2014天津市高考数学试卷含答案
2014年天津市高考数学试卷(理科)(附参考答案+详细解析Word打印版)

2014年天津市普通高等学校招生统一考试数学试卷(理科)一、选择题(共8小题,每小题5分)1.(5分)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.+i D.﹣+i2.(5分)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A.2 B.3 C.4 D.53.(5分)阅读如图的程序框图,运行相应的程序,输出S的值为()A.15 B.105 C.245 D.9454.(5分)函数f(x)=log(x2﹣4)的单调递增区间为()A.(0,+∞)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,﹣2)5.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=16.(5分)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC 于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④A F•BD=AB•BF.所有正确结论的序号是()A.①②B.③④C.①②③D.①②④7.(5分)设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件8.(5分)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC 上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.二、填空题(共6小题,每小题5分,共30分)9.(5分)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.10.(5分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.11.(5分)设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为.12.(5分)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为.13.(5分)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为.14.(5分)已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则实数a的取值范围为.三、解答题(共6小题,共80分)15.(13分)已知函数f(x)=cosx•sin(x+)﹣cos2x+,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在闭区间[﹣,]上的最大值和最小值.16.(13分)某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.17.(13分)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.18.(13分)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.19.(14分)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.20.(14分)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.2014年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分)1.(5分)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.+i D.﹣+i【分析】将复数的分子与分母同时乘以分母的共轭复数3﹣4i,即求出值.【解答】解:复数==,故选:A.【点评】本题考查了复数的运算法则和共轭复数的意义,属于基础题.2.(5分)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A.2 B.3 C.4 D.5【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B(1,1)时,直线y=﹣的截距最小,此时z最小.此时z的最小值为z=1+2×1=3,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.3.(5分)阅读如图的程序框图,运行相应的程序,输出S的值为()A.15 B.105 C.245 D.945【分析】算法的功能是求S=1×3×5×…×(2i+1)的值,根据条件确定跳出循环的i值,计算输出S的值.【解答】解:由程序框图知:算法的功能是求S=1×3×5×…×(2i+1)的值,∵跳出循环的i值为4,∴输出S=1×3×5×7=105.故选:B.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.4.(5分)函数f(x)=log(x2﹣4)的单调递增区间为()A.(0,+∞)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,﹣2)【分析】令t=x2﹣4>0,求得函数f(x)的定义域为(﹣∞,﹣2)∪(2,+∞),且函数f(x)=g(t)=log t.根据复合函数的单调性,本题即求函数t在(﹣∞,﹣2)∪(2,+∞)上的减区间.再利用二次函数的性质可得,函数t在(﹣∞,﹣2)∪(2,+∞)上的减区间.【解答】解:令t=x2﹣4>0,可得x>2,或x<﹣2,故函数f(x)的定义域为(﹣∞,﹣2)∪(2,+∞),当x∈(﹣∞,﹣2)时,t随x的增大而减小,y=log t随t的减小而增大,所以y=log(x2﹣4)随x的增大而增大,即f(x)在(﹣∞,﹣2)上单调递增.故选:D.【点评】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题.5.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【分析】先求出焦点坐标,利用双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,可得=2,结合c2=a2+b2,求出a,b,即可求出双曲线的方程.【解答】解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为﹣=1.故选:A.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.6.(5分)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC 于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④AF•BD=AB•BF.所有正确结论的序号是()A.①②B.③④C.①②③D.①②④【分析】本题利用角与弧的关系,得到角相等,再利用角相等推导出三角形相似,得到边成比例,即可选出本题的选项.【解答】解:∵圆周角∠DBC对应劣弧CD,圆周角∠DAC对应劣弧CD,∴∠DBC=∠DAC.∵弦切角∠FBD对应劣弧BD,圆周角∠BAD对应劣弧BD,∴∠FBD=∠BAF.∵AD是∠BAC的平分线,∴∠BAF=∠DAC.∴∠DBC=∠FBD.即BD平分∠CBF.即结论①正确.又由∠FBD=∠FAB,∠BFD=∠AFB,得△FBD~△FAB.由,FB2=FD•FA.即结论②成立.由,得AF•BD=AB•BF.即结论④成立.正确结论有①②④.故选:D.【点评】本题考查了弦切角、圆周角与弧的关系,还考查了三角形相似的知识,本题总体难度不大,属于基础题.7.(5分)设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件【分析】根据不等式的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若a>b,①a>b≥0,不等式a|a|>b|b|等价为a•a>b•b,此时成立.②0>a>b,不等式a|a|>b|b|等价为﹣a•a>﹣b•b,即a2<b2,此时成立.③a≥0>b,不等式a|a|>b|b|等价为a•a>﹣b•b,即a2>﹣b2,此时成立,即充分性成立.若a|a|>b|b|,①当a>0,b>0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)>0,因为a+b >0,所以a﹣b>0,即a>b.②当a>0,b<0时,a>b.③当a<0,b<0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)<0,因为a+b <0,所以a﹣b>0,即a>b.即必要性成立,综上“a>b”是“a|a|>b|b|”的充要条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的性质结合分类讨论是解决本题的关键.8.(5分)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC 上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.【分析】利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义由•=1,求得4λ+4μ﹣2λμ=3 ①;再由•=﹣,求得﹣λ﹣μ+λμ=﹣②.结合①②求得λ+μ的值.【解答】解:由题意可得若•=(+)•(+)=+++=2×2×cos120°++λ•+λ•μ=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)==(1﹣λ)•(1﹣μ)=(1﹣λ)•(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣λ﹣μ+λμ=﹣②.