高中物理-电磁感应复习

合集下载

高中物理-电磁感应知识点汇总

高中物理-电磁感应知识点汇总

电磁感应1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。

(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。

产生感应电动势的那部分导体相当于电源。

(3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。

如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数。

任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。

反之,磁通量为负。

所求磁通量为正、反两面穿入的磁感线的代数和。

3.★楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。

楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。

(2)对楞次定律的理解①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。

②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。

③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。

④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。

(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。

★★★★4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

表达式E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。

高中物理:磁场 电磁感应知识点总结

高中物理:磁场 电磁感应知识点总结

高中物理:磁场电磁感应知识点总结
一、磁场:
1、磁场定义:磁场是一种能够使磁体产生旋转矩力,使磁性物体运动的空间性质。

2、磁场的表示:磁场的大小和方向可以用一个向量来表示,其中,磁场强度表示磁
场的大小;而磁场方向代表磁场的传输路线。

3、磁场的性质:磁场具有外力的作用,它能够对磁性物体施加力,使磁性物体运动;而非磁性物体则不受磁场的影响。

此外,磁场还可以产生电能,为机器提供动力。

二、电磁感应:
1、电磁感应定义:电磁感应指一种电场中存在的磁场和受磁场作用时产生的动作矩。

2、电磁感应的原理:电磁感应的原理是,当一个磁体在电场中存在时,会产生一个
磁场,当另一个电体接近时,会受到这个磁场的作用,产生一个磁力矩,从而引起电体的
变动。

3、电磁感应在实际应用中的作用:电磁感应是电气技术和电工技术中一种重要的基础,电磁感应在实际应用中主要应用于发电、电机、变压器和直流主动电动机等方面。

高中物理电磁感应知识点汇总

高中物理电磁感应知识点汇总

电磁感应(磁生电)第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.5.6.(1)(2)(3)1.2.表述表述3.合,源.1.,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场(Φ原方向及ΔΦ情况) 确定感应磁场(B感方向) 判断感应电流(I感方向).重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS计算磁通量及磁通量的变化应把握好以下几点:1、此公式只适用于匀强磁场。

2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值, 即ΔΦ=|Φ2-Φ1|. 【例】 面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转90过程中,穿过 abcd 的磁通量变化量ΔΦ= .【解析】设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁量为:ΔΦ【答案】通量为正 :楞次定律A.a → C.先b,其极。

1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:n t∆ΦE =∆公式理解:① 上式适用于回路中磁通量发生变化的情形,回路不一定闭合.② 感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比. 要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③ 当∆Φ由磁场变化引起时, t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算.图9-1-3④ 由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤ n 表示线圈的匝数,可以看成n 个单匝线圈串联而成。

高中物理——电磁感应

高中物理——电磁感应

高中物理——电磁感应一、电磁感应的基本概念1. 电磁感应的定义2. 法拉第电磁感应定律3. 电磁感应的应用练习题:1. 一根长20cm 的导线在磁感应强度为0.1T 的磁场中以60° 角度匀速转动,求导线在6s 内转过的角度。

答案:72°2. 一个长度为10cm,电阻为2Ω 的导线,以速率为3m/s 进入磁感应强度为0.5T 的磁场中,求产生的感应电动势。

答案:1.5V二、电磁感应定律的应用1. 变压器原理2. 感应电流和感应电动势3. 洛伦兹力和感应电动势练习题:1. 一个高压线圈和低压线圈的匝数比为4:1,高压线圈输入电压为200V,求低压线圈的输出电压。

答案:50V2. 一个直径为0.05m,线圈匝数为1000,转动速率为300转/min 的圆形电发生器,求其在磁感应强度为0.1T 的磁场中产生的感应电动势。

答案:47.1V3. 在磁感应强度为0.2T 的磁场中,有一根长度为0.3m,电阻为5Ω 的导线以速率为2m/s 进入磁场中,求导线所受的洛伦兹力和感应电动势。

答案:洛伦兹力为0.6N,感应电动势为1V三、动生电和静生电1. 动生电和动生电的原理2. 静生电和静生电的原理3. 静电感应和静电感应的原理练习题:1. 一根长30cm 的导线在磁感应强度为0.2T 的磁场中以90° 角度匀速转动,导线两端的电压为多少?答案:1.8V2. 在磁场中有一根长度为0.5m,电阻为10Ω 的导线,导线以速率为3m/s 进入磁场,求导线端的电压。

