关于清华大学高等数学期末考试
清华大学本科生微积分B(1)期末考试往年试题及解答

的收敛域是 ∑∞ an (x −1)n
.
n=1
答案: [0, 2)
.若 ,则 6
∫
lim
x→+∞
x x
− +
a a
x
=
+∞ xe−xdx
a
a=
.
答案:
.7
lim
n→∞
n
1 +1
+
n
1 +
2
+
⋯
+
n
1 +
n
=
.
函数 ≤ ≤ 的以 为周期的 级数是 8.
f
(x)
=
1, −1,
0 x π, −π<x < 0
+
x)
从而 ∑∞ (−1)n n=0
n+2 n +1
xn
=
1
1 +
x
+
ln(1 + x
2,
x)
,
x ∈ (−1, 0) ∪ (0, 1), x = 0.
.证明 ,并计算定积分 . 13
∫ ∫ π 3 π
cos2 x x(π − 2x)
dx
=
π
3 π
sin2 x x(π − 2x)
dx
∫ I =
π
3 π
3 π
6
. = ln 2 π
14. 已知曲线段 :L y = ln x (1≤ x ≤ 3 ) ,有界区域 D 由 L 与 x 轴及直线 x = 3 围成.
(Ⅰ)求 D 绕 x 轴旋转一周所成的旋转体的体积;
第4页共5页
高等数学期末试题(含答案)

高等数学期末试题(含答案) 高等数学检测试题一。
选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。
3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。
4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。
5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。
二。
填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。
2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。
3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。
4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。
清华大学中学生标准学术能力诊断性测试2024届数学高一下期末学业水平测试试题含解析

清华大学中学生标准学术能力诊断性测试2024届数学高一下期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1( ) A .cos160︒ B .cos160±︒ C .cos160±︒D .cos160-︒2.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .103.已知函数sin y x =和cos y x =在区间I 上都是减函数,那么区间I 可以是( ) A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3ππ,2⎛⎫ ⎪⎝⎭D .3π,2π2⎛⎫⎪⎝⎭4.角α的终边经过点221⎛⎫- ⎪ ⎪⎝⎭,那么tan α的值为( )A .12B .C .3-D .5.得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将sin 2y x =的图象( ) A .向左移动6π B .向右移动6π C .向左移动3π D .向右移动3π 6.一个三棱锥的三视图如图所示,则该棱锥的全面积为( )A .1232+B .1262+C .932+D .962+7.若2cos75a =,4cos15b =,a 与b 的夹角为30,则a b ⋅的值是( ) A .12B .32C .3D .238.执行如图所示的程序框图,若输入3k =,则输出S =( )A .13B .15C .40D .469.三角形的三条边长是连续的三个自然数,且最大角是最小角的2倍,则该三角形的最大边长为( ) A .4B .5C .6D .710.函数cos tan y x x =⋅(302x π≤<且2x π≠)的图像是下列图像中的( )A .B .C .D .二、填空题:本大题共6小题,每小题5分,共30分。
2020-2021大学《高等数学》(下)期末课程考试试卷A7(含答案)

2020-2021《高等数学》(下)期末课程考试试卷A7适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一. 填空题:(共7小题,每小题2分,共14分)1. 设平面区域{}1|),(22≤+=y x y x D ,则dxdy D⎰⎰2 = 。
2.设z=22x xy y ++,则xz∂∂= ; y z ∂∂= .3.改变积分顺序 ⎰⎰22),(x dy y x f dx = .4.函数 z=2x 2+y 2在点P(1,1)处,沿梯度方向的方向导数为_________________5. 'y =2xy 的通解为6.设平面曲线L 为下半圆周y=-21x -,则曲线积分⎰+Lds y x )(22=__________7.曲线x=41t 4,y=31t 3,z=21t 2在相应点t=1处的切线方程为_______________二.单项选择. (共8小题,每小题2,共16分)1. 1123lim 0-+→→xy xy y x =( )A 、不存在B 、3C 、6D 、∞2.常数,则级数∑∞=⎥⎦⎤⎢⎣⎡-121)sin(n n n na ( )。
A 、绝对收敛 B 、条件收敛 C 、 发散 D 、收敛性与a 的取值有关 3.3z x y =,则dz =( ).(A)dx dy + (B)233x ydx x dy + (C) 3x dx ydy + (D) 23x ydx ydy + 4.知2)()(y x ydydx ay x +++为某一函数的全微分,则a=( ) (A) -1 (B) 0 (C) 2 (D) 15.∑为平面x+y+z=3被圆柱面122=+y x 所截的有限部分,则⎰⎰∑xdS=( ) A 、0 B 、32πC 、3D 、43 6.曲线积分⎰-+-Cdy x x dx y xy )4()22(2的值为( ),其中C 取圆周x 2+y 2=9的正向. A 、-18π B 、-2π C 、 -6π D 、-π7.二元函数f(x,y)在点(x 0,y 0)处两个偏导数),(00'y x f x ,),(00'y x f y 存在,是f(x,y)在该点可微的( )条件A 、充分B 、必要C 、充要D 、既非充分也非必要8. z=f(x,y)是由 333a xyz z =-所确定,则 =∂∂x z( )A.2z xy yz - B. xy z yz -2 C. 2z xy xz - D. xyz xy-2三.计算题(共8小题,每小题8分,共64分)1.设z=f(x-y,xy),f 具有二阶连续偏导数, 求xz∂∂ ,y x z ∂∂∂2。
2023-2024学年北京市清华大学附中高二(下)期末数学试卷(含答案)