由①②求得λ+μ=,故选:C.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,属于中档题.二、填空题(共6小题,每小题5分,共30分)9.(5分)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取60名学生.【分析】先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.【解答】解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为=,故应从一年级本科生中抽取名学生数为300×=60,故答案为:60.【点评】本题主要考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.10.(5分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.【分析】几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.【解答】解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.11.(5分)设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为﹣.【分析】由条件求得,S n=,再根据S1,S2,S4成等比数列,可得=S1•S4,由此求得a1的值.【解答】解:由题意可得,a n=a1+(n﹣1)(﹣1)=a1+1﹣n,S n==,再根据若S1,S2,S4成等比数列,可得=S1•S4,即=a1•(4a1﹣6),解得a1=﹣,故答案为:﹣.【点评】本题主要考查等差数列的前n项和公式,等比数列的定义和性质,属于中档题.12.(5分)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为﹣.【分析】由条件利用正弦定理求得a=2c,b=,再由余弦定理求得cosA=的值.【解答】解:在△ABC中,∵b﹣c= a ①,2sinB=3sinC,∴2b=3c ②,∴由①②可得a=2c,b=.再由余弦定理可得cosA===﹣,故答案为:﹣.【点评】本题主要考查正弦定理、余弦定理的应用,属于中档题.13.(5分)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为3.【分析】把极坐标方程化为直角坐标方程,求出B的坐标的值,代入x2+(y﹣2)2=4,可得a的值.【解答】解:直线ρsinθ=a即y=a,(a>0),曲线ρ=4sinθ,即ρ2=4ρsinθ,即x2+(y﹣2)2=4,表示以C(0,2)为圆心,以2为半径的圆,∵△AOB是等边三角形,∴B(a,a),代入x2+(y﹣2)2=4,可得(a)2+(a﹣2)2=4,∵a>0,∴a=3.故答案为:3.【点评】本题考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,求出B的坐标是解题的关键,属于基础题.14.(5分)已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则实数a的取值范围为(0,1)∪(9,+∞).【分析】由y=f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,作出函数y=f(x),y=a|x ﹣1|的图象利用数形结合即可得到结论.【解答】解:由y=f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,作出函数y=f(x),y=g(x)=a|x﹣1|的图象,当a≤0,两个函数的图象不可能有4个交点,不满足条件,则a>0,此时g(x)=a|x﹣1|=,当﹣3<x<0时,f(x)=﹣x2﹣3x,g(x)=﹣a(x﹣1),当直线和抛物线相切时,有三个零点,此时﹣x2﹣3x=﹣a(x﹣1),即x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a=0,即a2﹣10a+9=0,解得a=1或a=9,当a=9时,g(x)=﹣9(x﹣1),g(0)=9,此时不成立,∴此时a=1,要使两个函数有四个零点,则此时0<a<1,若a>1,此时g(x)=﹣a(x﹣1)与f(x),有两个交点,此时只需要当x>1时,f(x)=g(x)有两个不同的零点即可,即x2+3x=a(x﹣1),整理得x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a>0,即a2﹣10a+9>0,解得a<1(舍去)或a>9,综上a的取值范围是(0,1)∪(9,+∞),方法2:由f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,若x=1,则4=0不成立,故x≠1,则方程等价为a===||=|x﹣1++5|,设g(x)=x﹣1++5,当x>1时,g(x)=x﹣1++5≥,当且仅当x﹣1=,即x=3时取等号,当x<1时,g(x)=x﹣1++5=5﹣4=1,当且仅当﹣(x ﹣1)=﹣,即x=﹣1时取等号,则|g(x)|的图象如图:若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则满足a>9或0<a<1,故答案为:(0,1)∪(9,+∞)【点评】本题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强,难度较大.三、解答题(共6小题,共80分)15.(13分)已知函数f(x)=cosx•sin(x+)﹣cos2x+,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在闭区间[﹣,]上的最大值和最小值.【分析】(Ⅰ)根据两角和差的正弦公式、倍角公式对解析式进行化简,再由复合三角函数的周期公式求出此函数的最小正周期;(Ⅱ)由(Ⅰ)化简的函数解析式和条件中x的范围,求出的范围,再利用正弦函数的性质求出再已知区间上的最大值和最小值.【解答】解:(Ⅰ)由题意得,f(x)=cosx•(sinx cosx)====所以,f(x)的最小正周期=π.(Ⅱ)由(Ⅰ)得f(x)=,由x∈[﹣,]得,2x∈[﹣,],则∈[,],∴当=﹣时,即=﹣1时,函数f(x)取到最小值是:,当=时,即=时,f(x)取到最大值是:,所以,所求的最大值为,最小值为.【点评】本题考查了两角和差的正弦公式、倍角公式,正弦函数的性质,以及复合三角函数的周期公式应用,考查了整体思想和化简计算能力,属于中档题.16.(13分)某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.【分析】(Ⅰ)利用排列组合求出所有基本事件个数及选出的3名同学是来自互不相同学院的基本事件个数,代入古典概型概率公式求出值;(Ⅱ)随机变量X的所有可能值为0,1,2,3,(k=0,1,2,3)列出随机变量X的分布列求出期望值.【解答】(Ⅰ)解:设“选出的3名同学是来自互不相同学院”为事件A,则,所以选出的3名同学是来自互不相同学院的概率为.(Ⅱ)解:随机变量X的所有可能值为0,1,2,3,(k=0,1,2,3)所以随机变量X的分布列是随机变量X的数学期望.【点评】本题考查古典概型及其概率公式,互斥事件,离散型随机变量的分布列与数学期望,考查应用概率解决实际问题的能力.17.(13分)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.【分析】(I)以A为坐标原点,建立如图所示的空间直角坐标系,求出BE,DC 的方向向量,根据•=0,可得BE⊥DC;(II)求出平面PBD的一个法向量,代入向量夹角公式,可得直线BE与平面PBD 所成角的正弦值;(Ⅲ)根据BF⊥AC,求出向量的坐标,进而求出平面FAB和平面ABP的法向量,代入向量夹角公式,可得二面角F﹣AB﹣P的余弦值.【解答】证明:(I)∵PA⊥底面ABCD,AD⊥AB,以A为坐标原点,建立如图所示的空间直角坐标系,∵AD=DC=AP=2,AB=1,点E为棱PC的中点.∴B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(1,1,1)∴=(0,1,1),=(2,0,0)∵•=0,∴BE⊥DC;(Ⅱ)∵=(﹣1,2,0),=(1,0,﹣2),设平面PBD的法向量=(x,y,z),由,得,令y=1,则=(2,1,1),则直线BE与平面PBD所成角θ满足:sinθ===,故直线BE与平面PBD所成角的正弦值为.(Ⅲ)∵=(1,2,0),=(﹣2,﹣2,2),=(2,2,0),由F点在棱PC上,设=λ=(﹣2λ,﹣2λ,2λ)(0≤λ≤1),故=+=(1﹣2λ,2﹣2λ,2λ)(0≤λ≤1),由BF⊥AC,得•=2(1﹣2λ)+2(2﹣2λ)=0,解得λ=,即=(﹣,,),设平面FBA的法向量为=(a,b,c),由,得令c=1,则=(0,﹣3,1),取平面ABP的法向量=(0,1,0),则二面角F﹣AB﹣P的平面角α满足:cosα===,故二面角F﹣AB﹣P的余弦值为:【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.18.(13分)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.【分析】(Ⅰ)设椭圆的右焦点为F2(c,0),由|AB|=|F1F2|.可得,再利用b2=a2﹣c2,e=即可得出.(Ⅱ)由(Ⅰ)可得b2=c2.可设椭圆方程为,设P(x0,y0),由F1(﹣c,0),B(0,c),可得,.利用圆的性质可得,于是=0,得到x0+y0+c=0,由于点P在椭圆上,可得.联立可得=0,解得P.设圆心为T(x1,y1),利用中点坐标公式可得T,利用两点间的距离公式可得圆的半径r.设直线l的方程为:y=kx.利用直线与圆相切的性质即可得出.