答案:3V3. 一块金属板放置于与水平面成30° 角度的非均匀电场中,电场强度为 3.0×10⁴N/C,板的长度为10cm,宽度为5cm,板两端的电势差为多少?答案:2.6V总结:电磁感应是高中物理中的重要知识点,涉及到电磁感应定律、变压器原理、感应电流和感应电动势、洛伦兹力和感应电动势、动生电和静生电、静电感应等多个方面。

电磁感应高中物理知识点

电磁感应高中物理知识点

电磁感应高中物理知识点1. 电磁感应的基本概念电磁感应是指当导体相对于磁场运动或磁场的强度发生变化时,会在导体中产生感应电动势和感应电流的现象。

电磁感应是电磁学的重要基础,具有广泛的应用。

2. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的重要定律。

它的表达式为:感应电动势的大小与导体中磁场的变化率成正比。

3. 磁通量和磁感应强度磁通量表示磁场穿过某个面积的数量,用符号Φ表示,单位为韦伯(Wb)。

磁感应强度表示单位面积上的磁通量,用符号B表示,单位为特斯拉(T)。

4. 楞次定律和楞次圈定律楞次定律是描述电磁感应中电流方向的定律。

根据楞次定律,感应电流会产生一个磁场,其方向与原磁场相反。

楞次圈定律是描述电磁感应中感应电动势的方向的定律。

根据楞次圈定律,感应电动势的方向使得感应电流产生一个磁场,其磁场的方向与原磁场相反。

5. 弗莱明右手定则弗莱明右手定则是判断电流在磁场中受力方向的定则。

根据该定则,当右手大拇指指向电流方向,四指指向磁场方向时,手掌所指方向就是电流受力方向。

6. 涡流和涡流损耗涡流是指在导体中由于磁场的变化而产生的感应电流。

涡流会在导体内部产生能量损耗,称为涡流损耗。

涡流损耗的大小与导体特性、磁场强度、频率等因素有关。

7. 互感和自感互感是指两个或多个线圈之间由于磁场的相互作用而产生感应电动势的现象。

互感的大小与线圈的匝数、磁场强度等因素有关。

自感是指线圈中自身磁场变化所产生的感应电动势。

自感的大小与线圈的匝数、磁场强度等因素有关。

8. 电磁感应的应用电磁感应在生活和工业中有广泛的应用,如变压器、电动机、发电机、电磁感应炉等。

它们的原理都是利用电磁感应现象。

以上是电磁感应的高中物理知识点的简要介绍。

电磁感应是电磁学中的重要概念,对于理解电磁现象和应用具有重要意义。

希望这份文档能对你有所帮助!。

高中物理复习电磁学部分

高中物理复习电磁学部分

高中物理复习电磁学部分电磁学是高中物理中的重要内容之一,也是学生们较为困惑的部分之一。

本文将对电磁学的相关知识进行复习和总结,帮助学生们更好地理解和掌握这一内容。

一、电磁学基础知识1. 电荷和电场在电磁学中,电荷是基本粒子,可以带正电荷或负电荷。

同性电荷相斥,异性电荷相吸。

电场是电荷周围产生的一个物理场,描述了电荷之间相互作用的规律。

2. 静电场和静电力静电场是指电荷静止时产生的电场。

静电力是指电荷之间由于电场作用而产生的力。

根据库仑定律,两个电荷之间的电力与电荷的大小和距离的平方成正比。

3. 电场线电场线是描述电场分布形态的一种图示方法。

电场线的特点是从正电荷出发,指向负电荷,密集区域代表电场强,稀疏区域代表电场弱。

电场线不会相交,且垂直于导体表面。

二、电磁感应和法拉第电磁感应定律1. 磁感线和磁感应强度磁感线是描述磁场分布形态的一种图示方法。

磁感应强度是磁场对单位面积垂直于磁力线方向的力的大小。

