊥AP,∴∠P=∠ABP=45°.22.(10分)如图,某校数学兴趣小组要测量大楼AB的高度.他们在点C处测得楼顶B的仰角为30°,再往大楼AB方向前进至点D处测得楼顶B的仰角为48°,CD=96m,其中点A、D、C在同一直线上.求AD的长和大楼AB的高度(结果精确到1m).参考数据:sin48°=0.74,cos48°=0.67,tan48°=1.11.3=1.73.【解答】解:设大楼AB的高度为xm,在Rt△ABC中,∵∠C=30°,∠BAC=90°,∴AC=B Bz0°=3AB=3xm,在Rt△ABD中,tan∠ADB=tan48°=B B,∴AD=B BA8°=1.11m,∵CD=AC﹣AD,CD=96m,∴3x−1.11=96,解得:x≈116,AD=AB÷tan48°≈105m.答:AD的长为105m,大楼AB的高度约为116m.23.(10分)某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表).收费方式月使用费/元包月上网时间/h超时费/(元/min)A30250.05B50500.05设月上网时间为xh(x为非负整数),请根据表中提供的信息回答下列问题:(Ⅰ)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x 的函数关系式;(Ⅱ)当35<x<50时,选取哪种方式能节省上网费?请说明理由.【解答】解:(Ⅰ)方案A的收费:①当0≤x≤25时,y1=30;②当x>25时,y1=30+0.05×60×(x﹣25),即y1=3x﹣45;方案B的收费:①当0≤x≤50时,y2=50;②当x>50时,y2=50+0.05×60×(x﹣50),即y2=3x﹣100;(Ⅱ)当35<x<50时,选取方式B能节省上网费,理由如下:∵当35<x<50时,y1=3x﹣45,y2=50,∴y1﹣y2=3x﹣45﹣50=3x﹣95,记y=3x﹣95.∵3>0,∴y随x的增大而增大,又x=35时,y=10,∴当35<x<50时,y>10,∴y1>y2,∴当35<x<50时,选取方式B能节省上网费.24.(10分)如图(1),在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合.连接OD,PD,得△ABD.(Ⅰ)当t=3时,求DP的长;(Ⅱ)在点P运动过程中,依照条件所形成的△OPD面积为S.①求t>0时,求S与②当t≤0时,要使S=P的坐标.【解答】解:(Ⅰ)∵A(0,4),∴OA=4,∵P(t,0),∴OP=t,∵△ABD是由△AOP旋转得到,∴△ABD≌△AOP,∴AP=AD,∠DAB=∠PAO,∴∠DAP=∠BAO=60°,∴△ADP是等边三角形,∴DP=AP,∵t=3,∴OP=3,∴DP=AP=B2+B2=19;(Ⅱ)①当t>0时,如图1,BD=OP=t,过点B,D分别作x轴的垂线,垂足于F,H,过点B作x轴的平行线,分别交y轴于点P,交DH于点G,∵△OAB为等边三角形,BP⊥y轴,∴∠ABP=30°,AP=OP=2,∵∠ABD=90°,∴∠DBG=60°,∴DG=BD•sin60°=,∵GH=OP=2,∴DH=2,∴S=12t(2)=2+t(t>0);②当t≤0时,分两种情况:∵点D在x轴上时,如图2在Rt△ABD中,BD=OP=i、当t≤0时,如图3,BD=OP=﹣t,BG,∴DH=GF=BF﹣BG=2﹣()=2+,∴−12t(2)=∴t=−t=−3,∴P(0)或(−3,0),ii、当t≤−4,BD=OP=﹣t,DG=−,∴DH﹣2,∴12(﹣t)(﹣2)=∴t=21−233t=,∴P(−21−233,0).25.(10分)已知抛物线y=ax2+bx+3的开口向上,顶点为P.(Ⅰ)若P点坐标为(4,1),求抛物线的解析式;(Ⅱ)若此抛物线经过(4,﹣1),当﹣1≤x≤2时,求y的取值范围(用含a的代数式表示);(Ⅲ)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值.【解答】解:(I)∵抛物线y=ax2+bx+3的顶点P的坐标是(4,1),∴y=a(x﹣4)2+1=ax2﹣8ax+16a+1,即16a+1=3,解得:a=18,∴抛物线的解析式是y=18x2﹣x+3;(II)∵开口向上∴a>0∵此抛物线经过(4,﹣1),∴﹣1=16a+4b+3,即b=﹣4a﹣1,抛物线的对称轴是直线x=4r12=2+12>2,∴当﹣1≤x≤2时,y随着x的增大而减小,当x=﹣1时,y=a+(4a+1)+3=4+5a,当x=2时,y=4a﹣2(4a+1)+3=1﹣4a,∴当﹣1≤x≤2时,y的取值范围是1﹣4a≤y≤4+5a;(III)∵当a=1时,抛物线的解析式为y=x2+bx+3,∴抛物线的对称轴是直线x=−2,由抛物线图象可知:仅当x=0,x=1或x=−2时,抛物线的点可能离x轴最远.分别代入可得,当x=0时,y=3;当x=1时,y=b+4;当x=−2时,y=−24+3≤3①当−2<0,即b>0时,3≤y≤b+4,则b+4=6解得b=2②当0≤−2≤1,即﹣2≤b≤0时,△=b2﹣12<0,则抛物线与x轴无公共点,且b+4=6解得b=2>1,故舍去③当−2>1,即b<﹣2时,b+4≤y≤3,由b+4=﹣6解得b=﹣10∴终上所述,b=2或﹣10。

2023年山东省临沂市中考数学真题(答案解析)

2023年山东省临沂市中考数学真题(答案解析)