【解答】解:(Ⅰ)设椭圆的右焦点为F2(c,0),由|AB|=|F1F2|,可得,化为a2+b2=3c2.又b2=a2﹣c2,∴a2=2c2.∴e=.(Ⅱ)由(Ⅰ)可得b2=c2.因此椭圆方程为.设P(x0,y0),由F1(﹣c,0),B(0,c),可得=(x0+c,y0),=(c,c).∵,∴=c(x0+c)+cy0=0,∴x0+y0+c=0,∵点P在椭圆上,∴.联立,化为=0,∵x0≠0,∴,代入x0+y0+c=0,可得.∴P.设圆心为T(x1,y1),则=﹣,=.∴T,∴圆的半径r==.设直线l的斜率为k,则直线l的方程为:y=kx.∵直线l与圆相切,∴,整理得k2﹣8k+1=0,解得.∴直线l的斜率为.【点评】本题中考查了椭圆与圆的标准方程及其性质、点与椭圆的位置关系、直线与圆相切问题、点到直线的距离公式、中点坐标公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.19.(14分)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.【分析】(Ⅰ)当q=2,n=3时,M={0,1},A={x|x=x1+x2•2+x3•22,x i∈M,i=1,2,3}.即可得到集合A.(Ⅱ)由于a i,b i∈M,i=1,2,…,n.a n<b n,可得a n﹣b n≤﹣1.由题意可得s﹣t=(a1﹣b1)+(a2﹣b2)q+…+(a n﹣1﹣b n﹣1)q n﹣2+(a n﹣b n)q n﹣1≤(q﹣1)+(q﹣1)q+…+(q﹣1)q n﹣2﹣q n﹣1再利用等比数列的前n项和公式即可得出.【解答】(Ⅰ)解:当q=2,n=3时,M={0,1},A={x|x=x1+x2•2+x3•22,x i∈M,i=1,2,3}.可得A={0,1,2,3,4,5,6,7}.(Ⅱ)证明:由设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.a n<b n,∴s﹣t=(a1﹣b1)+(a2﹣b2)q+…+(a n﹣1﹣b n﹣1)q n﹣2+(a n﹣b n)q n﹣1≤(q﹣1)+(q﹣1)q+…+(q﹣1)q n﹣2﹣q n﹣1=(q﹣1)(1+q+…+q n﹣2)﹣q n﹣1=﹣q n﹣1=﹣1<0.∴s<t.【点评】本题考查了考查了集合的运算及其性质、等比数列的前n项和公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.20.(14分)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.【分析】(Ⅰ)对f(x)求导,讨论f′(x)的正负以及对应f(x)的单调性,得出函数y=f(x)有两个零点的等价条件,从而求出a的取值范围;(Ⅱ)由f(x)=0,得a=,设g(x)=,判定g(x)的单调性即得证;(Ⅲ)由于x1=a,x2=a,则x2﹣x1=lnx2﹣lnx1=ln,令=t,整理得到x1+x2=,令h(x)=,x∈(1,+∞),得到h(x)在(1,+∞)上是增函数,故得到x1+x2随着t的减小而增大.再由(Ⅱ)知,t随着a的减小而增大,即得证.【解答】解:(Ⅰ)∵f (x )=x ﹣ae x ,∴f′(x )=1﹣ae x ;下面分两种情况讨论:①a ≤0时,f′(x )>0在R 上恒成立,∴f (x )在R 上是增函数,不合题意; ②a >0时,由f′(x )=0,得x=﹣lna ,当x 变化时,f′(x )、f (x )的变化情况如下表:∴f (x )的单调增区间是(﹣∞,﹣lna ),减区间是(﹣lna ,+∞);∴函数y=f (x )有两个零点等价于如下条件同时成立:①f (﹣lna )>0;②存在s 1∈(﹣∞,﹣lna ),满足f (s 1)<0;③存在s 2∈(﹣lna ,+∞),满足f (s 2)<0;由f (﹣lna )>0,即﹣lna ﹣1>0,解得0<a <e ﹣1;取s 1=0,满足s 1∈(﹣∞,﹣lna ),且f (s 1)=﹣a <0,取s 2=+ln ,满足s 2∈(﹣lna ,+∞),且f (s 2)=(﹣)+(ln ﹣)<0;∴a 的取值范围是(0,e ﹣1).(Ⅱ)证明:由f (x )=x ﹣ae x =0,得a=, 设g (x )=,由g′(x )=,得g (x )在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,并且当x ∈(﹣∞,0)时,g (x )≤0,当x ∈(0,+∞)时,g (x )≥0,x1、x2满足a=g(x1),a=g(x2),a∈(0,e﹣1)及g(x)的单调性,可得x1∈(0,1),x2∈(1,+∞);对于任意的a1、a2∈(0,e﹣1),设a1>a2,g(X1)=g(X2)=a1,其中0<X1<1<X2;g(Y1)=g(Y2)=a2,其中0<Y1<1<Y2;∵g(x)在(0,1)上是增函数,∴由a1>a2,得g(X i)>g(Y i),可得X1>Y1;类似可得X2<Y2;又由X、Y>0,得<<;∴随着a的减小而增大;(Ⅲ)证明:∵x1=a,x2=a,∴lnx1=lna+x1,lnx2=lna+x2;∴x2﹣x1=lnx2﹣lnx1=ln,设=t,则t>1,∴,解得x1=,x2=,∴x1+x2=…①;令h(x)=,x∈(1,+∞),则h′(x)=;令u(x)=﹣2lnx+x﹣,得u′(x)=,当x∈(1,+∞)时,u′(x)>0,∴u(x)在(1,+∞)上是增函数,∴对任意的x∈(1,+∞),u(x)>u(1)=0,∴h′(x)>0,∴h(x)在(1,+∞)上是增函数;∴由①得x1+x2随着t的增大而增大.由(Ⅱ)知,t随着a的减小而增大,∴x1+x2随着a的减小而增大.【点评】本题考查了导数的运算以及利用导数研究函数的单调性与极值问题,也考查了函数思想、化归思想、抽象概括能力和分析问题、解决问题的能力,是综合型题目.。
2014年高考数学真题天津【文】试题及答案

ED CBA 2014高考数学【天津文】一、选择题: 1.i 是虚数单位,复数7i34i++=( ) A .1-iB .-1+iC .1731i 2525+ D .1725i 77-+ 2.设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .53.已知命题p :∀x >0,总有(x +1)e x >1,则⌝p ( )A .∃x 0≤0,使得(x 0+1)0e x ≤1B .∃x 0>0,使得(x 0+1)0e x ≤1C .∀x >0,总有(x +1)e x ≤1D .∀x ≤0,总有(x +1)e x ≤14.设a =log 2π,12log b π=,c =π -2,则( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a5.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列, 则a 1=( )A .2B .-2C .12D .12-6. 已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A .221520x y -=B .221205x y -=C .2233125100x y -=D .2233110025x y -=7.如图,△ABC 是圆的内接三角形,∠BAC 的平分线交圆于点D ,交BC 于点E , 过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结 论:①BD 平分∠CBF ; ②FB 2=FD ·F A ; ③AE ·CE =BE ·DE ; ④AF ·BD =AB ·BF . 则所有正确结论的序号是( ) A .①②B .③④C .①②③D .①②④8. 已知函数f (xωx +cos ωx (ω>0),x ∈R ,在曲线y =f (x )与直线y =1的交点中,若相 邻交点距离的最小值为π3,则f (x )的最小正周期为( ) A .π2B .2π3C .πD .2π二、填空题9. 某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查. 已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取_______名学生.10.已知一个几何体的三视图如图所示(单位:m),则该几何体的体积为 _______m 3.11.阅读右边的框图,运行相应的程序,输出S 的值为________. 12.函数f (x )=lg x 2的单调递减区间是________.13.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上, BC =3BE ,DC =λDF .若1AE AF ⋅=,则λ的值为_______.14. 已知函数()20,54,22,0.x x x f x x x ⎧++⎪=⎨->≤⎪⎩若函数y =f (x )-a |x |恰有4个零点,则实数a 的取值范围为__________.三、解答题15.某校夏令营有3名男同学A ,B ,C 和3名女同学X ,Y ,Z ,其年级情况如下表:现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同). (I)用表中字母列举出所有可能的结果;俯视图侧视图正视图PFEDCBA(II)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知a c -=,sin B C . (I)求cos A 的值; (II)求πcos 26A ⎛⎫- ⎪⎝⎭的值.17.如图,四棱锥P -ABCD 的底面是平行四边形,BA =BD,AD =2,P A =PD,E , F 分别是棱AD ,PC 的中点.(I)证明:EF ∥平面P AB ; (II)若二面角P -AD -B 为60°,(i)证明:平面PBC ⊥平面ABCD ;(ii)求直线EF 与平面PBC 所成角的正弦值.18. 设椭圆22221x y a b +=(a >b >0)的左、右焦点为F 1,F 2,右顶点为A ,上顶点为B .