(完整)高三数学函数综合题训练(含详解)

合集下载

高中函数测试题及答案

高中函数测试题及答案

高中函数测试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1在x=2时的值为:A. 5B. 7C. 9D. 112. 函数y = |x|的图像是:A. 一条直线B. 一个V形C. 一个倒V形D. 一个S形3. 若f(x) = x^2 + 1,求f(-1)的值:A. 0B. 1C. 2D. 34. 函数y = 1/x的图像在第一象限和第三象限是:A. 正比例函数B. 反比例函数C. 一次函数D. 二次函数5. 函数y = log2(x)的定义域是:A. x > 0B. x < 0C. x ≥ 0D. x ≤ 06. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π7. 若f(x) = x^3 - 3x^2 + 2x,求f'(x)的值:A. 3x^2 - 6x + 2B. x^2 - 2x + 1C. 3x^2 - 6xD. x^2 - 2x8. 函数y = cos(x)的图像在x = π/2时的值为:A. 1B. 0C. -1D. 不确定9. 若f(x) = 2^x,求f'(x)的值:A. 2^xB. ln(2) * 2^xC. 1D. 2^(x-1)10. 函数y = x^3的图像是:A. 关于原点对称B. 关于y轴对称C. 关于x轴对称D. 都不是答案:1. B2. B3. C4. B5. A6. B7. A8. B9. B10. A二、填空题(每题4分,共20分)11. 若函数f(x) = x^3 - 6x^2 + 9x + 2,求f(3)的值。

答案:-112. 若函数g(x) = √x,求g(16)的值。

答案:413. 若函数h(x) = 2^x,求h(-1)的值。

答案:1/214. 函数y = 3x - 5的斜率是:答案:315. 若函数k(x) = log10(x) + 1,求k(100)的值。

高三数学函数综合题训练(含详解)

高三数学函数综合题训练(含详解)