2023年临沂市初中学业水平考试试题数学一、选择题1.【答案】C【解析】解:2(7)(5)()57=----+=-;故选C .2.【答案】C【解析】解:由题意,可得130ABC ∠=︒,故选:C .3.【答案】B【解析】解:最符合视图特点的建筑物的图片是选项B 所示图片.故选:B .4.【答案】A【解析】解:由题意,得:点B 的坐标为(6,2);故选A .5.【答案】C【解析】解:∵在同一平面内,过直线l 外一点P 作l 的垂线m ,即l m ⊥,又∵过P 作m 的垂线n ,即n m ⊥,∴l n ∥,∴直线l 与n 的位置关系是平行,故选:C .6.【答案】D【解析】解:A 选项,32a a a -=,故选项错误,不符合题意;B 选项,222()2a b a ab b -=-+,故选项错误,不符合题意;C 选项,()2510a a =,故选项错误,不符合题意;D 选项,325326a a a ⋅=,故选项正确,符合题意;故选D .7.【答案】B【解析】解:正六边形的中心角的度数为:360606︒=︒,∴正六边形绕其中心旋转60︒或60︒的整数倍时,仍与原图形重合,∴旋转角的大小不可能是90︒;故选B .8.【答案】B【解析】解:m ====-∵=<<∴54-<-<-,即54m -<<-,故选:B .9.【答案】D【解析】解:设两名男生分别记为A ,B ,两名女生分别记为C ,D ,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为82123=,故选:D .10.【答案】A【解析】解:由题意,得:105V t=,∴V 与t 满足反比例函数关系.故选A .11.【答案】C【解析】解:∵一次函数y kx b =+的图象不经过第二象限,∴00k b ><,,故选项A 正确,不符合题意;∴0kb <,故选项B 正确,不符合题意;∵一次函数y kx b =+的图象经过点()20,,∴20k b +=,则2b k =-,∴20k b k k k +=-=-<,故选项C 错误,符合题意;∵2b k =-,∴12k b =-,故选项D 正确,不符合题意;故选:C .12.【答案】A【解析】解:∵0a b +=∴a b =,故①错误,∵0,0a b b c c a +=->->∴b c a >>,又0a b +=∴0,0a b <>,故②③错误,∵0a b +=∴=-b a∵0b c c a ->->∴a c c a -->-∴c c->∴0c <,故④正确或借助数轴,如图所示,故选:A .二、填空题13.【答案】24【解析】解:根据菱形面积等于两条对角线乘积的一半可得:面积168242=⨯⨯=,故答案为:24.14.【答案】()()111n n -++【解析】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++15.【答案】14【解析】解:如图,由题意得13AD AB =,四边形DECF 是平行四边形,∴DF BC ∥,DE AC ∥,∴ ∽ADF ABC ,BDE BAC ∽△△,∴13DF AD BC AB ==,23DE BD AC AB ==,∵69AC BC ==,,∴3DF =,4DE =,∵四边形DECF 平行四边形,∴平行四边形DECF 纸片的周长是()23414+=,故答案为:14.16.【答案】②③④【解析】解:列表,x L 2.5-2-1-0.5-0.512L yL5.4531- 3.75- 4.2535L描点、连线,图象如下,根据图象知:①当1x <-时,x 越小,函数值越大,错误;②当10x -<<时,x 越大,函数值越小,正确;③当01x <<时,x 越小,函数值越大,正确;④当1x >时,x 越大,函数值越大,正确.故答案为:②③④.三、解答题17.【答案】(1)3x >(2)从第①步开始出错,过程见解析【解析】解:(1)1522xx --<,去分母,得:1041x x -<-,移项,合并,得:39x -<-,系数化1,得:3x >;(2)从第①步开始出错,正确的解题过程如下:()()22111111a a a a a a a a +---=----22111a a a a -=---11a =-.18.【答案】(1)见解析(2)①90.5;②测试成绩分布在9195 的较多(不唯一);(3)估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.【解析】(1)解:数据从小到大排列:81、82、83、85、86、87、87、88、89、90、91、92、92、92、93、94、95、96、99、100最大值是100,最小值为81,极差为1008119-=,若组距为5,则分为4组,频数分布表成绩分组8185 8690 9195 96100划记正一频数4673频数分布直方图,如图;;(2)解:①中位数是909190.52+=;故答案为90.5;②测试成绩分布在9195 的较多(不唯一);(3)解:67360048020++⨯=(人),答:估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.19.【答案】渔船没有触礁的危险【解析】解:过点A 作AD BC ⊥,由题意,得:905832ABC ∠=︒-︒=︒,45ACD ∠=︒,6BC =,设AD x =,在Rt ADC 中,45ACD ∠=︒,∴AD CD x ==,∴6BD x =+,在Rt ADB 中,tan 0.6256AD xABD BD x ∠==≈+,∴10x =,∴10AD =,∵109>,∴渔船没有触礁的危险.20.【答案】(1)这台M 型平板电脑的价值为2100元(2)她应获得120m 元的报酬【解析】(1)解:设这台M 型平板电脑的价值为x 元,由题意,得:15003003020x x ++=,解得:2100x =;∴这台M 型平板电脑的价值为2100元;(2)解:由题意,得:2100150012030m m +⋅=;答:她应获得120m 元的报酬.21.【答案】(1)见解析(2)43π【解析】(1)证明:连接AO 并延长交BC 于点F ,∵O 是ABC 的外接圆,∴点O 是ABC 三边中垂线的交点,∵AB AC =,∴AO BC ⊥,∵AE BC ∥,∴AO AE ⊥,∵AO 是O 的半径,∴AE 是O 的切线;(2)解:连接OC ,∵AB AC =,∴75ABC ACB ∠=∠=︒,∴18027530BAC ∠=︒-⨯︒=︒,∴260BOC BAC ∠=∠=︒,∵OB OC =,∴BOC 为等边三角形,∴2===OC OB BC ,∴180120COD BOC ∠=︒-∠=︒,∴ CD的长为120241803ππ⨯=.22.【答案】(1))21AB BD =,(2)见解析(3)见解析【解析】(1)解:∵90,A AB AC ∠=︒=∴2BC =,∵BC AB BD =+2AB BD =+即)21AB BD =;(2)证明:如图所示,∴90,A AB AC ∠=︒=∴=45ABC ∠︒,∵BD AB ⊥,∴45DBC ∠=︒∵CE BC =,12∠=∠,CF DC =∴CBD CEF ≌∴=45E DBC ∠=∠︒∴EF BD ∥∴AB EF⊥(3)证明:如图所示,延长,BA EF 交于点M ,延长CH 交ME 于点G ,∵EF AB ⊥,AC AB ⊥,∴ME AC ∥,∴CGE ACG∠=∠∵CH 是ACE ∠的角平分线,∴ACG ECG ∠=∠,∴CGE ECG ∠=∠∴EG EC =∵CBD CEF ≌,∴EF BD =,CE CB =,∴EG CB =,又∵BC AB BD =+,∴EG AB BD AC EF =+=+,即FG EF AC EF +=+,∴AC EG =,又AC FG ∥,则HAG HFG ∠=∠,在,AHC FHG 中,HAG HFG AHG FHG AC FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AHC FHG ≌,∴AHHF=23.【答案】(1)见解析(2)售价每涨价2元,日销售量少卖4盆(3)①定价为每盆25元或每盆35元时,每天获得400元的利润;②售价定为30元时,每天能够获得最大利润【解析】(1)解:按照售价从低到高排列列出表格如下:售价(元/盆)1820222630日销售量(盆)5450463830【小问2详解】由表格可知,售价每涨价2元,日销售量少卖4盆;(3)①设:定价应为x 元,由题意,得:()()181********x x -⎡⎤--⨯=⎢⎥⎣⎦,整理得:2212017500x x -+-=,解得:1225,35x x ==,∴定价为每盆25元或每盆35元时,每天获得400元的利润;②设每天的利润为w ,由题意,得:()()22120135018155442x w x x x -⎡⎤=--⨯+⎣--=⎢⎥⎦,∴()2221201350230450w x x x -+---+==,∵20-<,∴当30x =时,w 有最大值为450元.答:售价定为30元时,每天能够获得最大利润.。

2024年江苏省徐州市中考考前数学最后一卷+答案解析

2024年江苏省徐州市中考考前数学最后一卷+答案解析

2024年江苏省徐州市中考考前数学最后一卷一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.“坎宁安数”是以英国数学家坎宁安的名字命名的,能写成形式的数字,2024是一个坎宁安数,因为下列各数中均含有“2024”,其中最小的是()A.2024B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.3.在单词数学中字母“a ”出现的频率是()A.B.C.D.4.下列运算正确的是()A. B.C.D.5.以下是小李记录的自己一周内每天校外锻炼的时间单位:分钟,,则下列关于小李该周每天校外锻炼时间的描述,正确的是()A.众数为62分钟B.中位数为62分钟C.平均数为70分钟D.方差为06.分式是刻画数量关系和变化规律的一类重要的代数式,我们学习了分式的概念、基本性质和运算.回顾学习分式的过程,常常是先回顾分数的概念、分数的基本性质和分数的运算法则,然后推广得到分式的概念、分式的基本性质和分式的运算法则.这种研究方法主要体现的数学思想是()A.归纳思想 B.类比思想C.数学抽象D.数形结合思想7.将二次函数的图象先向上平移3个单位长度,再向右平移2个单位长度后得到的图象的顶点坐标是()A.B.C.D.8.中,,,,将绕点A旋转得到,连接CD、CE,在旋转过程中,面积的最大值是()A. B. C.15 D.18二、填空题:本题共10小题,每小题3分,共30分。

9.因式分解:__________.10.第七次全国人口普查结果显示,我国具有大学文化程度的人口超218000000人.数字218000000用科学记数法表示为_____.11.如果,则的值为_____.12.如图,CE,CF是正六边形的两条对角线,则的大小为_______.13.已知关于x的分式方程的解为正数,则m的取值范围是___________.14.如图,在中,,点D为AB边的中点,于E,若,则AC的长为_________.15.如图,点A,B,C,D在上,,,则________.16.黄金分割比是让无数科学家、数学家、艺术家为之着迷的数字.黄金矩形的长宽之比为黄金分割比,即矩形的短边为长边的倍.黄金分割比能够给画面带来美感,令人愉悦,在很多艺术品以及大自然中都能找到它.比如蜗牛壳的螺旋中就隐藏了黄金分割比.如图,用黄金矩形ABCD框住整个蜗牛壳,之后作正方形ABFE,得到黄金矩形CDEF,再作正方形DEGH,得到黄金矩形CFGH……,这样作下去,我们以每个小正方形边长为半径画弧线,然后连接起来,就是黄金螺旋.已知,则阴影部分的面积为_____.17.如图,矩形OABC的顶点A在反比例函数的图象上,顶点B、C在第一象限,对角线轴,交y轴于点若矩形OABC的面积是16,,则__________.18.如图,在矩形ABCD中,点E是边AD上一点,连接BE,过点E作BC的垂线,垂足为F,的角平分线分别交EF,EC于点G,若,,,则GH的长为_______.三、计算题:本大题共2小题,共12分。

江苏省2024年中考数学最后一卷(含解析)

江苏省2024年中考数学最后一卷(含解析)

2024年江苏中考最后一卷数学注意事项:1.本试卷共有三个大题,分为单项选择题、填空题、解答题,满分130分,考试时间120分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。