已知12AB F =. (I)求椭圆的离心率;(II)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过点F 2的直 线l 与该圆相切于点M,2MF =19.已知函数232()3f x x ax =-(a >0),x ∈R .(I)求f (x )的单调区间和极值;(II)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1.求a 的取值范 围.20. 已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x | x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n }(I)当q =2,n =3时,用列举法表示集合A ;(II)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,其中a i ,b i ∈M ,i =1,2,…, n .证明:若a n <b n ,则s <t .2014高考数学天津【文】参考答案一.选择题1.A 2.B 3.B 4.C 5.D 6.A 7.D 8.C二.填空题9.60 10.20π311.-4 12.(-∞,0)13.214.(1,2)三.解答题15.(I)解:从6名同学中随机选出2人参加知识竞赛的所有可能结果为:{A ,B },{A ,C },{A ,X },{A ,Y },{A ,Z },{B ,C },{B ,X },{B ,Y },{B ,Z },{C ,X },{C ,Y },{C ,Z },{X ,Y },{X ,Z },{Y ,Z },共15种.(II)解:选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为 {A ,Y },{A ,Z },{B ,X },{B ,Z },{C ,X },{C ,Y },共6种. 因此,事件M 发生的概率62()155P M ==.16.(I)解:在△ABC 中,由sin sin b cB C=,及sin B C ,可得b =.又由a c -=,有a =2c .所以222222cos 2bc a A bc +-===(II)解:在△ABC中,由cos A =sin A =, 于是,21cos22cos 14A A =-=-,sin 22sin cos A A A =⋅=,所以πππcos 2cos2cos sin 2sin 666A A A ⎛⎫-=⋅+⋅= ⎪⎝⎭17.(I)证明:如图,取PB 中点M ,连接MF ,AM ,因为F 为PC 中点,故MF ∥BC ,且12M F B C =.由已知有BC ∥AD ,BC =AD .又由于E 为AD 中点,因而MF ∥AE ,且MF =AE ,故四边形AMFE 为平行四边形,所以EF ∥AM .又AM ⊂平面P AB ,而EF ⊄平面P AB ,所以EF ∥平面P AB . (II)(i)证明:连接PE ,BE .因为P A =PD ,BA =BD ,而E 为AD 中点,故PE ⊥AD ,BE ⊥AD .所以∠PEB 为二面角P -D -B 的平面角.在△P AD 中,由P A =PDAD =2,可解得PE =2.在△ABD 中,由BA =BD,AD =2,可解得BE =1.在△PEB 中,PE =2,BE =1,∠PEB =60°,由余弦定理,可解得PBPBE =90°,即BE ⊥PB .又BC ∥AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC .又BE ⊂平面ABCD ,所以,平面PBC ⊥平面ABCD .(ii)解:连接BF .由(i)知,BE ⊥平面PBC ,所以∠EFB 为直线EF 与平面PBC 所成的角,由PB ,得∠ABP为直角.而12MB PB ==AM =,故EF =. 又BE =1,故在直角三角形EBF中,sin BE EFB EF ∠== 所以,直线EF 与平面PBC18.(I)解:设椭圆右焦点F 2(c ,0).由12AB F =,可得a 2+b 2=3c 2, 又b 2=a 2-c 2,则2212c a =.所以椭圆的离心率e =.(II)解:由(I)知a 2=2c 2,b 2=c 2,故椭圆方程为222212x y c c+=.C设P (x 0,y 0).由F 1(-c ,0),B (0,c ),有1F P =(x 0+c ,y 0),1F B =(c ,c ). 由已知有,110F P F B ⋅=,即(x 0+c )c +y 0c =0,又c ≠0,故有x 0+y 0+c =0 ①因为点P 在椭圆上,故22002212x y c c+=②由①和②可得3x 02+4cx 0=0.而点P 不是椭圆的顶点,故043x c =-,代入①得03cy =,即点P 的坐标为4,33c c ⎛⎫- ⎪⎝⎭.设圆的圆心为T (x 1,y 1),则1402323c x c -+==-,12323c cy c +==,进而圆的半径为r =. 由已知,有|TF 2|2=|MF 2|2+r 2,又2||MF =,故有22222508339c c c c ⎛⎫⎛⎫++-=+ ⎪ ⎪⎝⎭⎝⎭,解得c 2=3.所以,所求椭圆的方程为22163x y +=.19.(I)解:由已知,有f ′(x )=2x -2ax 2(a >0).令f ′(x )=0,解得x =0或1x a=. 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,f (x )的单调递增区间是10,a ⎛⎫ ⎪⎝⎭;单调递减区间是(-∞,0),1,a ⎛⎫+∞ ⎪⎝⎭.当x =0时,f (x )有极小值,且极小值为f (0)=0; 当1x a =时,f (x )有极大值,且极大值为2113f a a⎛⎫= ⎪⎝⎭. (II)解:由f (0)=32f a ⎛⎫ ⎪⎝⎭=0及(I)知,当30,2x a ⎛⎫∈ ⎪⎝⎭时,f (x )>0;当3,2xa⎛⎫∈+∞⎪⎝⎭时,f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B=1(1,),()0 ()x f xf x⎧⎫⎪⎪∈+∞≠⎨⎬⎪⎪⎩⎭.则“对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1”等价于A⊆B,显然0∉B.下面分三种情况讨论:(1)当322a>,即34a<<时,由32fa⎛⎫=⎪⎝⎭可知,0∈A,而0∉B,所以A不是B的子集.(2)当3122a≤≤,即3342a≤≤时,有(2)0f≤,且此时f(x)在(2,+∞)上单调递减,故A=(-∞,f(2)),因而A⊆(-∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B.所以,A⊆B.(3)当312a<,即32a>时,有f(1)<0,且此时f(x)在(1,+∞)上单调递减,故1,0(1)Bf⎛⎫= ⎪⎝⎭,A=(-∞,f(2)),所以A不是B的子集.综上,a的取值范围是33,42⎡⎤⎢⎥⎣⎦.20.(I)解:当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3}.可得,A={0,1,2,3,4,5,6,7}.(II)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i=1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=11 (1)(1)1nn q qqq------=-1<0.所以,s<t.。
2014年高考理科数学天津卷-答案

34i,即求出值【解析】作出可行域,如图:【解析】由弦切角定理得FBD EACBAE ,又AF BD AB BF =,排除A 、C. DBC ,排除B 、故选D.本题利用角与弧的关系,得到角相等,,所以||||cos1202AB AD AB AD =︒=-,所以AE AB AD λ=+,AF AB AD μ=+.因为1AE AF =,所以()()1AB AD AB AD λμ++=,即2λ2-②,①+②得5λμ+=,故选C. 【提示】利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义求得2120ππ4π2233+=m 【考点】空间立体图形三视图、体积.结合图象可知01a <<或9a >.][),4∞+,所以][)9,∞+.结合图象可得01a <<或9a >.1sin 2x x ⎛+ ⎝3cos 2x x -43π3x 的范围,再利用正弦函数的性质求出再已【考点】三角函数中的恒等变换应用,三角函数的周期性及其求法1203373734960C C C C +=. 3463k k C C -(k =3463k kC C -(k =(0,0,2)P.由E为棱PC的中点,得(1,1,1)E.证明:向量(0,1,1)BE=,(2,0,0)DC=,故0BE DC=.所以,)向量(1,2,0)BD=-,(1,0,PB=设(,,)n x y z=0,0,n BDn PB⎧=⎪⎨=⎪⎩即-⎧,可得(2,1,1)n=为平面的一个法向量,||||6n BEn BEn BE==⨯与平面PBD3)向量(1,2,0)BC=,(2,CP=-,(2,2,0)AC=,(1,0,0)AB=由点F在棱PC上,设CF CPλ=,0≤故()1,2BF BC CF BC CPλλλ=+=+=-.,得0BF AC=,因此,2(1即12BF⎛=-设(1,n x y=为平面FAB的法向量,则110,0,n ABn BF⎧=⎪⎨=⎪⎩即,可得1(0,n=-FAB的一个法向量的法向量1(0,1,0)n=121212,||||10n nn nn n-==31010.【提示】(1)以A 为坐标原点,建立如图所示的空间直角坐标系,求出BE ,DC 的方向向量,根据0BE DC =,可得BE DC ⊥;(2)求出平面PBD 的一个法向量,代入向量夹角公式,可得直线BE 与平面PBD 所成角的正弦值; (3)根据BFAC ,求出向量BF 的坐标,进而求出平面F AB 和平面ABP 的法向量,代入向量夹角公式,可得二面角F ABP 的余弦值2,有10(F P x =+,1(,)F B c c =由已知,有110F P F B =,即1.②由①和②可得234x cx +可得1F P ,1F B .利用圆的性质可得11F B F P ⊥,于是110F B F P =,得到040cx =,解得1n n a q -++1n n b q -++1,2,,n 及n a (1n a -++-()1q ++-q。