2023-2024学年北京市清华大学附中高二(下)期末数学试卷一、单选题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设集合A={−1,0,1,2},B={x|x=4k+3,k∈Z},则集合A∩B=( )A. {−1}B. {1}C. {−1,1}D. ⌀2.已知复数z的共轭复数是1+i,则复数z2−i在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知向量a=(3,sinθ),b=(5,1),若a//b,则cos2θ=( )A. 725B. −725C. 2425D. −24254.已知双曲线C:x2a2−y216=1的左右焦点依次为F1,F2,且|F1F2|=10,若点P在双曲线的右支上,则|PF1|−|PF2|=( )A. −6B. 6C. 8D. 105.设(2−mx)5=a0+a1x+…+a5x5,若a0+a1+a2+a3+a4+a5=1,则a3=( )A. 80B. 40C. −40D. −806.“一尺之锤,日取其半,万世不竭”语出《庄子天下》,意思是一尺长的棍棒,每日截取它的一半,永远截不完(一尺约等于33.33厘米).若剩余的棍棒长度小于0.33厘米,则需要截取的最少次数为( )A. 5B. 6C. 7D. 87.已知直线l:y=k(x+1)与⊙C:(x−1)2+y2=4交于A、B两点,则“k=±1”是“△ABC的面积取得最大值”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件8.设max{a,b}表示a与b的最大值.若x,y都是正数,z=max{x+y,1x +4y},则z的最小值为( )A. 22B. 3C. 8D. 99.将f(x)=cos3x的图像向左平移φ(0<φ<π2)个单位后得到g(x)的图像,当|f(s)−g(t)|=2时,|s−t|min=π4,则φ=( )A. π12B. π6C. π4D. π310.边长为2的正方形ABCD 的中心为O ,将其沿对角线AC 折成直二面角.设E 为AD 的中点,F 为BC 的中点,将△EOF 绕直线EF 旋转一周得到一个旋转体,则该旋转体的内切球的表面积为( )A. π2B. 3π4C. πD. 3π2二、填空题:本题共5小题,每小题5分,共25分。
清华大学2011级第一学期期末试题-微积分B(1)

2011级微积分B(1)试题(A卷)
(2012年1月6日)
班级 姓名 学号
一、填空题(每题 分,共 题,计 分)
1. .
2。 .
3.数列 的最小项的项数为 .
4。设 ,则 .
5。设数列 单调减少,且 .又 无界,则幂级数
的收敛域是.
6.若 ,则 .
7. 。
8。函数 的以 为周期的Fourier级数是.
13.证明 ,并计算定积分 .
14。已知曲线段 ,有界区域 由 与 轴及直线 围成.
(Ⅰ)求 绕 轴旋转一周所成的旋转体的体积;
(Ⅱ)求曲线段 的长.
15.已知函数 在区间 上可导,且点 在曲线 上.
证明:
(Ⅰ)存在 ,使得 ;
(Ⅱ)存在两个不同的点 ,使得 .
16.已知函数 , , .
(Ⅰ)求 的单调区间;
(Ⅱ)证明 .
(Ⅲ)(附加题)证明级数 收敛.
9.当且仅当参数 满足时,数项级数 收敛.
10.叙述二、解答题(共6题,每题10分,计60分)
注:16(Ⅲ)是附加题,解答正确得5分.
11.已知函数 在 处具有一阶导数,且满足条件
.
求 在 处的一阶带皮亚诺型余项的泰勒公式.
12.求幂级数 的收敛域及和函数.
清华大学微积分期末试题