一、单选题(本大题共8小题,每小题3分,共24分)1.2024的倒数是()A.2024B.C.D.2.若,则的补角的度数是( )A.B.C.D.3.“一片甲骨惊天下”,甲骨文是迄今为止中国发现的年代最早的成熟文字系统,是汉字的头和中华优秀传统文化的根脉.下面四个选项分别是用甲骨文书写的虎、牛、龙、兔,其中是轴对称图形的是()A.B.C.D.4.下列运算正确的是( )A.(a+b)2=a2+b2B.(3a2)3=9a6C.50÷5﹣2=D.=﹣35.分式有意义的条件是()A.B.C.D.6.如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是()A.1B.C.D.7.如图,正五边形内接于,P为上一点,连接,,则的度数为()A.B.C.D.8.如图,在△ABC中,∠ACB=90°,AC=BC=4,P是△ABC的高CD上一个动点,以B 点为旋转中心把线段BP逆时针旋转45°得到BP′,连接DP′,则DP′的最小值是( )A.2-2B.4﹣2C.2﹣D.-1二、填空题(本大题共8小题,每小题3分,共24分)9.全球最大的水陆两栖飞机—中航工业AG600大型灭火飞机最大起飞重量53500千克,数据53500用科学记数法表达为.10.若分式方程的解是,则.11.分解因式:.12.正方形的边长为1,其面积记为,以为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为,…按此规律继续下去,则的值为 13.根据如图所示的统计图,回答问题:该超市年月的水果类销售额月的水果类销售额(填“”“”或“”).14.将直线平移,使之经过点,则平移后的函数解析式为.15.2022年冬奥会吉祥物“冰墩墩”意喻敦厚,健康,可爱,活泼,某零售店“冰墩墩”的销售日益火爆,销售期间发现,每天的销售利润(元)与售价(元)之间的函数解析式是,且售价的范围是,则销售“冰墩墩”每天的最大利润是.16.如图,中,,,射线从射线开始绕点C逆时针旋转角,与射线相交于点D,将沿射线翻折至处,射线与射线相交于点E.若是等腰三角形,则的度数为.三、解答题(本大题共11小题,共82分)(共82分)17.(本题5分)计算:.18.(本题5分)解不等式组,并写出该不等式组的整数解.19.(本题6分)已知点回答下列问题:(1)点在轴上,求出点的坐标;(2)点在第二象限,且它到轴、轴的距离相等,求的值20.(本题6分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地.若长方形的长为a米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为米,宽为米,正方形的边长为米,求阴影部分的面积.21.(本题6分)某气球内充满了一定量的气体,当温度不变时,气球内气体的压强是气体体积的反比例函数,其图像如图所示.(1)求这一函数的表达式;(2)当气体压强为时,求V的值.22.(本题8分)为了考查某校学生的体重,对某班45名学生的体重记录如下(单位:千克):48,48,42,50,61,44,43,51,46,46,51,46,50,45,52,54,51,57,55,48,49,48,53,48,56,55,57,42,54,49,47,60,51,51,44,41,49,53,52,49,61,58,52,54,50(1) 这个问题中的总体、个体、样本、样本容量分别是多少?(2) 请用简单的随机抽样方法,将该班45名学生体重分别选取含有6名学生体重的两个样本和含有15名学生体重的两个样本.23.(本题8分)如图,的对角线,相交于点,过点且与,分别相交于点,.连接,.(1)求证:四边形是平行四边形;(2)若,周长是18,则的周长是多少.24.(本题8分)郑州大观音寺,始建于唐代,辉煌于明清,某校课外兴趣小组为测量大殿高度,进行了一系列测量,如图,地面上C,D两处的距离为,,求大殿的高度.(结果保留整数.参考数据:)25.(本题10分)从图所示的风筝中可以抽象出几何图形,我们把这种几何图形叫做“筝形”.具体定义如下:如图,在四边形中,,,我们把这种两组邻边分别相等的四边形叫做“筝形”.()结合图,通过观察、测量、折纸,可以猜想“筝形”具有诸如“平分和”这样的性质,请结合图形,再写出两条“筝形”的性质.①____________________________.②____________________________.()从你写出的两条性质中,任选一条“筝形”的性质给出证明.26.(本题10分)如图①,已知是的直径,过点A作射线,点P为l上一个动点,点C为上异于点A的一点,且,过点B作的垂线交的延长线于点D,连接.(1)求证:为的切线;(2)若,求的值;(3)如图②,过点C作于点E,交于点F,当点P在运动过程中,试探究是否为定值,如果是,请求出该定值;如果不是,请说明理由.27.(本题10分)如图,在平面直角坐标系中,,点B的坐标为.抛物线经过A、B两点.(1)求抛物线的解析式;(2)点P是直线上方抛物线上的一点,过点P作垂直x轴于点D,交线段于点E,使①求点P的坐标;②在直线上是否存在点M,使为等腰三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.2024年江苏中考最后一卷数学参考答案一、单选题1.C【分析】本题考查了倒数,掌握倒数的定义是解答本题的关键.根据乘积是1的两数互为倒数解答即可.【详解】解:2024的倒数是;故选:C.2.C【分析】本题主要考查了求一个角的补角度数,根据度数之和为180度的两个角互补进行求解即可.【详解】解:∵,∴的补角的度数是,故选:C.3.B【分析】本题考查了轴对称图形:如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这个概念判断即可.【详解】解:从四个选项的甲骨文看,只有选项B中的甲骨文能找到一条直线,使直线两旁的部分能够重合,而其余甲骨文则不具备这样的特性;故选:B.4.D【分析】根据实数运算法则化简各式子即可.【详解】解:(A)原式=a2+2ab+b2,故A错误;(B)原式=27a6,故B错误;(C)原式=1÷()2=25,故C错误;(D)原式=2﹣5=﹣3,故D正确;故选D.【点睛】本题考查实数运算和整式运算,熟练掌握运算法则是解题关键.5.D【分析】本题考查的是分式有意义的条件,根据分式有意义的条件可得,从而可得答案.【详解】解:∵分式有意义,∴,∴,故选D6.B【分析】本题考查了简单概率的计算,明确题意,知道只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上,是解答本题的关键.任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上,据此即可作答.【详解】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上,∴,故选:B.7.B【分析】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键.【详解】解:连接、,∵是圆内接五边形,∴,∴,故选B.8.A【分析】在BC上截取BE=BD,根据等腰直角三角形的性质求得BA和BE,再由旋转的性质证明△BDP'≌△BEP,从而可得到PE=P'D,再由等腰直角三角形的性质求得PE,从而求得DP′的最小值.【详解】解:如图,在BC上截取BE=BD,∵∠ACB=90°,AC=BC=4,CD⊥AB,∴BA=4,∠ABC=∠BAC=∠BCD=∠DCA=45°,BD=CD=AD=2=BE,∵旋转∴BP=BP',∠PBP'=45°,∵BE=BD,∠ABC=∠PBP'=45°,BP=BP'∴△BDP'≌△BEP(SAS)∴PE=P'D∴当PE⊥CD时,PE有最小值,即DP'有最小值,∵PE⊥CD,∠BCD=45°,∴CE=PE=BC﹣BE=4﹣2∴P'D =PE=2﹣2故选A.【点睛】本题考查了旋转的性质,等腰直角三角形的性质及全等三角形的判定和性质,熟练掌握其性质并能熟练应用是解题的关键.二、填空题9.【分析】本题考查科学记数法,科学记数法的一般形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于等于10时,n是正整数;当原数的绝对值小于1时,n是负整数.据此求解即可.