高三函数综合题1.已知函数f(x)=2x+2-x a(常数a∈R).(1)若a=-1,且f(x)=4,求x的值;(2)若a≤4,求证函数f(x)在[1,+∞)上是增函数;(3)若存在x∈[0,1],使得f(2x)>[f(x)]2成立,求实数a的取值范围.2.已知函数f(x)=x2+(x-1)|x-a|.(1)若a=-1,解方程f(x)=1;(2)若函数f(x)在R上单调递增,求实数a的取值范围;(3)若a<1且不等式f(x)≥2x-3对一切实数x∈R恒成立,求a的取值范围.3.已知函数f(x)=x|x-a|+2x-3.(1)当a=4,2≤x≤5,求函数f(x)的最大值与最小值;(2)若x≥a,试求f(x)+3>0的解集;(3)当x∈[1,2]时,f(x)≤2x-2恒成立,求实数a的取值范围.4.已知函数f(x)=x2-1,g(x)=a|x-1|.(1)若函数h(x)=|f(x)|-g(x)只有一个零点,求实数a的取值范围;(2)当a≥-3时,求函数h(x)=|f(x)|+g(x)在区间[-2,2]上的最大值.答案详解1.已知函数f(x)=2x+2-x a(常数a∈R).(1)若a=-1,且f(x)=4,求x的值;(2)若a≤4,求证函数f(x)在[1,+∞)上是增函数;(3)若存在x∈[0,1],使得f(2x)>[f(x)]2成立,求实数a的取值范围.解:(1)由a=-1,f(x)=4,可得2x-2-x=4,设2x=t,则有t-t -1=4,即t 2-4t-1=0,解得t=2±5,当t=2+5时,有2x=2+5,可得x=log 2(2+5).当t=2-5时,有2x=2-5,此方程无解.故所求x 的值为log 2(2+5).(2)设x 1,x 2∈[1,+∞),且x 1>x 2, 则f(x 1)-f(x 2)=(2x1+2-x 1a)-(2x 2+2-x 2a)=(2x 1-2x2)+2112222x x x x +-a=2121222x x x x +-(2x 1+x2-a)由x 1>x 2,可得2x1>2x 2,即2x1-2x2>0,由x 1,x 2∈[1,+∞),x 1>x 2,得x 1+x 2>2,故2x 1+x2>4>0,又a≤4,故2x 1+x 2>a ,即2x 1+x2-a >0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在[1,+∞)上是增函数.(3)因为函数f (x )=2x +2-xa ,存在x ∈[0,1],f (2x )>[f (x )]2⇔22x +2-2x a >22x +2a+2-2x a 2⇔2-2x (a 2-a )+2a <0 设t=2-2x,由x ∈[0,1],可得t ∈[41,1],由存在x ∈[0,1]使得f (2x )>[f (x )]2, 可得存在t ∈[41,1],使得(a 2-a )t+2a <0,令g (t )=(a 2-a )t+2a <0, 故有g(41)=41(a 2-a)+2a <0或g (1)=(a 2-a )+2a <0, 可得-7<a <0.即所求a 的取值范围是(-7,0).2.已知函数f (x )=x 2+(x-1)|x-a|. (1)若a=-1,解方程f (x )=1;(2)若函数f (x )在R 上单调递增,求实数a 的取值范围;(3)若a <1且不等式f (x )≥2x -3对一切实数x ∈R 恒成立,求a 的取值范围.解析:(1)当a=-1时,f (x )=x 2+(x-1)|x+1|,故有,f(x)= ⎩⎨⎧-<-≥-111122x x x ,当x≥-1时,由f (x )=1,有2x 2-1=1,解得x=1,或x=-1. 当x <-1时,f (x )=1恒成立, ∴方程的解集为{x|x≤-1或x=1}.(2)f(x)= ⎩⎨⎧<-+≥++-a x a x a ax a x a x )1()1(22若f (x )在R 上单调递增,则⎪⎩⎪⎨⎧>+≤+0141a a a ,解得a≥31,∴当a≥31时,f (x )在R 上单调递增. (3)设g (x )=f (x )-(2x-3),则g(x)=⎩⎨⎧<+--≥+++-a x a x a ax a x a ,3)1(,3)3(2x 2,不等式f (x )≥2x -3对一切实数x ∈R 恒成立,等价于不等式g (x )≥0对一切实数x ∈R 恒成立.∵a <1,∴当x ∈(-∞,a )时,g (x )单调递减,其值域为(a 2-2a+3,+∞),∵a 2-2a+3=(a-1)2+2≥2,∴g (x )≥0成立.3.已知函数f (x )=x|x-a|+2x-3.(1)当a=4,2≤x≤5,求函数f (x )的最大值与最小值; (2)若x≥a,试求f (x )+3>0的解集;(3)当x ∈[1,2]时,f (x )≤2x -2恒成立,求实数a 的取值范围. 解析:(1)当a=4时,f (x )=x|x-4|+2x-3,①2≤x<4时,f (x )=x (4-x )+2x-3=-(x-3)2+6, 当x=2时,f (x )min =5;当x=3时,f (x )max =6②当4≤x≤5时,f (x )=x (x-4)+2x-3=(x-1)2-4, 当x=4时,f (x )min =5;当x=5时,f (x )max =12综上所述,当x=2或4时,f (x )min =5;当x=5时,f (x )max =12 (2)若x≥a,f (x )+3=x[x-(a-2)],当a >2时,x >a-2,或x <0,因为a >a-2,所以x≥a; 当a=2时,得x≠0,所以x≥a;当a <2时,x >0,或x <a-2,①若0<a <2,则x≥a;②若a≤0,则x >0 综上可知:当a >0时,所求不等式的解集为[a ,+∞);(10分) 当a≤0时,所求不等式的解集为(0,+∞)(12分) (3)当x∈[1,2]时,f (x )≤2x -2,即x•|x -a|≤1⇔-x 1≤x -a≤x 1⇔x-x 1≤a≤x+x1 因为x-x1在x∈[1,2]上增,最大值是2-21=23,x+x1在x∈[1,2]上增,最小值是2,故只需23≤a≤2.故实数a 的取值范围是23≤a≤2.4.已知函数f (x )=x 2-1,g (x )=a|x-1|.(1)若函数h (x )=|f (x )|-g (x )只有一个零点,求实数a 的取值范围; (2)当a≥-3时,求函数h (x )=|f (x )|+g (x )在区间[-2,2]上的最大值.解:(1)∵函数h (x )=|f (x )|-g (x )只有一个零点,即h (x )=|f (x )|-g (x )=|x 2-1|-a|x-1|只有一个零点,显然x=1是函数的零点,∴即|x+1|-a=0无实数根,∴a <0;(2)h (x )=|f (x )|+g (x )=)=|x 2-1|+a|x-1|=⎪⎩⎪⎨⎧-≤≤--+-<<-++--≤≤--+121111211222x a ax x x a ax x x a ax x ,当1<x≤2时,∵a≥-3,∴-2a ≤23,当x=2时,h (x )的最大值为h (2)=a+3; 当-2≤x<-1时,2a≥-23,当x=-2时,h (x )的最大值为h (-2)=3a+3;当-1≤x≤1时,h (x )的最大值为max{h (-1),h (1),h (-2a )}=max{2a ,0,41a 2+a+1}=41a 2+a+1,∴函数h (x )最大值为h (a )=⎪⎪⎩⎪⎪⎨⎧+>+++<<+≤≤-+6241416240330332a a a x a a a .。