2014年高考真题——理数(天津卷)试题及答案

2014年天津市高考数学试卷(理科)一、选择题(共8小题,每小题5分)1.(5分)(2014•天津)i是虚数单位,复数=()+i D+2.(5分)(2014•天津)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()3.(5分)(2014•天津)阅读如图的程序框图,运行相应的程序,输出S的值为()4.(5分)(2014•天津)函数f(x)=log(x2﹣4)的单调递增区间为()5.(5分)(2014•天津)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一.﹣=1 ﹣=1﹣=1 ﹣=16.(5分)(2014•天津)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④AF•BD=AB•BF.所有正确结论的序号是()8.(5分)(2014•天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,BE=λBC,DF=μDC,若•=1,•=﹣,则λ+μ=().C D.二、填空题(共6小题,每小题5分,共30分)9.(5分)(2014•天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_________名学生.10.(5分)(2014•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为_________m3.11.(5分)(2014•天津)设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为_________.12.(5分)(2014•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为_________.13.(5分)(2014•天津)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为_________.14.(5分)(2014•天津)已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则实数a的取值范围为_________.三、解答题(共6小题,共80分)15.(13分)(2014•天津)已知函数f(x)=cosx•sin(x+)﹣cos2x+,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在闭区间[﹣,]上的最大值和最小值.16.(13分)(2014•天津)某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.17.(13分)(2014•天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.18.(13分)(2014•天津)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.19.(14分)(2014•天津)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.20.(14分)(2014•天津)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.2014年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分)1.(5分)(2014•天津)i是虚数单位,复数=()+i D+解:复数=2.(5分)(2014•天津)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()﹣3.(5分)(2014•天津)阅读如图的程序框图,运行相应的程序,输出S的值为()4.(5分)(2014•天津)函数f(x)=log(x2﹣4)的单调递增区间为()t=log t5.(5分)(2014•天津)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一.﹣=1 ﹣=1﹣=1 ﹣=1先求出焦点坐标,利用双曲线﹣,可得=2∵双曲线=1∴双曲线的方程为=16.(5分)(2014•天津)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④AF•BD=AB•BF.所有正确结论的序号是()8.(5分)(2014•天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,BE=λBC,DF=μDC,若•=1,•=﹣,则λ+μ=().C D.两个向量的数量积的定义由•=1•=,求得﹣﹣解:由题意可得若=()()++λ•μ=﹣(﹣)))﹣,故答案为:二、填空题(共6小题,每小题5分,共30分)9.(5分)(2014•天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取60名学生.解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为,×=6010.(5分)(2014•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.×π×+=故答案为:11.(5分)(2014•天津)设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为﹣.==﹣.12.(5分)(2014•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为﹣.,再由余弦定理求得cosA=ab=cosA==﹣.13.(5分)(2014•天津)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为3.(,可得(14.(5分)(2014•天津)已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则实数a的取值范围为(0,1)∪(9,+∞).,三、解答题(共6小题,共80分)15.(13分)(2014•天津)已知函数f(x)=cosx•sin(x+)﹣cos2x+,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在闭区间[﹣,]上的最大值和最小值.再由复合三角函数的周期公式的范围,求出sinx))的最小正周期=,],],则[,]=时,即=)取到最小值是:时,即时,)取到最大值是:,,最小值为应用,16.(13分)(2014•天津)某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.,(名同学是来自互不相同学院的概率为的数学期望17.(13分)(2014•天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.的方向向量,根据•,求出向量的坐标,进而求出平面=•(Ⅱ)∵=的法向量,得,则=,所成角的正弦值为(Ⅲ)∵=,上,设λ===,得=2,,,)=,得,则的法向量=18.(13分)(2014•天津)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.|F.可得.可设椭圆方程为,.利用圆的性质可得,于是.联立可得.设圆心为,利用两点间的距离公式可得圆的半径,化为.因此椭圆方程为.,可得,在椭圆上,∴.,化为=0,∴,,可得.=,=.,r==,解得的斜率为19.(14分)(2014•天津)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.A={x|,+A={x|,+20.(14分)(2014•天津)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.=a=a,则=ln,令=,+ln,满足﹣)ln﹣,设,由=,得<;∴随着=a=a=ln,设=t,解得,…①;﹣。
2014年高考理数真题试卷(天津卷)

D.﹣ + i
第Ⅱ卷的注释
第Ⅱ卷 主观题
评卷人 得分
一、填空题(共 6 题)
1. (2014•天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,
从该校四个年级的本科生中抽取一个容量为 300 的样本进行调查,已知该校一年级、二年级、三年级、
四年级的本科生人数之比为 4:5:5:6,则应从一年级本科生中抽取
.
4. (2014•天津)在以 O 为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a 相交于 A、B 两点,若△AOB 是
等边三角形,则 a 的值为
.
5. (2014•天津)已知函数 f(x)=|x2+3x|,x∈R,若方程 f(x)﹣a|x﹣1|=0 恰有 4 个互异的实数根,
则实数 a 的取值范围为
A.
B.
C.
D.
4. (2014•天津)设变量 x,y 满足约束条件
,则目标函数 z=x+2y 的最小值为( )
A.2 B.3 C.4 D.5
5. (2014•天津)如图,△ABC 是圆的内接三角形,∠BAC 的平分线交圆于点 D,交 BC 于 E,过点 B 的
圆 的 切 线 与 AD 的 延 长 线 交 于 点 F , 在 上 述 条 件 下 , 给 出 下 列 四 个 结 论 :
名学生.
2. (2014•天津)在△ABC 中,内角 A,B,C 所对的边分别是 a,b,c,已知 b﹣c= a,2sinB=3sinC,则
cosA 的值为
.