【详解】解:数据53500用科学记数法表达为,故答案为:.10.【分析】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.分式方程去分母转化为整式方程,将1代入整式方程即可求出的值.【详解】解:分式方程去分母得:,由分式方程的解为,代入整式方程得:,解得:,故答案为:.11.【分析】本题考查了提公因式法运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.提公因式分解即可解答.【详解】解:.故答案为:.12.【分析】本题考查图形规律探究,等腰直角三角形、正方形的性质,勾股定理,总结归纳出规律是解题的关键.根据题意表示出,,的值,找到规律,根据规律计算即可.【详解】解:由题意可知,面积为的正方形的边长为1,,面积为的正方形的边长为,,面积为的正方形的边长为,,面积为的正方形的边长为,,.一般规律为:,则.故答案为:.13.【分析】本题主要考查条形统计图与折线图的综合运用,掌握统计图的信息的关系是解题的关键,根据销售总额与占比计算出相应的量进行比较即可求解.【详解】解:某超市月的销售总额为万元,水果类销售额占比为,∴某超市月水果类的销售额为:万元;某超市月销售总额为万元,水果类销售额占比为,∴某超市月水果类的销售额为:万元;∵,故答案为:.14.【分析】本题考查了一次函数的平移,待定系数法求函数解析式,先设平移后的函数解析式为,再将代入函数解析式,求解即可.【详解】设平移后的函数解析式为,把代入函数解析式,得,解得,∴平移后的函数解析式为,故答案为:.15.900元【分析】本题考查二次函数的实际应用.熟练掌握二次函数的图象和性质是解题关键.将二次函数一般式改为顶点式.再结合题意可知当时,y有最大值,求出最大值即可.【详解】解:∵,且,又∵售价x的范围是,∴当时,y有最大值,最大值为900,∴最大利润是900元.故答案为:900元.16.或或【分析】分情况讨论,利用折叠的性质知,,再画出图形,利用三角形的外角性质列式计算即可求解.【详解】解:由折叠的性质知,,当时,,由三角形的外角性质得,即,此情况不存在;当时,,,由三角形的外角性质得,解得;当时,,∴,由三角形的外角性质得,解得;当时,,∴,∴;综上,的度数为或或.故答案为:或或.【点睛】本题考查了折叠的性质,三角形的外角性质,等腰三角形的性质,画出图形,数形结合是解题的关键.三、解答题17.【分析】本题考查了立方根,算术平方根以及实数的混合运算,根据相应的运算法则计算即可.【详解】.18.整数解有【分析】本题考查了解一元一次不等式组,先分别解几个不等式,然后把它们的解集的公共部分作为原不等式的解集;按照“同大取大,同小取小,大于小的小于大的取中间,大于小的小于大的为空集”,是解题的关键;分别解出两不等式的解集,再根据大于小的小于大的取中间得到不等式组的解集即可求解.【详解】解:解不等式得解不等式得,则不等式组的解集为:,不等式组的整数解有:19.(1)(2)【分析】本题主要考查平面直角坐标系内点的坐标特点以及绝对值;(1)根据轴上点的特点作答即可;(2)根据点到轴和轴相等列出,再结合第二象限点的特点求出,代入即可.【详解】(1)在轴上解得:(2)点到轴和轴距离相等在第二象限解得:20.(1)(2)平方米【分析】本题考查列代数式及代数式求值.(1)阴影部分的面积=长方形广场面积正方形草地,据此即可列出代数式;(2)将,,代入即可求解.【详解】(1)解:阴影部分的面积(2)解:当,,时,代入(1)得到的式子,得(平方米).答:阴影部分的面积为59600平方米21.(1)(2)2【分析】(1)根据题意可知P与V的函数的表达式为,利用待定系数法即可求得函数解析式;(2)直接把代入解析式计算即可.【详解】(1)解:设P与V的函数关系式为,则,解得,∴函数关系式为.(2)解:将代入中,得,解得,∴当气球内的气压为时,气球的体积为2立方米.【点睛】本题考查了反比例函数的应用,掌握反比例函数的图像及性质是解题的关键.22.(1) 总体是学生体重的全体,个体是每个学生的体重,样本是45名学生的体重,样本容量是45.(2)见解析.【分析】(1) 根据总体、个体、样本、样本容量的定义可以得出,这个问题的总体是某校学生体重的全体,个体是每个学生的体重,样本是45名学生的体重,样本容量是45.(2) 样本的抽取要有代表性.就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】(1)这个问题的总体是某校学生体重的全体,个体是每个学生的体重,样本是45名学生的体重,样本容量是45.(2)将本班45名学生的体重依次编号,从中抽取6名学生的体重,像这样连续做两遍,选出的两个样本为:①48,42,50,61,53,48和49,53,42,54,49,50;将本班45名学生的体重,依次编号从中抽取15名学生的体重,像这样连续做两遍,选出的两个样本为:①42,50,61,48,53,54,56,55,60,44,49,53,52,61,57;②48,50,44,43,45,54,51,49,48,53,51,47,60,54,50.【点睛】要根据体、个体、样本、样本容量的定义来确定第一小题的答案;第二小题要注意本的抽取要有代表性.23.(1)详见解析(2)36【分析】本题主要考查了平行四边形的性质与判定,菱形的性质与判定,全等三角形的性质与判定:(1)先由平行四边形的性质得到,,再由平行线的性质得到,,进而证明,得到,据此可证明结论;(2)证明四边形是菱形,得到,进而得到,则的周长是36.【详解】(1)证明:在中,,,,又,,,又,四边形是平行四边形(2)解;四边形是平行四边形,四边形是菱形,,,即,即,,即的周长是36.24.大殿的高度为【分析】本题主要考查了解直角三角形的相关计算,设,根据题意可知,,以为等量关系列出关系x的一元一次方程求解,最后再根据求出即可.【详解】解:设,∵,即,又∵,∴,即,解得:,∴.答:大殿的高度为.25.()①.②,.()见解析【分析】(1)①一组对角相等,∠ABC=∠ADC;②AC垂直平分BD,OB=OD,BD⊥AC;(2)证明∠ABC=∠ADC,由已知条件不难证明△ABC≌△ADC,即可证明∠ABC=∠ADC.【详解】解:(1)①一组对角相等,∠ABC=∠ADC;②AC垂直平分BD,OB=OD,BD⊥AC.(2)证明:∠ABC=∠ADC,证:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC.【点睛】本题考查四边形综合.关键结合全等三角形的判定与性质解题.26.(1)见解析(2);(3).【分析】(1)连接,证明,求得,据此即可证明为的切线;(2)过点作,设,求得,,利用勾股定理求得,再求得,据此求解即可;(3)连接并延长交的延长线于点,利用切线长定理求得,,由,得到,,利用相似三角形的性质即可求得.【详解】(1)证明:连接,∵是的直径,过点A作射线,∴,∵,,,∴,∴,即,∵是的半径,∴为的切线;(2)解:过点作,垂足为点,设,∴,∵,∴为的切线,∵、、为的切线,∴,,∴,∵射线,,,∴,∴四边形是矩形,∴,,∴,在中,,∴,在中,,∴;(3)解:,理由如下,连接并延长交的延长线于点,∵,∴,∵,,∴,∴,∵,∴,∴,∵,∴,∴,∵,,∴,∴,,∴,,∴,∴.【点睛】本题考查了切线长定理,切线的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形,正确引出辅助线解决问题是解题的关键.27.(1)(2)①;②存在,点M的坐标为:或或或或【分析】(1)根据条件求出,,根据待定系数法求解即可;(2)先求出的解析式,然后表示出,,根据即可求解;分情况讨论,分别求出,根据等腰三角形的定义求解即可.【详解】(1)解:∵,∴,∵,∴,在中,,∴,∴,把代入.得:解得:∴抛物线的解析式为:(2)①设的解析式为:,∵,,所以解得,所以的解析式为:,设,则,∵∴解得:(舍)或,∴;②∵M在直线上,且,设,∴分三种情况:i)当时,∴解得:∴ii)当时,∴解得:或iii )当时,∴解得:或∴或综上,点M的坐标为:或或或或【点睛】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,勾股定理的运用,等腰三角形的性质等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.。