高三数学专题复习(函数与方程练习题)

高三数学专题复习(函数与方程练习题)

高三数学专题复习(函数与方程练习题)(附参考答案)一、选择题1、定义域为R 的函数y =f (x)的值域为[a ,b ],则函数y =f (x +a )的值域为( ) A 、[2a ,a +b ] B 、[a ,b ] C 、[0,b -a ] D 、[-a ,a +b ]2、若y =f (x)的定义域为D ,且为单调函数,[a ,b ]D ,(a -b )·f (a)·f (b)>0,则下列命题正确为( ) A 、若f (x)=0,则x ∈(a ,b ) B 、若f (x)>0,则x ∉ (a ,b) C 、若x ∈(a ,b ),则f (x)=0 D 、若f (x)<0,则x ∉ (a ,b )3、设点P 为曲线y =x 3-3 x +32上的任意一点,P 点处切线倾斜角为α,则α的取值范围为( ) A 、[32π,π] B 、(2π,π) C 、[0,2π]∪(65π,π)D 、[0,2π]∪[32π,π)4、设函数f (x)是定义R 上的奇函数,若f (x)的最小正周期为3,且f (1)>1,f (2)=132+-m m ,则m 的取值范围为( )A 、m <32B 、m <32且m ≠-1C 、-1<m <32D 、m >32或m <-15、定义在R 上的函数f (x)在(-∞,2)上是增函数,且f (x +2)的图象关于x =0对称,则( )A 、f (-1)<f (3)B 、f (0)>f (3)C 、f (-1)=f (3)D 、f (0)=f (3)6、已知对一切x ∈R ,都有f (x)=f (2-x )且方程f (x)=0有5个不同的根,则这5个不同根的和为( ) A 、10 B 、15 C 、5 D 、无法确定7、函数y =log21 (x2+kx +2)的值域为R ,则k 的范围为( )A 、[22 ,+∞]B 、(-∞,-22)∪[22,+∞]C 、(-22,22)D 、(-∞,-22]8、设α、β依次是方程log 2x +x -3=0及2x +x -3=0的根,则α+β=( ) A 、3 B 、6 C 、log 23 D 、229、已知函数y =f (2x +1)是定义在R 上的偶函数,则函数y =f (2x)的图象的对称轴为( ) A 、x =1 B 、x =21 C 、x =-21D 、x =-1 10、已知y =f (x )是定义在R 上的奇函数,若g (x)为偶函数,且g (x)=f (x -1)g (2)=2008,则 f (2007)值等于( )A 、-2007B 、2008C 、2007D 、-2008 11、(理)对于R 上可导的任意函数f (x),若满足(x -1)·f '(x)≥0,则必有( ) A 、f (0) +f (2)<2f (1) B 、f (0)+f (2)≤2 f(1) C 、f (0)+f (2)≥2f (1) D 、f (0)+f (2)>2 f (1) 12、函数f (x )=⎩⎨⎧=≠-)2(1)2(|2|lg x x x 若关于x 的方程[f (x)]2+b ·f (x)+C =0,恰有3个不同的实数解x 1、x 2、x 3,则f (x 1+x 2+x 3)等于( )A 、0B 、lg2C 、lg4D 、1 13、已知f (x)=2+log 3 x ,x ∈[1,9],则函数y =[f (x)]2+f (x 2 )的最大值为( ) A 、3 B 、6 C 、13 D 、2214、已知f (x)=lgx ,则函数g (x)=|f (1-x)|的图象大致是( )15、下列函数的图象中,经过平移或翻折后不能与函数y =log 2x 的图象重合的是( )A 、y =2xB 、y =log 21xC 、y =24xD 、y =log 2x1+116、已知x 、y ∈[-4π,4π],a ∈R ,且x 3+sinx -2a =0,4y 3+sinxcosy +a =0,则cos(x +2y )的值为中( ) A 、0 B 、2 C 、3 D 、1 二、填空题 17、已知函数f (x)=22x+lg (x +12+x ),且f (-1)≈1.62,则f (1)近似值为 。