3. (2014•天津)设{an}是首项为 a1 , 公差为﹣1 的等差数列,Sn 为其前 n 项和,若 S1 , S2 , S4 成等比
2014年天津市高考数学试卷(理科)答案与解析

2014年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共 8小题,每小题5分)1.( 5分)(2014 ?天津)i 是虚数单位,复数 -------- =( )3+41 A . 1-i B . - 1+iC .丄+」D_ +_i25 2^77考点:复数代数形式的乘除运算. 专题:数系的扩充和复数.分析:将复数的分子与分母同时乘以分母的共轭复数3 -4i ,即求出值.解答:解:复数 7+1. (7+1) (3-41)|25 - 25! “.34-41 (3+蚯)(3-4i)=251故选A .点评:本题考查了复数的运算法则和共轭复数的意义,属于基础题.最小值为( )A . 2B . 3考点:简单线性规划. 专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求 解答:解:作出不等式对应的平面区域,由 z=x+2y ,得 y=-丄-*盂4违的截距最小,此时z 最小. 此时z 的最小值为z=1+2 xi=3, 故选:B .平移直线y=- ,由图象可知当直线 y=- 经过点B (1, 1)时,直线y=2. ( 5分)(2014?天津)设变量 z=x+2y 的z 的最大值. x ,则目标函数ic/Il-1-1■J/\点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.3.(5分)(2014?天津)阅读如图的程序框图,运行相应的程序,输出S的值为()A . 15 B. 105 C. 245 D. 945考点:程序框图.专题:算法和程序框图.分析:算法的功能是求S=1 >3>5X-(2i+1 )的值,根据条件确定跳出循环的i值,计算输出S的值.解答:解:由程序框图知:算法的功能是求S=1 X3>5X->>2i+1 )的值,•/跳出循环的i值为4,•••输出S=1 X3X5XM05 .故选:B.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.4. > 5分)> 2014?天津)函数f >x)=log >x2_4)的单调递增区间为> )~2A . > 0, +7 B. (— a, 0)C. > 2, +呵D. > — a,—2)考点:复合函数的单调性.专题:函数的性质及应用.分析:令t=x2- 4 >0,求得函数f (x)的定义域为(-汽-2) U (2, + 8),且函数f ( x) =g (t) =log ]t.根据复合函数的单调性,本题即求函数t在(-8, - 2) U (2, + ^) 2上的减区间•再利用二次函数的性质可得,函数t在(-8,- 2) U (2, + 8)上的减区间.解答:解:令t=x2- 4 > 0,可得x > 2,或X V- 2,故函数f (x)的定义域为(- 8,- 2) U (2, + 8),当x€(-8,- 2)时,t随x的增大而减小,y=log 11随t的减小而增大,~2所以y=log ] (x2- 4)随x的增大而增大,即f (乂)在(-8,- 2)上单调递增.故选:D.点评:本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题.2 2岂-耳=1 (a>0, b>0)的一条渐近线平行于直线a2b23• • 2 2 .2-c =a +b ,2 2--a =5, b =20,5. ( 5分)(2014?天津)已知双曲线y=2x+10,双曲线的一个焦点在直线I上,则双曲线的方程为(=1[Too考点:双曲线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:先求出焦点坐标,利用双曲线£-£=1 (a>0, b>0)的一条渐近线平行于直线a21/, 2 2 2y=2x+10,可得=2,结合c =a +b,求出aa, b,即可求出双曲线的方程.解答:解:•••双曲线的一个焦点在直线I 上,令y=0,可得x= - 5,即焦点坐标为(-5, 0), ••• c=5,-=1 (a> 0, b > 0)的一条渐近线平行于直线I: y=2x+10 ,C.=1故选:A .点评:本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.6. (5分)(2014?天津)如图,△ ABC是圆的内接三角形,/ BAC的平分线交圆于点D ,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分/ CBF;②FB2=FD?FA;③AE?CE=BE ?DE;④AF?BD=AB ?BF .所有正确结论的序号是()A .①②B .③④C .①②③D .①②④考点:与圆有关的比例线段;命题的真假判断与应用.专题:直线与圆.分析:本题利用角与弧的关系,得到角相等,再利用角相等推导出三角形相似,得到边成比例,即可选出本题的选项.解答:解:•••圆周角/ DBC对应劣弧CD,圆周角/ DAC对应劣弧CD,••• / DBC= / DAC .•••弦切角/ FBD对应劣弧BD,圆周角/ BAD对应劣弧BD ,•/ FBD= / BAF .•/ AD是/ BAC的平分线,•/ BAF= / DAC .•/ DBC= / FBD .即BD平分/ CBF .即结论①正确. 又由 / FBD= / FAB , / BFD= /AFB,得△ FBD 〜△ FAB .由,FB2=FD?FA .即结论②成立.r A rb由—-得AF?BD=AB ?BF .即结论④成立.AF _AB正确结论有①②④ .故答案为D点评:本题考查了弦切角、圆周角与弧的关系,还考查了三角形相似的知识,本题总体难度 不大,属于基础题.7. ( 5 分)(2014?天津)设 a , b€R ,贝U a >b”是 a|a|>b|b|”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 考点:必要条件、充分条件与充要条件的判断. 专题:简易逻辑.分析:根据不等式的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 解答:解:若a >b ,① a > b%,不等式a|a|> b|b 等价为a?a > b?b ,此时成立.② 0>a > b ,不等式a|a >b|b|等价为-a?a >- b?b , 即卩a 2< b 2,此时成立.③ a^0 > b ,不等式a|a|> b|b 等价为a?a >- b?b ,即a >- b ,此时成立,即充分性 成立. 若 a|a|> b|b|,① 当 a >0, b > 0 时,a|a |>b|b|去掉绝对值得,(a - b ) (a+b )> 0,因为 a+b >0,所 以 a -b >0,即 a >b .② 当 a > 0, b < 0 时,a > b .③ 当 a < 0, b < 0 时,a|a |>b|b|去掉绝对值得,(a - b ) (a+b )< 0,因为 a+b < 0,所 以a -b >0,即a >b .即必要性成立,综上a >b"是a|a |>b|b|”的充要条件, 故选:C .点评:本题主要考查充分条件和必要条件的判断,利用不等式的性质结合分类讨论是解决本题的关键.& ( 5分)(2014?天津)已知菱形 ABCD 的边长为2, / BAD=120 °点 _ _.=入L-, I =』:’,若(_-?,* =1,-'上?-.1 =考点: 专题: 分析: 平面向量数量积的运算. 平面向量及应用.利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义由AL ? AF 1,求得4 A+4卩-2入=:3①;再由JE ?L,F --;,求得-入-入甘-下②.纟口 合①②求得入+卩的值.解答:解:由题意可得若 AE ?AT = ( A5+BE ) ?(应5+DF )=阴存 AD +址■ AD +BI!・ DFE 、F 分别在边BC 、DC 上, 1B. 2C. 5D . 2 36?12A .=4 V4 p- 2 入—2=1 ,4 V+4 p- 2 入=3 ①.西?斎-EC ?(-氏)版呢=(1 -入)厩?(1 - P)瓦=(1- V)而? (1 -2=(1 - V (1-p) »>DOS120 = (1 -入—p+ 入)(-2)=-二,即-V p+ V =,-二②.3由①②求得V+尸二,6点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义, 属于中档题.二、填空题(共6小题,每小题5分,共30分)9. (5分)(2014?天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4: 5: 5: 6,则应从一年级本科生中抽取60 名学生.考点:分层抽样方法. 专题:概率与统计.分析:先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.解答:解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为丄4+5+B+6 5故应从一年级本科生中抽取名学生数为300 >=60,故答案为:60.=2 >2 >Cos120°【-■ i' '■+ 入「,i?「i+ V I?『,'= -2+4 p+4 廿入卩2滋Xdos120°点评:本题主要考查分层抽样的定义和方法, 应各层的样本数之比,属于基础题.利用了总体中各层的个体数之比等于样本中对故答案为:上.10.(5分)(2014?天津)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为侧视图考点:由三视图求面积、体积. 专题:立体几何.分析:几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的 体积公式计算. 