2024年浙江中考数学最后一卷终极押题卷及答案

2024年浙江中考数学最后一卷终极押题卷及答案

2024年浙江中考最后一卷数学注意事项:1.本试卷共有三个大题,分为单项选择题、填空题、解答题,满分120分,考试时间100分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。

一、单选题(本大题共有10小题,每小题3分,共30分)1.下列各数中最大的数是()A.5−B.0 C.1−D2.下面计算正确的是()A.3a﹣2a=1 B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x63.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A.8×80.16108.01610×B.9C.10×80.1610×D.100.8016104.下列立体图形中,主视图是三角形的是()A.B.C.D.5.在数轴上表示不等式x﹣2≤0的解集,正确的是()A.B.C .D .6.随着自动驾驶技术的不断发展,某知名汽车制造公司近期对研发的自动驾驶汽车进行了一次大规模的路测,有45辆自动驾驶汽车参与了这次测试.测试结束后,技术部门对每辆汽车的性能进行评估(车辆的自动驾驶技术、安全性、反应速度等综合表现),得分如下:得分(分) 75 80 85 90车辆(辆) 5 16 14 10得分的中位数和众数分别是( )A .80,80B .82.5,80C .80,85D .85,807.如图,线段CD 是O 的直径,CD AB ⊥于点E ,若8AB =,3OE =,则CE 的长是( )A .8B .7C .6D .58.《九章算术》中曾记载:“今有牛五羊二,直金十两;牛二羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?若设每头牛值金x 两,每只羊值金y 两,则可列方程组为( )A .5210258x y x y += +=B .2510528x y x y += +=C .51058x y x y += +=D .21028x y x y += +=9.二次函数2y =的图象如图所示,点O 为坐标原点,点A 在y 轴的正半轴上,点B ,C 在函数图象上,四边形OBAC 为菱形,且120ABO ∠=°,则点C 的坐标为( )A .14 −B .14 −C . −D .(− 10.如图,四边形ABCD 是一张矩形纸片.折叠该矩形纸片,使AB 边落在AD 边上,点B 的对应点为点F ,折痕为AE ,展平后连接EF ;继续折叠该纸片,使FD 落在FE 上,点D 的对应点为点H ,折痕为FG ,展平后连接HG .若矩形HECG ∽矩形ABCD ,1AD =,则CD 的长为( ).A .0.5B 1−C D二、填空题(本大题共有6小题,每小题4分,共24分)11.因式分解: 34t t −=12.实现中国梦,必须弘扬中国精神.在如图所示除正面图案不同外,其余无差别的四张不透明卡片上分别写有“红船精神”、“长征精神”、“延安精神”、“特区精神”,将卡片置于暗箱摇匀后随机抽取一张,则所抽取卡片为“特区精神”的概率为 .13x 的值可以是 .(写出一个即可) 14.如图,《掷铁饼者》是希腊雕刻家米隆于约公元前450年雕刻的青铜雕塑,掷铁饼者张开的双臂与肩宽可以近似看像一张拉满弦的弓,若弧长为2π3米,“弓”所在圆的半径1.2米,则“弓”所对的圆心角θ的度数为 .15.如图,点A 为反比例函数(0,0)k y k x x=<<的图象上一点,AB x ⊥轴于点B ,点C 是y 轴正半轴上一点,连接BC ,AD BC ∥交y 轴于点D ,若0.5ABCD S =四边形,则k 的值为 .16.如图,正方形ABCD 的边长为2,以AB 边上的动点O 为圆心,OB 为半径作圆,将AOD △沿OD 翻折至A OD ′ ,若O 过A OD ′ 一边上的中点,则O 的半径为 .三、解答题(本大题共有8小题,共66分)(共66分)17.(本题6分)计算或化简:(1)()201253π− +−−+−; (2)()()()2m n n m m n +−−−.18.(本题6分)如图,在平面直角坐标系中,ABC 的顶点坐标分别为()2,4A ,()3,1B ,()5,3C .(1)作ABC 关于y 轴对称的111A B C △;(2)将ABC 绕原点O 顺时针旋转90°,得到222A B C △,作出222A B C △并求点C 旋转到点2C 所经过的路径长.19.(本题6分)2023年全国教育工作会议提出要把开展读书活动作为一件大事来抓.引导学生爱该书.读好书,善读书,贵阳市某校为了推进这项工作,对全校学生一周内平均读书时间进行抽样调查.将调查结果的数据分成A 、B 、C 、D 、E 五个等级并绘制成表格和扇形统计图如下.等级 周平均读书时间t (单位:小时) 人数A01t ≤< 4 B12t ≤< a C23t ≤< 20 D34t ≤< 15 E 4t ≥5 每个等级人数扇形统计图(1)求统计图表中=a ______,m =______.(2)已知该校共有2800名学生,试估计该校每周读书时间至少3小时的人数为______.(3)请写出一条你对读书的建议.20.(本题8分)我国是世界上最早发明历法的国家之一,《周礼》中记载:垒土为圭,立木为表,测日影,正地中,定四时,如图1,圭是地面上一根水平标尺,指向正北,表是一根垂直于地面的杆,正午,表的日影(即表影)落在圭上,根据表影的长度可以测定节气.在一次数学活动课上,要制作一个圭表模型,如图2,地面上放置一根长2米的杆AB ,向正北方向画一条射线BC ,在BC 上取点D ,测得 1.5m BD =, 2.5m AD =.(1)判断:这个模型中AB 与BC 是否垂直.答:______(填“是”或“否”);你的理由是:______.(2)利用这个圭表模型,测定某市冬至正午阳光与日影夹角30°,夏至正午阳光与日影夹角为60°,请求出这个模型中该市冬至与夏至的日影的长度差(结果保留根号).21.(本题8分)如图,在矩形ABCD 中,沿EF 将矩形折叠,使A 、C 重合,AC 与EF 交于点H .(1)求证:AE =AF ;(2)若AB =4,BC =8,求△ABE 的面积.22.(本题10分)我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆车都要装运,每辆汽车只能装运同一种脐橙.且必须装满,根据下表组织的信息,解答以下问题.脐橙品种A B C 每辆汽车运载量(吨) 6 5 4每吨脐橙获利(元) 1200 1600 1000(1)设转运A 种脐橙的车辆数为x ,转运B 种脐橙的车辆数为y ,求y 与x 的函数表达式;(2)如果转运每种脐橙的车辆数都不少于4,那么车辆的安排方案有几种?(3)若要使此次销售获利最大,应采用哪种安排方案?并求出此时最大利润的值.23.(本题10分)定义:平面直角坐标系xOy 中,当点N 在图形M 的内部,或在图形M 上,且点N 的横坐标和纵坐标相等时,则称点N 为图形M 的“梦之点”.(1)如图①,矩形ABCD 的顶点坐标分别是(1,2)A −,(1,1)B −−,(3,1)C −,(3,2)D ,在点1(2,2)P −−,2(0,0)P ,3(1,1)P ,4(2,2)P 中,是矩形ABCD “梦之点”的是________;(2)如图②,已知A 、B 是抛物线21922y x x =−++上的“梦之点”,点C 是抛物线的顶点: ①求出AC ,AB ,BC 三条线段的长度;②判断ABC 的形状,并说明理由.24.(本题12分)如图,ABC 内接于圆O ,AD 是ABC 的高线,9AD =,12CD =,tan 3ABD ∠=,连接OC .(1)求证:ABC 是等腰三角形;(2)求证:BCO BAD ∠=∠;(3)若点E 是OC 上一动点,EF AB ∥交BC 于点F .①若OEF 与ABD △相似,求EF 的长;②当OEF 的面积与CEF △的面积差最大时,直接写出此时CF 的长.2024年浙江中考最后一卷数学解析及参考答案一、单选题1.D【分析】此题考查了实数的大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小,据此判断.【详解】∵510−<−<<故选:D .2.D【分析】根据各个选项中的式子可以计算出正确的结果,本题得以解决.【详解】解:∵3a ﹣2a =a ,故选项A 错误;∵2a 2+4a 2=6a 2,故选项B 错误;∵(x 3)2=x 6,故选项C 错误;∵x 8÷x 2=x 6,故选项D 正确;故选D .【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.3.B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:80.16亿98.01610×,故选:B .4.B【分析】本题考查立体几何的三视图.根据题意,逐项判断即可.【详解】解:A.主视图为长方形,此项不符合题意;B.主视图为三角形,此项符合题意;C.主视图为圆,此项不符合题意;D.主视图为长方形,此项不符合题意.故选:B .5.C【分析】先解不等式,求出解集,然后在数轴上表示出来.【详解】解:不等式x ﹣2≤0,得:2x ≤ ,把不等式的解集在数轴上表示出来为:.故选:C【点睛】本题主要考查了解不等式,并在数轴上表示解集,解题的关键是熟练掌握解不等式的步骤,不等式的解集在数轴表示时空心圈不包含该点,实心圈包含该点.6.D【分析】本题为统计题,考查众数与中位数的意义,根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】有45辆自动驾驶汽车参与了这次测试,45个分数,按大小顺序排列最中间的数据是第23个数:85,故得分的中位数是85(分),得80分的人数最多,有16人,故众数为80,故选D .7.A【分析】本题考查了垂径定理和勾股定理的应用,根据垂径定理求出AE 的长是解此题的关键.连接OA ,根据垂径定理求出AE ,再根据勾股定理求出OA ,最后根据线段的和差求解即可.【详解】解:如图,连接OA ,线段CD 是O 的直径,CD AB ⊥于点E ,∴12AE AB =,8AB =, ∴4AE =,3OE =,∴5OA ,∴5OC OA ==,∴8CE OC OE =+=,故选:A .8.A【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是设每头牛、每只羊分别值金x 两、y 两,根据“5头牛,2只羊,值金10两;2头牛,5只羊,值金8两”列出方程组即可得答案.【详解】解:设每头牛值金x 两,每只羊值金y 两,则可列方程组为5210258x y x y += +=, 故选A .9.B【分析】本题考查了菱形的性质、二次函数图象上点的坐标特征,根据二次函数图象上点的坐标性质得出BD 的长是解题关键.连接BC 交OA 于D ,如图,根据菱形的性质得BC OA ⊥,60OBD ∠=°,利用含30度的直角三角形三边的关系得OD =,设BD t =,则OD =,()B t ,利用二次函数图象上点的坐标特征得2=,得出14BD =,OD =C 点坐标. 【详解】解:连接BC 交OA 于D ,如图,四边形OBAC 为菱形,BC OA ,120ABO ∠=° ,60OBD ∴∠=°,OD ∴,设BD t =,则OD =,()B t ∴,把()B t 代入2y =,得2=,解得10t =(舍去), 214t =,14BD ∴=,OD =故C 点坐标为:14 − .故答案为:B .10.C【分析】本题考查的是矩形的性质、翻折的性质及相似多边形性质,熟练应用矩形和相似多边形性质是解题关键,设CD x =,则()1,1EC x CG x x =-=--,根据两矩形相似求出即可.【详解】解:在矩形ABCD 中,设CD x =,则ABCD x ==,1AD BC ==, 由翻折得,90AB AF x AFE B BAF ==∠=∠=∠=︒,∴四边形ABEF 是正方形,同理,四边形DFHG 是正方形,,1BE AB x DF DG x ∴====-,()1,121CE x CG x x x ∴=-=--=-,矩形HECG ∽矩形ABCD ,EC CG BC CD∴=,即1211x x x --=,解得:x =,经检验,xCD ∴ 故选:C .二、填空题11.()()22t t t +−【分析】本题考查了因式分解,先提取公因式,再利用公式法即可求解,熟练掌握提公因式法及公式法分解因式是解题的关键.