2. 法拉第电磁感应定律法拉第电磁感应定律是指导体中的磁感应强度变化会诱导出感应电动势的规律。

根据法拉第电磁感应定律,感应电动势的大小与磁感应强度变化速率成正比。

3. 感应电流和楞次定律根据楞次定律,感应电流的方向总是阻碍引起它产生的因素,如磁感应强度的变化。

感应电流具有闭合电路的特点。

三、电磁波和麦克斯韦方程组1. 电磁波的特点电磁波是由电场和磁场交替变化产生的一种波动现象。

电磁波可以传播在真空中和介质中,具有波长、频率和速度等特性。

2. 麦克斯韦方程组麦克斯韦方程组是描述电场和磁场相互作用的基本定律。

包括麦克斯韦第一和第二个定律、高斯定律和法拉第定律。

3. 电磁波的分类根据频率的不同,电磁波可以分为射线、微波、红外线、可见光、紫外线、X射线和γ射线等。

四、电磁学的应用1. 电磁感应的应用电磁感应在发电机、变压器等电器设备中有广泛应用。

电磁感应还可以用于磁悬浮列车、无线充电等领域。

2. 电磁波的应用电磁波在通信、雷达、医学影像等方面有重要应用。

高中物理:电磁感应知识点归纳

高中物理:电磁感应知识点归纳

高中物理:电磁感应知识点归纳一、电磁感应的发现1.“电生磁”的发现奥斯特实验的启迪:丹麦物理学家奥斯特发现电流能使小磁针偏转,即电流的磁效应2.“磁生电”的发现(1)电磁感应现象的发现法拉第根据他的实验,将产生感应电流的原因分成五类:①变化的电流;②变化的磁场;③运动中的恒定电流;④运动中的磁铁;⑤运动中的导线。

(2)电磁感应的发现使人们找到了“磁生电”的条件,开辟了人类的电气化时代。

二、感应电流产生的条件1. 探究实验实验一:导体在磁场中做切割磁感线的运动实验二:通过闭合回路的磁场发生变化2. 感应电流产生的条件:穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生三、感应电动势1. 定义:由电磁感应产生的电动势,叫感应电动势。

产生电动势的那部分导体相当于电源。

2. 产生条件:只要穿过电路的磁通量发生变化,无论电路是否闭合,电路中都会有感应电动势。

3. 方向判断:在内电路中,感应电动势的方向是由电源的负极指向电源的正极,跟内电路中的电流的方向一致。

产生感应电动势的那部分导体相当于电源。

【关键一点】感应电流的产生需要电路闭合,而感应电动势的产生电路不一定需要闭合四、法拉第电磁感应定律1. 定律内容:感应电动势的大小,跟穿过这个电路的磁通量的变化率成正比。

2. 表达式:说明:①式中N为线圈匝数,是磁通量的变化率,注意它与磁通量以及磁通量的变化量的区别。

②E与无关,成正比③在图像中为斜率,所以斜率的意义为感应电动势五、导体切割磁感线时产生的电动势公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.图中有效长度分别为:甲图:l=cdsin β(容易错算成l=absin β).乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,沿v2方向运动时,l=0;沿v3方向运动时,l=R.六、右手定则1. 内容:将右手手掌伸平,使大拇指与其余并拢的四指垂直,并与手掌在同一平面内,让磁感线从手心穿入,大拇指指向导体运动方向,这时四指的指向就是感应电流的方向,也就是感应电动势的方向2. 适用情况:导体切割磁感线产生感应电流七、楞次定律1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