解答:解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,几何体的体积V n点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.11. (5分)(2014?天津)设{a n }是首项为a i ,公差为-1的等差数列,S n 为其前n 项和,若 S i , S 2, S 4成等比数列,则 a 1的值为 -丄.考点:等比数列的性质. 专题:等差数列与等比数列. 分析:n ( 2ai+l - n )由条件求得,S n = -------------- ----------- ,再根据S 1,S 2, S 4成等比数列,可得% Z=S 1?S 4, 由此求得a 1的值.m .正视图 傭观圏兀.故答案为:再根据若S i, S2, S4成等比数列,可得S 2 2=S1?S4,即(施]-1) 2=a i? (4a i -6),解得a i=-—,1故答案为:-一.2点评:本题主要考查等差数列的前n项和公式,等比数列的定义和性质,属于中档题.12. (5分)(2014?天津)在△ ABC中,内角A, B, C所对的边分别是a, b, c,已知b-c4a,2sinB=3sinC,则cosA的值为一丄—考点:余弦定理;正弦定理.专题:解三角形.分析:由条件利用正弦定理求得a=2c, ,再由余弦定理求得cosA= * 的值.2 2bc解答:解:在△ ABC中,故答案为:-一.4点评:本题主要考查正弦定理、余弦定理的应用,属于中档题.13. (5分)(2014?天津)在以0为极点的极坐标系中,圆p=4sin B和直线p in 9=a相交于A、B两点,若△ AOB是等边三角形,则a的值为3 .考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:把极坐标方程化为直角坐标方程,求出B的坐标的值,代入x2+ (y- 2) 2=4,可得a 的值.解答:解:直线psin 0=a 即y=a, (a>0),曲线p=4sin 0,2 2 2即p =4 psin0,即x + (y - 2) =4,表示以C (0, 2)为圆心,以2为半径的圆,解答:解:由题意可得, a n=a i+( n —1)( —1 )=a i+1 -■/ b- c」a ①,2sinB=3sinC ,4••• 2b=3c ②,•/ △ AOB 是等边三角形,••• B (二a , a ),3直线和圆的位置关系, 求出B 的坐214. ( 5 分)(2014?天津)已知函数 f ( x ) =|x +3x|, 个互异的实数根,则实数 a 的取值范围为 (0, 1)考点:专题:分析:根的存在性及根的个数判断. 函数的性质及应用. 由 y=f (x )- a|x - 1|=0 得 f (x ) =a|x - 1|,作出函数 y=f (x ), y=a|x - 1|的图象利用 数形结合即可得到结论.解答:解:由 y=f (x ) - a|x — 1|=0 得 f (x ) =a|x - 1|, 作出函数y=f (x ), y=g (x ) =a|x - 1|的图象, 当a 切,不满足条件,f a ts - 1)玄>1则 a > 0,此时 g (x ) =a|x - 1|=, _ ,L _ a (i _ PY 1当—3v x v 0 时,f (x ) = - x 2- 3x , g (x ) = - a (x - 1), 当直线和抛物线相切时,有三个零点, 此时-x 2 - 3x= - a (x - 1),即 x + (3 - a ) x+a=0, 则由△ = (3- a ) 2 - 4a=0,即 a 2- 10a+9=0,解得 a=1 或 a=9, 当a=9 时,g (x ) = - 9 (x - 1), g (0) =9,此时不成立,•此时 a=1,要使两个函数有四个零点,则此时0v a v 1,若a > 1,此时g (x ) = - a (x - 1 )与f (x ),有两个交点, 此时只需要当x > 1时,f (x ) =g (x )有两个不同的零点即可, 即 x +3x=a (x - 1),整理得 x + ( 3 - a ) x+a=0 ,则由△ = (3- a ) 2 - 4a > 0, 即卩 a 2 - 10a+9>0,解得 a v 1 (舍去)或 a > 9, 综上a 的取值范围是(0, 1) U (9, + s),方法 2:由 f (x )- a|x - 1|=0 得 f (x ) =a|x - 1|,x €R ,若方程 f (x )- a|x- 1|=0 恰有 4 U (9, +s).代入 x 2+ ( y - 2)2=4,可得(2+ (a -2) 2 =4,a > 0, - - a=3.点评:本题考查把极坐标方程化为直角坐标方程的方法, 标是解题的关键,属于基础题.若x=1,则4=0不成立, 故x 力,f (J=1x 沖1 =1、丘 - 1 ) 2+5 (K- 1)|K -I || lx-11x-1+5|, 设 g (x ) =x — 1+'!当 x > 1 时,g (x ) =x — 1+,:Z-1+5 ■1—-— - ■■ I ",当且仅当 X _ 1口 号,+5,则方程等价为|=|x - 1+1X-1仁1,即x=3时取等当X V 1时,=5 — 4=1,当且仅当—(x — 1)=—」L ,即卩x= — 1时取等号,Z- 1则|g ( X )I 的图象如图:若方程f (x )— a|x — 1|=0恰有4个互异的实数根, 则满足a > 9或0 V a v 1,故答案为:点评:本题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强, 难度较大.三、解答题(共6小题,共80分)I 7115. (13 分)(2014?天津)已知函数 f (x ) =cosx?sin (x+—)(I )求f (x )的最小正周期;jr| jr(n )求f (x )在闭区间[-——,——]上的最大值和最小值.4 4考点:三角函数中的恒等变换应用;三角函数的周期性及其求法. 专题:三角函数的图像与性质. 分析:(i )根据两角和差的正弦公式、倍角公式对解析式进行化简,再由复合三角函数的,x €R .(n )由(i )化简的函数解析式和条件中x 的范围,求出2x- —的范围,再利用3正弦函数的性质求出再已知区间上的最大值和最小值.解答: 解答解:(i )由题意得,1 . . V3 2=-=.i ;■: ' ■ ■q q=*「」「.I-:.」.(2工-中Vs qL ・2Sin所以, 由(I )得 f (x )|一 ,周期公式 求出此函数的最小正周期;cosx )f (x ) =cosx? (—sinx2f (x )的最小正周期=n.16. ( 13分)(2014?天津)某大学志愿者协会有 6名男同学,4名女同学,在这10名同学中, 3名同学来自数学学院,其余 7名同学来自物理、化学等其他互不相同的七个学院,现从这 10名同学中随机选取 3名同学,到希望小学进行支教活动 (每位同学被选到的可能性相同) (I )求选出的3名同学是来自互不相同学院的概率;f n )设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.考点:古典概型及其概率计算公式;离散型随机变量及其分布列. 专题:概率与统计. (I )利用排列组合求出所有基本事件个数及选出的 基本事件个数,代入古典概型概率公式求出值;兀 口],则 2疋一 "€[— 5717T ? -------------2 23 6 6,即吕口(2丈一芈)=- 乂时,_ 1~2f ( x ) 函数f (x )取到最小值是:取到最大值是:丄,最小值为4点评:本题考查了两角和差的正弦公式、倍角公式,正弦函数的性质,以及复合三角函数的应用,考查了整体思想和化简计算能力,属于中档题.分析: 3名同学是来自互不相同学院的(n )随机变量X 的所有可能值为0, 1, 2,3, P (X=k)3-k---- --- (k=0 , 1, 2,解答:3)列出随机变量 X 的分布列求出期望值.f I )解:设 选出的3名同学是来自互不相同学院”为事件A ,点评: _C 扣*弼49c10,=60所以选出的3名同学是来自互不相同学院的概率为(n )解:随机变量X 的所有可能值为2, 3)所以随机变量的分布列是2 3 lb随机变量0, 1, 2,4960(k=0, 1,31] 30 X 的数学期望 E47+3X7^^.5210 30 5本题考查古典概型及其概率公式,互斥事件,离散型随机变量的分布列与数学期望,考查应用概率解决实际问题的能力. 由 x€[- 所以,所求的最大值为丄,_]得,2x €[-sin 〔2蛊 - ¥ 1时, ],周期公式17. ( 13 分)(2014?天津)如图,在四棱锥 P- ABCD 中,PA 丄底面 ABCD ,AD 丄 AB ,AB // DC , AD=DC=AP=2 , AB=1,点 E 为棱 PC 的中点.(I )证明:BE 丄DC ;(II )求直线BE 与平面PBD 所成角的正弦值;(川)若F 为棱PC 上一点,满足 BF 丄AC ,求二面角F -AB - P 的余弦值.考点: 专题: 分析: 与二面角有关的立体几何综合题;直线与平面所成的角. 空间位置关系与距离;空间角;空间向量及应用;立体几何.(1)以A 为坐标原点,建立如图所示的空间直角坐标系, 求出BE , DC 的方向向量,根据二了? |-0 ,可得BE 丄DC ;(II )求出平面PBD 的一个法向量,代入向量夹角公式,可得直线 BE 与平面PBD所成角的正弦值;(川)根据BF 丄AC ,求出向量IT 的坐标,进而求出平面 FAB 和平面ABP 的法向量, 代入向量夹角公式,可得二面角 F - AB - P 的余弦值. 解答: 证明:(1) •/ PA 丄底面ABCD , AD 丄AB ,以A 为坐标原点,建立如图所示的空间直角坐标系,••• AD=DC=AP=2 , AB=1,点 E 为棱 PC 的中点.