【详解】解:()()()324422t t t t t t t −=−=+−,故答案为:()()22t t t +−.12.14/0.25 【分析】本题考查了概率公式的应用,用到的知识点为:概率所求情况数与总情况数之比.全部情况的总数是四种,符合条件的情况的是一种,二者的比值就是其发生的概率.【详解】由于概率为所求情况数与总情况数之比,而抽取卡片为“特区精神”的情况数只有一种,从暗箱随机抽取一张的情况数为四种,故抽取卡片为“特区精神”的概率为14, 故答案为14. 13.0(答案不唯一)【分析】本题主要考查了二次根式有意义的条件,分式有意义的条件,根据二次根式有意义的条件的条件是被开方数大于等于0,分式有意义的条件是分母不为0进行求解即可.∴10x −>,解得1x <.∴x 的值可以是0,故答案为:0(答案不唯一).14.100°/100度【分析】本题考查的是已知弧长与半径求解弧所对的圆心角,熟记弧长公式是解本题的关键.直接利用弧长公式计算即可.【详解】解: 设“弓”所在的圆的弧长圆心角度数是n °, 则1.2π2π1803n =, 解得:100n =,故答案为:100°.15.0.5−【分析】本题考查了反比例函数k 值的几何意义,熟练掌握k 值的几何意义是解答本题的关键.根据反比例函数k 值的几何意义进行解答即可.【详解】AB x ⊥ 轴于点B ,CD x ⊥轴,∴AB CD ,又 AD BC ,∴四边形ABCD 是平行四边形,过点作AM y ⊥轴,则四边形ABOM 是矩形, ∴0.5,ABOMABCD S S k ===矩形平行四边形∵反比例函数图象在第二象限,0.5k ∴=−,故答案为:0.5−.16.23、54【分析】本题考查了折叠的性质,正方形的性质,勾股定理,圆的定义;分三种情况讨论,设O 的半径为r ,分别根据勾股定理,即可求解.【详解】设O 的半径为r ,当O 经过A O ′的中点,即经过AO 的中点, ∴1233r AB =,当O 经过OD 的中点,则12r OB OD ==, ∴2OD r =,2AO AB OB r =−=−, 在Rt AOD 中,222AD AO OD +=∴()()222222r r +−=解得:r = 当O 经过A D ′的中点,即经过AD 的中点,设AD 的中点为M ,∴2,1,AO r AM OM r =−== ∴()22221r r −+= 解得:54r =综上所述,半径为23、54故答案为:23、54 三、解答题17.(1)5(2)222m mn −+【分析】此题考查了实数的运算以及整式的混合运算,熟练掌握运算法则是解本题的关键.(1)原式利用零指数幂、绝对值的代数意义以及负整数指数幂法则计算即可求出值;(2)根据平方差公式和完全平方公式化简,再合并同类项即可.【详解】(1)解:原式159=-+5=;(2)原式()22222n m m mn n =−−−+22222n m m mn n =−−+−222m mn =−+18.(1)图见解析(2)【分析】本题考查作图-轴对称变换,旋转变换,以及求弧长,熟练掌握相关作图方法是解题关键; (1)根据点关于y 轴对称的性质分别找到对应的点1A ,1B ,1C ,然后进一步连接即可;(2)利用旋转变换的性质分别作出A ,B ,C 的对应点2A ,2B ,2C ,再顺次连接即可,利用弧长公式求得点C 经过的路径长.【详解】(1)解:如图,111A B C △即为所求;(2)如图,222A B C △即为所求,由题意可知,OC∴点C 旋转到点2C =. 19.(1)6,40(2)1120(3)全校学生一周内平均读书时间23t ≤<(答案不唯一)【分析】本题考查了扇形统计图,样本估计总体等知识.(1)由等级得到学生总数,即可得出a ,再求C 等级的占比即可;(2)用样本估计总体即可得出结果;(3)根据表格可题建议合理即可.【详解】(1)解:由等级D 得到学生总数1530%50÷=人, ∴504201556a −−−−,()%2050100%40%m =÷×=,40m =,故答案为:6,40.(2)1552800112050+×=人, 故该校2800名学生每周读书时间至少3小时的人数为1120人.故答案为:1120.(3)根据表格可建议:全校学生一周内平均读书时间23t ≤<.20.(1)是;222AB BD AD +=,由勾股定理的逆定理可知AB BC ⊥.(2).【分析】本题考查的勾股定理的逆定理的应用,解直角三角形的应用,理解题意是解本题的关键. (1)利用勾股定理的逆定理判断即可;(2)先画图,利用三角函数再计算BE=BF =,从而可得答案. 【详解】(1)解:是, 理由:由测量结果可知得 1.5m BD =, 2.5m AD =,而2m AB =,∴2226.25AB BD AD +==,∴90ABD ,∴AB BC ⊥.故答案是:是;222AB BD AD +=,由勾股定理的逆定理可知AB BC ⊥.(2)如图,由题意可得:90ABC ∠=°,2AB =,30AFB ∠=°,60AEB ∠=°,∴tan tan 60AB AEB BE∠=°=,∴BE =, 同理:tan tan 30AB AFBBF ∠=°=,∴BF =,∴FE BF BE =−==. 21.(1)证明见解析(2)6【分析】(1)依据平行线的性质以及矩形的性质,即可得到∠AFE =∠AEF ,进而得出AE =AF .(2)设BE =x ,则AE =EC =8-x ,在Rt △ABE 中,根据勾股定理可得方程,即可得到BE 的长,再根据三角形面积计算公式求解.【详解】(1)证明:∵四边形ABCD 矩形,∴AD ∥BC ,∴∠AFE =∠FEC ,由折叠的性质得:∠AEF =∠FEC ,∴∠AFE =∠AEF ,∴AE =AF .(2)解:根据折叠的性质可得AE =EC ,设BE =x ,则AE =EC =8-x ,在Rt △ABE 中,根据勾股定理可得:222AB BE AE +=,即()22248x x +=−,解得:x =3,∴BE =3,∴ABE S = 12AB •BE =12×4×3=6. 【点睛】本题主要考查了折叠问题以及矩形的性质的运用,解题的方法是设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.22.(1)220y x =−+ (2)5种(3)当转运A 种脐橙的车4辆,转运B 种脐橙的车12辆,转运C 种脐橙的车4辆时,利润最大为140800元【分析】(1)根据题意列式:()20651040x x y y −−=++,整理后即可得到220y x =−+; (2)根据装运每种水果的车辆数都不少于4辆,4x ≥,2204x −+≥,解不等式组即可;(3)设利润为W 元,则()480016000048W x x =−+≤≤,根据一次函数的增减性求解即可. 【详解】(1)根据题意,装运A 种水果的车辆数为x ,装运B 种水果的车辆数为y ,∴装运C 种水果的车辆数为()20x y −−,∴()20651040x x y y −−=++, 整理得220y x =−+. (2)由(1)知,装运A ,B ,C 三种水果的车辆数分别为x ,220x −+,x ,由题意得2204x −+≥,解得8x ≤,∵4x ≥,∴48x ≤≤.∵x 为整数,∴x 的值为4,5,6,7,8,∴安排方案共有5种.(3)设利润为W 元,∴()612005220160041000W x x x =×+−+×+× 4800160000x =−+,因为48000−<,且x 的值为4,5,6,7,8,∴W 的值随x 的增大而减小,∴当4x =时,销售利润最大.当装运A 种水果4车,B 种水果12车,C 种水果4车,销售获利最大.最大利润48004160000140800W =−×+=(元).【点睛】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.23.(1)2(0,0)P ,3(1,1)P ,4(2,2)P(2)①AC =BC =AB =ABC 是直角三角形,理由见解析【分析】本题考查了二次函数的图象与性质、勾股定理以及勾股定理逆定理:(1)根据“梦之点”的定义判断这几个点是否在矩形的内部或者边上即可得到答案;(2)①根据“梦之点”的定义求出A ,B 的坐标,再求出顶点的坐标,计算出AC ,AB ,BC 的长; ②根据勾股定理逆定理,即可求解.【详解】(1)解:∵矩形ABCD 的顶点坐标分别是(1,2)A −,(1,1)B −−,(3,1)C −,(3,2)D ,∴矩形ABCD 的“梦之点”(),x y 满足2,131x y −−≤≤≤≤,∴点2(0,0)P ,3(1,1)P ,4(2,2)P 是矩形ABCD 的“梦之点”,1(2,2)P −−不是矩形的“梦之点”.故答案为:2(0,0)P ,3(1,1)P ,4(2,2)P(2)解:①A 、B 是抛物线21922y x x =−++上的“梦之点”, ∴21922x x x =−++, 解得:123,3x x ==−,当3x =时,3y =,当3x =−时,=3y −,∴()()3,3,3,3A B −−, ∵()2219115222y x x x =−++=−−+, ∴顶点坐标为()1,5C ,∴AC =BC =AB =; ②ABC 是直角三角形,理由如下:∵AC =BC =AB =∴((2222280AB AC BC +=+==,∴ABC 是直角三角形.24.(1)证明见解析(2)证明见解析(3)①EF =253CF =【分析】本题考查了圆的性质,等腰三角形的判定与性质,相似三角形的判定与性质,锐角三角函数等知识,掌握相关知识是解题的关键.(1)利用勾股和锐角三角函数求得AC BC =即可证明;(2)连接,OA OB ,延长CO 交AD 于点M ,交AB 于点N ,先证明CO 是ACB ∠的角平分线,再证明ANM CDM ∽即可得出结论;(3)①过O 点作OH BC ⊥交BC 于点H ,点E 是OC 上一动点,EF AB ∥交BC 于点F ,先证明CHO CFB ∽,设EF x =3x =即可求解,②要使OEF 的面积与CEF △的面积差最大,必须使EF 和()CE OE −最大,当E 点与O 点重合时,EF 最大,CE OE OC −=最大,先求得EF =即可求出CF . 【详解】(1)证明:∵AD 是ABC 的高线,∴90ADC ADB ∠=∠=°, ∵9AD =,12CD =,∴15AC ===,∵tan 3ABD ∠=, ∴tan 3AD ABD BD∠==, ∴3BD =,∴31215BC BD CD =+=+=, ∴AC BC =,∴ABC 是等腰三角形.(2)证明:连接,OA OB ,延长CO 交AD 于点M ,交AB 于点N ,如图:∵AC BC =,∴CAB CBA ∠=∠, ∵OA OB =,∴OAB OBA ∠=∠, ∴CAO CBO ∠=∠, ∵OA OC =,∴CAO ACO ∠=∠, ∵OB OC =,∴BCO CBO ∠=∠, ∴ACO BCO ∠=∠, ∴CO 是ACB ∠的角平分线, 又∵ AC BC =,∴CN AB ⊥,∴90ANC BNC ∠=∠=°, ∴90MDC ANE ∠=∠=°, 又∵AMN CMD ∠=∠, ∴ANM CDM ∽,∴DCM NAM ∠=∠, ∴BCO BAD ∠=∠. (3)解:①过O 点作OH BC ⊥交BC 于点H ,点E 是OC 上一动点,EF AB ∥交BC 于点F ,如图:∵,,15OB OC OH BC BC =⊥=, ∴17.52CH BC ==,90CHO CFB ∠=∠=°, ∴CHO CFB ∽,∴COH CBF ∠=∠, ∵tan 3ABD ∠=, ∴tan tan 3CH COH CBF OH∠=∠==, ∴ 2.5OH =,∴OC =, ∵EF AB ∥,90BNC ∠=°, ∴CEF CNB ∽,∴90CEF CNB ∠=∠=°, 设EF x =,∴tan tan 3CE CE CFE CBN EF x∠=∠===, ∴3CE x =,∵OEF ADB ∽,∴OE EF AD BD=, ∵OEOC CE =−, 3x =, 解得:x =∴EF ②∵90CEF ∠=°,即EF OC ⊥, ∴12CEF S CE EF =⋅ ,12OEF S OE EF =⋅ , ∴()111222CEF OEF S S CE EF OE EF EF CE OE −=⋅−⋅=⋅− , 由题知,要使OEF 的面积与CEF △的面积差最大,必须使EF 和()CE OE −最大,∴当E 点与O 点重合时,EF 最大,CE OE OC −=最大,如图:∵EF AB ∥,∴CEF CNB ∽,∴CFE CBN ∠=∠,CE OC ==,∴tan tan 3CE CFE CBN EF ∠=∠==,∴EF∴253CF =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