期末样题参考解答一、填空题(15空45分,答案直接填写在横线上)1.积分⎰⎰xdy xy f dx 03)(在极坐标下的累次积分为 。
答案:⎰⎰=θπθθθcos 30240)sin cos (rdr r f d2.设平面闭域}1|||| :),{(≤+=y x y x D ,则积分()=+⎰⎰Ddxdy yx x )sin(12。
答案:2==⎰⎰Ddxdy3.已知函数),(y x f 在{}10 ,10 :),(≤≤≤≤=y x y x D 上具有连续偏导数,且x x f cos 2)1,(=,⎰⎰=Ddxdy y x f 1),(,则⎰⎰=∂∂Ddxdy yy x f y),( 。
答案:11sin 2-4.计算积分值⎰⎰=-1)1ln(yydx xx dy。
答案:⎰⎰⎰-=--=-=101041)1ln()1()1ln(2dx x x dy x x dx x x5. 设}2:),,{(22≤≤+=Ωz y x z y x ,则=++⎰⎰⎰Ωdxdydz z y x )( 。
答案:ππθπ4222302020====⎰⎰⎰⎰⎰⎰⎰Ωdz z zrdr dz d zdxdydz z6. 设L 是xy 平面上以)1,1(),1,1(),1,1(--C B A 为顶点的三角形周边构成的曲线, 则第一型曲线积分=-⎰Lds y x )(22 。
答案:07. 设S 为上半球面222y x R z --=,则第一型曲面积分=++⎰⎰SdS z y x )( 。
答案:3222R dxdy zRzzdS R y x S π===⎰⎰⎰⎰≤+ 8. 设L 为xy 平面上的曲线10,2≤≤=x e y x ,起点为)1,0(,终点为),1(e , 则第二型曲线积分=+⎰Lydy xdx 。
答案:2222),1()1,0(22),1()1,0(22e y x y x d e e =+=⎪⎪⎭⎫ ⎝⎛+=⎰ 9.设32),,(z xy z y x f =,则在1===z y x 点=)],,(div[grad z y x f 。
2024届清华大学高一数学第二学期期末复习检测试题含解析

2024届清华大学高一数学第二学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为( ) A .1:3B .3:1C .2:3D .3:22.在边长为1的等边三角形ABC 中,D 是AB 的中点,E 为线段AC 上一动点,则EB ED ⋅的取值范围为( ) A .233,162⎡⎤⎢⎥⎣⎦B .233,644⎡⎤⎢⎥⎣⎦C .23,316⎡⎤⎢⎥⎣⎦D .233,642⎡⎤⎢⎥⎣⎦3.已知实数满足约束条件,则的最大值为( )A .1B .2C .3D .44.在ABC 中,角,,A B C 的对边分别为,,a b c ,且3a =,3A π=,sin 2sin C B =,则ABC 的周长为( ) A .33+B .36+C .333+D .336+5.数列{a n }中a 1=﹣2,a n +1=11na -,则a 2019的值为( ) A .﹣2 B .13 C .12D .326.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C = A .π12B .π6C .π4D .π37.若(0,),(,0)22ππαβ∈∈-,13cos ,cos +4342ππβα⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭ ,则cos 2βα⎛⎫-= ⎪⎝⎭ ( )A .33B .33-C .69-D .5398.已知*n N ∈,实数x 、y 满足关系式()2223n x y nx n +=++,若对于任意给定的*n N ∈,当x 在[)1,-+∞上变化时,x y +的最小值为n M ,则lim n n M →∞=( ) A .426-B .0C .424-D .19.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若ABC ∆的面积15cos ,2,1S B a c ===,则b =( )A .32B .2C .34D .5210.如图,各棱长均为a 的正三棱柱111ABC A B C -,M 、N 分别为线段1A B 、1B C 上的动点,且MN ∥平面11ACC A ,M ,N 中点S 轨迹长度为3,则正三棱柱111ABC A B C -的体积为( )A 3B 233C .3D .3二、填空题:本大题共6小题,每小题5分,共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于清华大学高等数学期
末考试
This manuscript was revised on November 28, 2020
清华大学
2010-2011学年第 一 学期期末考试试卷(A 卷)
考试科目: 高等数学A (上) 考试班级: 2010级工科各班
考试方式: 闭卷
命题教师:
一. 9分 )
1、若在)
,(b a 内,函数)(x f 的一阶导数0)(>'x f ,二阶导数0)(<''x f ,则函数)(x f 在此区间内单调 ,曲线是 的。
2、设⎪⎩⎪⎨⎧+=+=232322t
t y t t x 确定函数)(x y y =,求=22dx y d 。
3、=⎰
dx 1cos 12。
本大题共3小题,每小题3分,总计 9分)
1、设A x x ax x x =-+--→1
4lim 231,则必有 答( )
2、设211)(x
x f -=,则)(x f 的一个原函数为 答( )
3、设f 为连续函数,又,⎰=x
e x dt t
f x F 3)()(则=')0(F 答( )
2小题,每小题5分,总计10分 )
1、求极限x
e e x x x cos 12lim 0--+-→。
2、x y 2ln 1+=,求y '。
3小题,每小题8分,总计24分 )
1、讨论⎪⎩
⎪⎨⎧=≠=0,00arctan )(2
x x x x x f ,,在0=x 处的可导性。
2、设)(x f 在]1,0[上连续,且1)(0≤≤x f ,证明:至少存在一点]1,0[∈ξ,使得 ξξ=)(f 。
3、证明不等式:当4>x 时,22x x >。
3小题,每小题8分,总计24分 ) 1、求函数x e y x cos =的极值。
2、求不定积分⎰
x x x d cos sin 3。
3、计算积分⎰-+-+2222)cos 233(ln sin ππdx x x
x x 。
4小题,每小题6分,总计24分 )
1、求不定积分⎰
+)1(10x x dx 。
2、计算积分⎰+πθθ4
30 2cos 1d 。
3、求抛物线221x y =
被圆822=+y x 所截下部分的长度。
4、求微分方程''-'-=++y y y x e x 2331的一个特解。