••• B ( 1, 0 , 0), C (2 , 2 , 0), D ( 0 , 2 , 0),P(0 , 0 , 2), E (1 , 1 , 1)-- ■- - N=(0 , 1 , 1), 1'= (2 , 0 , 0) I '=0 ,• BE 丄 DC ;(n ) v | i= ( - 1, 2, 0),可;=(1, 0, - 2),设平面PBD 的法向量| = (x , y , z ),令 y=1,则 >■= ( 2, 1, 1), 则直线BE 与平面PBD 所成角B 满足:(出)V|,■-= (1 , 2, 0),心(-2,- 2, 2), i= (2, 2, 0),由F 点在棱PC 上,设CF =疋P = (- 2入,-2入2 X) (0三入1) 故E?=^+EF = (1 - 2 人 2 - 2X, 2X (0W 入1 炙, 由 BF 丄 AC ,得 BF ?AC =2 (1 - 2 X +2 (2- 2 X =0,设平面FBA 的法向量为ii= (a , b , c ),令 c=1,则「i= ( 0,- 3, 1), 取平面ABP 的法向量| i = (0, 1, 0), 则二面角F - AB - P 的平面角 a 满足:故二面角F - AB - P 的余弦值为:— 10点评:本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向 量夹角问题,是解答的关键.ID 尸 BD-m*PB=0,得-s+2y=0 x - 2 z=0sin 0=in故直线BE 与平面PBD 所成角的正弦值为Vsn * AB = 0 n*BF=0COS a == 3I i | ■|n | 7103v'TC i10 即芋=(-,得18. (13分)(2oi4?天津)设椭圆亠+ 二=1 (a > b > o )的左、右焦点分别为 F i 、F 2,右顶a 2b 2点为A ,上顶点为B ,已知|AB|=丄丄|F i F 2|.2(I )求椭圆的离心率;(n )设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点 F 1,经过原点O 的直线I 与该圆相切,求直线I 的斜率.考点:直线与圆锥曲线的综合问题. 专题:圆锥曲线的定义、性质与方程.分析:(I )设椭圆的右焦点为F 2 ( c , o ),由|AB|=V3|F 1F 2|.可得Qj + b 巫容x 2c , 再利用b 2=a 2 - c 2, e=即可得出.aj - ] ■ 1 . - =c (x o +c ) +cy o =0,(n )由(i )可得b 2=c 2 •可设椭圆方程为? 2亠;亡二1 ,设 P (x o , y o ),由 F i (-c , o ) , B( o , c ),可^得卩利用圆的性质可得-,于是I卜=。
2014天津高考真题数学文(含解析)

③ AE CE BE DE ;④ AF BD AB BF . 则所有正确结论的序号是( A.①② B.③④ ) C.①②③ D. ①②④
1 / 14
8.已知函数 f ( x) 3 sin x cos x( 0), x R. 在曲线 y f ( x ) 与直线 y 1 的交点中,若相 邻交点距离的最小值为 A.
9 / 14
7.如图, ABC 是圆的内接三角形, BAC 的平分线交圆于点 D ,交 BC 于
E ,过点 B 的圆的切线与 AD 的延长线交于点 F ,在上述条件下,给出下列
四个结论: ① BD 平分 CBF ; ② FB FD FA ; ③ AE CE BE DE ;
π ,则 f ( x ) 的最小正周期为( 3
C. π D. 2 π
)
π 2
B.
2π 3
二.填空题:本大题共 6 小题,每小题 5 分,共 30 分. 9.某大学为了解在校本科生对参加某项社会实践活动的意向, 拟采用分层抽样的方法, 从该校四个年 级的本科生中抽取一个容量为 300 的样本进行调查.已知该校一年级、二年级、三年级、四年级 的本科生人数之比为 4 : 5 : 5 : 6 ,则应从一年级本科生中抽取 10.一个几何体的三视图如图所示(单位: m ) ,则该几何体的体积为 名学生.
B. x0 0 ,使得 ( x0 1)e x0 1 D. x 0 ,总有 ( x 1)e x 1
x 0,( x 1)e x 1p : x 0, ( x 1)e x 1 ,故选 C .
) D. c b a
2
4.设 a log 2 , b log 1 , c 2 , 则( A. a b c B. b a c
2014年天津高考文科数学真题及答案

2014年天津高考文科数学真题及答案一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)i 是虚数单位,复数=++ii 437( ) A. i -1 B. i +-1 C. i 25312517+ D. i 725717+- (2)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤--≥-+.1,02,02y y x y x 则目标函数y x z 2+=的最小值为( )A.2B. 3C. 4D. 53.已知命题为则总有p e x x p x ⌝>+>∀,1)1(,0:( )A.1)1(,0000≤+≤∃x ex x 使得 B. 1)1(,0000≤+>∃x e x x 使得 C.1)1(,0000≤+>∃x e x x 总有 D.1)1(,0000≤+≤∃x e x x 总有 4.设,,log ,log 2212-===πππc b a 则( )A.c b a >>B.c a b >>C.b c a >>D.a b c >>5.设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( ) A.2 B.-2 C.21 D .21 6.已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.120522=-y x B.152022=-y x C.1100325322=-y x D.1253100322=-y x 7.如图,ABC ∆是圆的内接三角行,BAC ∠的平分线交圆于点D ,交BC 于E ,过点B 的圆的切线与AD 的延长线交于点F ,在上述条件下,给出下列四个结论:①BD 平分CBF ∠;②FA FD FB ⋅=2;③DE BE CE AE ⋅=⋅;④BF AB BD AF ⋅=⋅.则所有正确结论的序号是( )A.①②B.③④C.①②③D. ①②④8.已知函数()cos (0),.f x x x x R ωωω=+>∈在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3π,则()f x 的最小正周期为( ) A.2π B.23π C.π D.2π二.填空题:本大题共6小题,每小题5分,共30分.9.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.10.一个几何体的三视图如图所示(单位:m),则该几何体的体积为 3m .11.阅读右边的框图,运行相应的程序,输出S 的值为________.12.函数()3lg f x x =的单调递减区间是________. 13.已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC 、DC 上,3BC BE =,DC DF λ=.若1AE AE ⋅=,则λ的值为________.(14)已知函数()⎪⎩⎪⎨⎧>-≤++=0,220,452x x x x x x f 若函数x a x f y -=)(恰有4个零点,则实数a 的取值范围为_______三.解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤(15)(本小题满分13分)某校夏令营有3名男同学C B A ,,和3名女同学Z Y X ,,,其年级情况如下表:现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(1)用表中字母列举出所有可能的结果(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.(16)(本小题满分13分)在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,已知b c a 66=-,C B sin 6sin = (1)求A cos 的值;(2)求)62cos(π-A 的值.17、(本小题满分13分) 如图,四棱锥的底面是平行四边形,,,分别是棱的中点.(1) 证明平面;(2) 若二面角P-AD-B 为, ① 证明:平面PBC ⊥平面ABCD② 求直线EF 与平面PBC 所成角的正弦值.18、(本小题满分13分)设椭圆的左、右焦点分别为,,右顶点为A ,上顶点为B.已知=.(1) 求椭圆的离心率;(2) 设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点,经过点的直线与该圆相切与点M ,=.求椭圆的方程.19 (本小题满分14分)已知函数232()(0),3f x x ax a x R =->∈ (1) 求()f x 的单调区间和极值;(2)若对于任意的1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得12()()1f x f x ⋅=,求a 的取值范围 20(本小题满分14分)已知q 和n 均为给定的大于1的自然数,设集合{}12,1,0-=q M ,集合{}n i M x q x q x x x x A i n n ,2,1,,121=∈++==-, (1)当3,2==n q 时,用列举法表示集合A ;设,,,,121121--++=+++=∈n n n n q b q b b t qa q a a s A t s 其中,,2,1,,n i Mb a i i =∈证明:若,n n b a <则t s <.。