欢迎来主页下载---精品文档12.如图,点A 、B 、C 、D 在一次函数y 二-2x 的图象上,它们的横坐标依次为 -1、1、2,分别过这 些点作x 轴与y 轴的垂线,则图中阴影部分的面积这和是冷一2)2第3个数:丄一U+Ti卄(-1厂「1" [十1厂4 12丿 <3丿< 4丿 <5丿 < 6丿那么,在第A .第10个数B .第11个数C .第12个数10、如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中, 事中,从乌鸦看到瓶的那刻起开始计时并设时间为18、若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边 形的一个最小内角是 __________________ 度。

10. 如图,等腰△ ABC 中,底边BC 二a , - A =36 , - ABC 的平分线交 AC 于D , - BCD 的平分线交 BD18.如图,O A 、O B B 同时沿直线I 以每秒 时,O A 运动的时间为 的圆心A 、B 在直线I 2cm 的速度相向移动, 秒&下面是按一定规律排列的一列数: 1 f —1 )—- 1 - 2 . 21 f -1)--1 +——I 3 12丿 第i 个数:第2个数: 1曰3(第18题)圆相切『1+(-1厂 III俨(-1严〕1 2丿<3丿 < 4丿< 2n 丿第n 个数:水位上升后,乌鸦喝到了水。

在这则乌鸦喝水的故 x ,瓶中水位的高度为 y ,下列图象中最符合故事情景的是:B上,两圆半径都为 1cm ,开始时圆心距 AB=4cm ,现O A 、O 则当两 10个数、第11个数、第12个数、第13个数中,最大的数是() D .第13个数 A 10.D 12、B 18、8欢迎来主页下载---精品文档于E ,设k 二善1,则DE = ( ▲16.如图,在直角坐标系中,已知点 A (七,0) , B (0,4),对△ OAB 连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为▲.12•已知图中的每个小方格都是边长为 一条抛物线,问所画的抛物线最多能经过 A . 6B . 7C . 818、30 10. A 16 . (36,0)12、C18.如图,已知Rt A ABC , D 1是斜边AB 的中点, 过D 1作D 1E 1丄AC 于E 1,连结BE 1交CD 1于D ?; 过D ?作D 2E 2丄AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3丄AC 于E 3 ,…,如此继续,可以依次得到点D 4, D 5 ,…,D n ,分别记△ BD 1E 1,A BD Q E Q A BD 3E 3,…,△ BD n E n 的面积为 S , S ?, &,…S ..则&= _______________ S ^ABC (用含 n的代数式表示)1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画 81个格点中的多少个?( )BCXgill ■—1012>• ■IM—17 '7-277nt*A.只有一个交点B-荷阳个愛点‘宜它幻廿别往y输阳海C炳闊个交点.且它D.无交点10、如图4,矩形纸片ABCD中,AB=4 , AD=3,折叠纸片使AD边与重合,折痕为DG,则AG的长为( )对角线BD10.若不等式组f x亠a》0, 一{ 有解,则a的取值范围是()1 -2x x -2(A) a >—1.18.如图,正方形ABCD边长为1, 程为2009时,点P所在位置为_ 数n的式子表示).(C)a < 1. (D)a v 1.动点P从A点出发,沿正方形的边按逆时针方向运动,当它的运动路—;当点P所在位置为D点时,点P的运动路程为 ___________ (用含自然118. 2 10、C10、c10、A18 .点B; 4n + 3(录入者注:填4n —1(n 为正整数)10、(卄1)10.如图,已知△ ABC中,/ ABC=90 °AB=BC,三角形的顶点在相互平行的三条直线l i, I2, b上,且l i, 12之间的距离为2 , 12, 13之间的距离为3 ,则AC的长是 A . 2、17 B. 2.5 C. 4..2 D. 71,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为丄的正三角2形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的1 )后,得图③,④,…,记第n(n > 3)块纸板的周长为P n,则P n-P n-1= ▲16.如图,图①是一块边长为欢迎来主页下载---精品文档10,帳据下吏中的二次甬也的自变金K与函败> 的对应值’可揖亦二次歯敵的啊第与盂柚第18题图1i欢迎来主页下载---精品文档C 第18题图12 .在平面直角坐标系中,对于平面内任一点 a, b ,若规定以下三种变换:① f a , b = —a, b •如,f 〔3 二 一13 ; ② g a, b = b, a .如,g 13 = 3,1 ; ③ h a , b = -a, -b .如,h 1, - -1, -3 .按照以上变换有:f g2,-3二f -3,2 = 3,2,那么f h5,3等于()A. (-5,-3)B . (5,3) C. (5,-3)D . ( -5,3)416. i -10、B 16、3 n 18. 12; 12、B212•如图,△ ABC 和的△ DEF 是等腰直角三角形,・C-F=90: , AB = 2, DE = 4 •点B 与点D 重合,点A, (D ), E 在同一条直线上,将厶ABC 沿D > E 方向平移,至点A 与点E 重合时停止.设 点B , D 之间的距离为x , △ ABC 与厶DEF 重叠部分的面积为 y ,则准确反映y 与x 之间对应关系的图 象是()10、如图5, AB 是O O 的直径,且 AB=10,弦MN 的长为8,若弦 端在圆上滑动时,始终与 AB 相交,记点A 、B 到MN 的距离分别为 ①,h 2,则h 2|等于( )6 8 MN 的两P i (x i , 16、如图7所示, (x >0)的图象上, l A n都在X 轴上,y i )、P 2 (X 2, y 2), ..... P n ( X n , y n )在函△ OP 1A 1 , △ P 2A 1A 2, △ P 3A 2A 3 △ P n A都是等腰直角三角形,斜边 OA i , 9y=—x 贝V y i +y 2+ …y n =A 1A 2An-l A n ,18.如图,已知点A 、B 在双曲线y=— ( x > 0)上,AC 丄x 轴于点xBD 丄y 轴于点D , AC 与BD 交于点P , P 是AC 的中点,若△ ABD 为3,则k =MABNn 图7A1y3的 P欢迎来主页下载---精品文档交L 。