高中物理复习提纲-第十二章 电磁感应

高中物理复习提纲-第十二章  电磁感应
N J V •C 2 1Wb = 1T • m = 1 m =1 =1 = 1V • s A•m A A
2
4、磁感应强度又称磁通密度: 磁感应强
Wb N =1 m2 ( A • m)
二、电磁感应: 电磁感应: 1、定义:只要穿过闭合电路的磁通量发生变化,闭合电路中就有 定义:只要穿过闭合电路的磁通量发生变化, 感应电流产生。其实质就是其它形式的能转化成电能。 感应电流产生。其实质就是其它形式的能转化成电能。 2、电磁感应时一定有感应电动势,电路闭合时才有感应电流。产 电磁感应时一定有感应电动势,电路闭合时才有感应电流。 生感应电动势的那部分电路相当于电源的内电路, 生感应电动势的那部分电路相当于电源的内电路,感应电流从低电 势端流向高电势端(相当于“ 流向 流向“ ); );外部电路感应电流 势端流向高电势端(相当于“—”流向“+”);外部电路感应电流 从高电势端流向低电势端(相当于“ 流向 流向“ )。 从高电势端流向低电势端(相当于“+”流向“—”)。 3、电磁感应定律:电路中的感应电动势的大小, 电磁感应定律:电路中的感应电动势的大小, 路的磁通量的变化率成正比
第十二章、 第十二章、电磁感应
一、磁通量 1、定义:磁感应强度B与磁场垂直面积S的的乘积。表示穿过某一 定义:磁感应强度B与磁场垂直面积S的的乘积。 面积的磁感应线的条数。只要穿过面积的磁感应线条数一定, 面积的磁感应线的条数。只要穿过面积的磁感应线条数一定,磁通 量就一定,与面积是否倾斜、线圈量的匝数等因素无关。 量就一定,与面积是否倾斜、线圈量的匝数等因素无关。 是垂直B的面积, 是垂直S的分量) 2、公式:Φ=BS 公式: (S是垂直B的面积,或B是垂直S的分量) 国际单位:韦伯( 3、国际单位:韦伯(韦) Wb
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)Uab=3BLv/4 (2)Uab=BLv (3)Uab=BLv/4
da
v cb
解(1):只有ab进入磁场, ab是电源,另外 三条边是外电路,电阻是3R/4;
E=BLv I=E/R=BLv/R Uab= I×3R/4=3BLv/4
解(2):回路中无Δφ,所以无电流; 但有电动势。断路时路端电压等于电源电动 势,所以Uab= BLv
E1= Δφ/ Δt = πrA2 ΔB/ Δt
∵“磁场均匀变化”,∴ 令ΔB/ Δt =K
E 1= kπrA2 I= E 1 / RA+ RB= kπrA2 / 3R B 此时“a、b两点间电压为U” ∴ U=I RB=kπrA2 / 3= 4kπrB2 / 3 (1)
当均匀变化的磁场垂直穿过小环时 , 小环B相当
这对三应段的变感化应过 电程 流中,则感: B应D电动势的大小,I1、I2、I3分别表示
A、E1>E2,I1沿逆时针方向,I2沿顺时针方向
B、E1<E2,I1沿逆时针方向,I2沿顺时针方向
C、E1<E2,I2沿顺时针方向,I3沿逆时针方向
D、E2=E3,I2沿顺时针方向,I3沿顺时针方向
顺时针
t/s O 1 2 3 4 5 -E0 -2E0
t/s O 1 2 3 4 5 -E0 -2E0
t/s
A
B
图3
C
D
练习1:如图(甲)所示,一闭合金属圆环处在垂直圆环平面 的匀强磁场中。若磁感强度B随时间t按如图(乙)所示的 规律变化,设图中磁
感强度垂直纸面向里为正
B
方向,环中感生电流沿顺 时针方向为正方向。则环
再由左手定则判断ab杆受 到与运动方向相反的安培力;
Ba