2于点 360 ,则L Q 与 18.如图,L O 1和L O 2的半径为1和3,连接O 1O 2 , O 1O 2 =8,若将L 。

1绕点P 按顺时针方向旋转 相切 次. 12 . 在直角梯形 ABC 中,A D B , NABC=90° AB=BC ,E 为 AB 边上一点,NBCE=15°,且 AE = AD .连接DE 交对角线AC 于H ,连接BH .下列结论: ①△ACD ACE :②ACDE 为等边三角形; ③里=2 - BE ' 其中结论正确的是( A.只有①② C .只有③④16•如图,直线 S A EDC AH ④ S A EHC CH ) B .只有①②④ D .①②③④ Cy = 4x 与双曲线y 3 9 向右平移-个单位后,与双曲线y 2 若——=2,贝y k 二 _______ .BC 古希腊著名的毕达哥拉斯学派把把1、4、9、16…这样的数称为“正方形数 12.18.18. k (x 0)交于点A .将直 x k (x 0)交于点B ,与x 轴 x1、3、6、10 …这样的数称为“三x交于点C ,角形数”,而从图7中可以发现,任何一个大于 的“正方形数”都可以看作两个相邻 “三角形数”之和.下列等式中,符 合这一规律的是( )A . 13 = 3+10C . 36 = 15+213 12、B 16. 12 12、C4=1+39=3+6图 16=6+10725 = 9+16 49 = 18+31 如图9,两根铁棒直立于桶底水平的木桶中,在桶中 加入水后,一根露出水面的长度是它的 1,另一根露 3 出水面的长度是它的丄.两根铁棒长度之和为 55 cm , 5此时木桶中水的深度是 __________ c m . *10 .如图1,在直角梯形ABCD 中,动点P 从点B 出发, 动至点D 停止.设点P 运动的路程为x , △ABP 的面积 精品文沿BC , CD 运为y ,如果y 关欢迎来主页下载---精品文档于x 的函数图象如图2所示,则 △BCD 的面积是( )A . 3B . 4C . 5D . 6*16 .观察下列等式:1.42 -12 =3 5 ; 2 22.5 -2=3 7 ; 2 23.6 -3 =3 9 2 24.7 -4 =3 11 ;则第n ( n 是正整数)个等式为 __________ .17•如图7,在Rt △ ABC 中,/ C =90° AC =4, BC =2,分别以AC 、BC 为直径画半圆,则图中阴 影部分的面积为 ______________ •(结果保留二)*10 . A12.矩形ABCD 的边AB=8, AD=6,现将矩形ABCD 放在直线I 上且沿着I 向右作无滑动地翻滚,当它 翻滚至类似开始的位置A 1B 1C 1D 1时(如图所示), 则顶点A 所经过的路线长是 ______________ .5.如图所示的矩形纸片,先沿虚线按箭头方向向右对折, 接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,5 —:-426.小高从家门口骑车去单位上班,先走平路到达 走上坡路到达点 B ,最后走下坡路到达工作单 的时间与路程的关系如图所示.下班后,如果 路返回,且走平路、上坡路、下坡路的速度分 和去上班时一致, 是( )A . 12分钟C . 25分钟2 218. 20 *16. (n 3) -n =3 (2n 3)17. 那么他从单位到家门口需要点A ,再 位,所用 他沿原 别保持 的时间B . 15分钟 D . 27分钟O U"S7 --------- 7O 00 OC賂程阡米)单位时间(井BD C12.对于每个非零自然数 )22n 十1丄1 . ,,,n ,抛物线y =x x 与x 轴交于A n 、B n 两点,以A n B n 表示这两n (n +1) n (n 十1)欢迎来主页下载---精品文档然后将纸片打开是下列图中的哪一个(欢迎来主页下载---精品文档点间的距离,贝y AB i・A2B2 •山•A2009B2009的值是2009 2008 2010 2009A. B. C. D. -2008 2009 2009 2010&定义:如果一元二次方程ax2bx • c = 0(a = 0)满足a b ^0,那么我们称这个方程为“凤凰”方程•已知ax2• bx • c = 0(a =0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是A. a =cB. a=bC. b=cD. a = b = cI v = kx b16 .孔明同学在解方程组y 的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方[V = -2xl x - -1程组的解为2 ,又已知直线v=kx+b过点(3, 1),则b的正确值应该是l V=26、B 12.12 n 5 . C 12、D 8、A 16. -1118.若正方形ABCD的边长为4, E为BC边上一点,BE = 3, M为线段AE上一点,射线的一边于点F,且BF = AE,贝U BM的长为______________________ .15.如图,在半径为,5,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、BM交正方形E在OB上,占八F在AB上,则阴影部分的面积为(结果■:)10.如图6,在一ABCD 中,AB=6 , AD=9,/ BAD 的平分点E,交DC的延长线于点F, BG丄AE,垂足为G, 则厶CEF的周长为((A) 8(B) 9.5(C) 10(D) 11.5线交BC于BG= 4 2 ,10.的个数为F列图案是晋商大院窗格的一部分,其中“O”代表窗纸上所贴的剪纸,则第n个图中所贴剪纸“O”(2)(第10题)18.如图,在Rt A ABC 中,ACB =90°BC =3, AC =4, AB 的垂直平分线DE交BC的延长线于点E ,贝U CE的长为()3 7 25A. B. C.2 6 6D. 2(1)AC(第18 题)10.在二行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有 点和4点),在每一种翻动方式中,骰子不能后退.开始时骰子如图( 最后翻动到如图(2)所示的位置,此时骰子朝上的点数不可能 是下列数中的(1点和6 1)那样摆点,2点和5点,3 朝上的点数是 2;)A . 5 精品文档图(2)图(1)第11題图十20.奁距孫ABCE 中.肛诵.AF 平分EDAB ・过(:瘟作饰丄于E.逛妖AF 、B :交于 点乩下列中*①疔FHt ②®CA=CH:④DHJED ・正硝的处芒JL ②③ 良③® C.①©④ D.②®®』20.如图, △ ABC 中,CD _AB 于D ,—定能确定 △ ABC 为直角三角形的条件的个数是(CD DB① 1 = A,②,③.B 2=90°,④ BC : AC : AB =3: 4: 5AD CD8.如图,C 为O O 直径AB 上一动点,过点 C 的直线交O O 于D 、E 两点, 且/ ACD=45 ° , DF 丄AB 精品文档10、D20•如图,在等腰梯形 ABCD 中,AD // BC , BC =4AD =4、、2 ,_B =45°.直角三角板含 45 °角的顶点E 在边BC 上移动,一 终经过点 A ,斜边与CD 交于点F .若△ ABE 为等腰三角形, 长等于 .15 — --10、A 10. 3n 218、B 20. 5 , 2, 4、2—3 .8 2 211. 如图,边长为 1的菱形ABCD 中,/ DAB=60,连结对角线 AC,以AC 为边作第二个菱形 ACCD ,使/ DAC=6d ;连结AG ,再以AG 为边作第三个菱形 ACC 2D2,使/ DAG=60°; 按此规律所作的第 n 个菱形的边长为⑤ AC-BD 二 AC ・CD A . 1 B .2 C . 3 8、观察数表11 -11 -2 11 -3 3 -11 -4 6 -41 1 -5 10 A 5 -120、 D 20. 则字母 A 所表示的数是 ________________C 8. -108、ACDB直角边始则CF 的1 -6 15 -20 15 -6 1根据表中数的排列规律, 20题图欢迎来主页下载---精品文档于点F,EG丄AB于点G,当点C在AB上运动时,设AF= x , DE= y,下列中图象中,能表示y与x的函数关系式的图象大致是ABCD的边长为1,M、N分别是AD、BC边12•如图,正方形纸片片的一角沿过点B的直线折叠,使A落在MN上,落点记为A ',折点E,若M、N分别是AD、BC边的中点,贝U A ' N= ________ ;若M、AD、BC边的上距DC最近的n等分点(n _ 2,且n为整数),则A '(用含有12.如图,点垂直平分线交A. 2 7上的点,将纸痕交AD于N分别是N=A9n的式子表示)6A在双曲线y 上,且0A= 4,过A作ACL X轴,垂xOC T B,UA ABC的周长为()B . 5 C. 4、71 4D. 22%二x , y x 1, y x 5的图象如图所示,若无论3 5y中的最小值,贝U y的最大值为_________ 。

相关文档
最新文档