速度减小、电动势减小、电
R FBv0流源自小、安培力减小,加速b度减小,所以ab杆做加速度
减小的减速运动。
解(2):金属杆运动过程中的最大加速度
由(1)可知,安培力是
阻力,所以 v
EI
FB a
Ba
R FB
v0
b
所以刚开始运动时加速度最大。
解:(3)金属杆运动速度为v时的加速度
∴ U’=I RA=kπrB2 / 3RB ×RA
=kπrB2 / 3RB ×2RB
=2kπrB2 / 3
(2)
对比(1)(2)两式知U ’ =U / 2
选(B)
注意:电阻定律中的横截面积S不等于πr2
练习2:如图与电阻 R 组成的闭合电路的金属 环所在处的磁场方向与圆环平面垂直指向纸内, 整个闭合电路的电阻为2Ω,若穿过圆环的磁通 量在一段时间内由1Wb增加到5Wb,则在这段 时间内通过电阻 R 上的电量为多少?
a
B
R
b
解:q = I Δt (1)
I =E/R= Δφ/ Δt R=(5-1)/2 Δt =2/Δt (2)代入(1)
q= 2 Δt /Δt =2 C
答案:电量 q = 2C 小结:文字题最后有无单位,看题本身;题中 物理量给单位,最后就带单位;题中物理量不 给单位,最后就不带单位。
第二类问题:与牛顿运动定律相结合
以图1中线圈上箭头所
示方向的电流为正,
则以下的I—t图中正确
的是 ( A )
练习3:一匀强磁场,磁场方向垂直纸面,规定向里的方向为
正.在磁场中有一细金属圆环,线圈平面位于纸面内,如图1
所示.现令磁感强度B随时间t变化,先按图2中所示的Oa图
线变化,后来又按图线bc和cd变化,令E1、E2、E3分别表示
∴ P1/P2= v12 / v22
练习3:如图所示,电阻为R的矩形线框,长为l,宽为a, 在外力作用下,以速度v向右匀速运动,求在下列两
种情况通过宽度为d、磁感应强度为B的匀强磁场
区过程中,外力所做的功:
(a) l <d 时;
(b) l >d 时。
a
B
l
d
W=2B2a2 l v/R
a
B
l
d
W=2B2a2 d v/R
环时 , a、b两点间电压为U ;若让同一均匀变
化的磁场垂直穿过B环 , 则a、b两点间的电压为
(B)
A、2U B、U/2
A
aB
C、4U D、U/4
b
解:当均匀变化的磁场垂直穿过大环时 , 大环A相 当于电源,设内阻为RA=ρ 2πrA/S;小环是外电路, 外阻为RB=ρ2πrB/S , ∵ rA=2rB∴ RA= 2 RB。
(1)画出运动后的某时刻导体
杆的受力图;
(2)在加速下滑过程中,当ab杆
的速度大小为 v 时的加速度的
大小;
(3)求在下滑过程中,ab杆可以
达到的速度最大值。
解(1):
N
FB
θ
B
mg
解(2):
B2 L2v ( 2 )a g sinθ
mR
解(3):
mgR sinθ ( 3 )vm B2 L2
练习3:如图所示在竖直向下的匀强磁场B的区域内 , 有 一个水平放置的金属框架 , 框架宽度为l , 电阻为R , 质量 为m电阻为 r 的金属杆ab能与框架良好接触 , 以初速度v0 开始水平向右运动。求:
R a mL b
你能从能的转化和守恒角度求解vm吗?
解:达到vm后,匀速运动,动能不变,由能的 转化 和守恒知:重力势能的减少等于电能的增加,即:
PG= P电 mgvm=I2R=E2/R=B2L2v2m/R 得:vm= mgR / B2L2
与前面用力的平衡知识求解结果相同,更简单。
练习1:如图所示,长L1宽L2的矩形线圈电阻为R, 处于磁感应强度为B的匀强磁场边缘,线圈与磁感 线垂直。求:将线圈以向右的速度v匀速拉出磁 场的过程中,(1)拉力的大小F; (2)拉力的功率P; (3)拉力做的功W; (4)线圈中产生的电热Q ;(5) 通过线圈某一截面的电荷量q 。
法拉第电磁感应定律综合运用习题课
(1)与闭合电路欧姆定律相结合 (2)与牛顿运动定律、运动学相结合 (3)与做功、能量转化相结合 (4)与图像问题相结合
第一类问题:与闭合电路欧姆定律相结合
例题1:如图,边长为L均匀的正方形金属框架 abcd总电阻为R,框架以速度v向右匀速平动,经过 磁感强度为B的匀强磁场。求下列三种情况ab之 间的电势差。(1) 只有ab进入磁场。(2) 线框全部 进入磁场。(3) 只有ab边离开磁场。
的始末位置相同,求
(1)通过导线截面的电量之比
v
(2)两次拉出过程外力做功之比
(3)两次拉出过程中电流的功率之比 B
解: (1) q=I Δt= E Δt/R=ΔΦ/ R ∴ q1 /q2 =1:1
(2) W=FL=BIlL=B2 l2 vL/R ∝v
∴ W1/W2=v1/v2 (3) P= E2/R = B2 l2 v2/R ∝v2
解(3):自己完成
小结解决问题的方法、步骤: (1)找到“等效电源”,分清内外电路和内、 外阻大小
(2)必要时画出等效电路图
(3)运用闭合电路欧姆定律进行相关计算
练习1:如图, A、B是相同的导线制成的两个互
联金属圆环 , 半径 rA= 2rB , 两圆环间用电阻不 计的导线连接 , 当均匀变化的磁场垂直穿过大
于电源,设内阻为RB=ρ2πrB/S;大环是外电路, 外阻为RA=ρ2πrA/S , ∵ rA=2rB∴ RA= 2 RB。 E2= Δφ/ Δt = πrB2 ΔB/ Δt ∵“磁场均匀变化”,∴ 令ΔB/ Δt =K
E 2= kπrB2 I= E 2 / RA+ RB= kπrB2 / 3R B 此时a、b两点间电压为U ’
放置一个不变形的单匝金属圆 线圈,规定线圈中感应电流的正 方向如图1所示,当磁场的磁感 应强度B随时间t如图2变化时, 图3中正确表示线圈中感应电动 势E变化的是
B
B
I
图 1
O 1234 5
图 2
E
E
E
E
2E0
2E0
2E0
2E0
E0
E0
E0
E0
O 12345 -E0 -2E0
t/s O 1 2 3 4 5 -E0 -2E0
解(4):金属杆运动过程中的最大速度和最小速度 最大速度为 v 0 ; 最小速度为零 。
解(5) :整个过程中两个电阻上产生的焦耳热 根据能量守恒,ab杆动能的减少全部转化为R 和 r上 的电能,因为是纯电阻,电能又全部转化为两个电阻 上的 热能
所以:
*选作:两金属杆ab和cd长均为 l , 电阻均为R, 质 量分别为M和m, M>m.。用两根质量和电阻均可 忽略的不可伸长的柔软导线将它们连成闭合回路
c
a
m
b d
E=BLv 得: v =(M-m)gR/ 2B2l 2 双杆模型
第三类问题:与做功、能量转化相结合
例题4:如图所示,竖直放置的U形导轨宽为L,上 端串有电阻R(其余导体部分的电阻都忽略不计)。 磁感应强度为B的匀强磁场方向
垂直于纸面向外。金属棒ab的质
量为m,与导轨接触良好,不计摩擦, 从静止释放后ab保持水平而下滑, 试求ab下滑的最大速度vm 。
t
0
T/2
T
中电流随时间变化的图象


可能是下图中的 ( )
i
i
i
i
0
0 T/2 T t
A
T/2 T
B
t0
T/2
T
C
t0
T/2 T t D
练习2:一矩形线圈位于一随时间t变化的匀强磁场内, 磁场方向垂直线圈所在的平面(纸面)向里,如图1所 示。磁感应强度B随 t的变化规律如图2所示。以l表示 线圈中的感应电流,
相关文档
最新文档