高三数学函数及其表示试题答案及解析

高三数学函数及其表示试题答案及解析

高三数学函数及其表示试题答案及解析1.下了函数中,满足“”的单调递增函数是()A.B.C.D.【答案】B【解析】A选项:由,,得,所以A错误;B选项:由,,得;又函数是定义在上增函数,所以B正确;C选项:由,,得,所以C错误;D选项:函数是定义在上减函数,所以D错误;故选B.【考点】函数求值;函数的单调性.2.在函数y=|x|(x∈[-1,1])的图象上有一点P(t,|t|),此函数与x轴、直线x=-1及x=t围成图形(如图阴影部分)的面积为S,则S与t的函数关系图象可表示为()【答案】B【解析】当t∈[-1,0]时,S增速越来越平缓,当t∈[0,1]时,S增速越来越快,选B项.3.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.则f(x)=________.【答案】x2-x+1【解析】设二次函数f(x)=ax2+bx+c(a≠0).∵f(0)=1,∴c=1.把f(x)的表达式代入f(x+1)-f(x)=2x,有a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.∴2ax+a+b=2x.∴a=1,b=-1.∴f(x)=x2-x+1.4.设为不小于2的正整数,对任意,若(其中,,且),则记,如,.下列关于该映射的命题中,正确的是.①若,,则②若,,,且,则③若,,,,且,,则④若,,,,且,,则.【答案】②③④【解析】当时,所以,.所以不成立;由即设,所以即即②正确;由设,可得.所以,所以可得即③正确.同理根据的含义,可得④正确.【考点】1.新定义问题.2.整数的余式定理.3.分类的思想.4.建立数式运算解决数学问题.5.下列图象表示函数关系y=f(x)的有________.(填序号)【答案】①④【解析】根据函数定义,定义域内任意的一个自变量x的值都有唯一一个y与之对应.6.设函数f(x)=其中b>0,c∈R.当且仅当x=-2时,函数f(x)取得最小值-2.(1)求函数f(x)的表达式;(2)若方程f(x)=x+a(a∈R)至少有两个不相同的实数根,求a取值的集合.【答案】(1)f(x)=(2)【解析】(1)∵当且仅当x=-2时,函数f(x)取得最小值-2.∴二次函数y=x2+bx+c的对称轴是x=-=-2.且有f(-2)=(-2)2-2b+c=-2,即2b-c=6.∴b=4,c=2.∴f(x)=(2)记方程①:2=x+a(x>0),方程②:x2+4x+2=x+a(x≤0).分别研究方程①和方程②的根的情况:(ⅰ)方程①有且仅有一个实数根a<2,方程①没有实数根a≥2.(ⅱ)方程②有且仅有两个不相同的实数根,即方程x2+3x+2-a=0有两个不相同的非正实数根.∴-<a≤2;方程②有且仅有一个实数根,即方程x2+3x+2-a=0有且仅有一个非正实数根.∴2-a<0或Δ=0,即a>2或a=-.综上可知,当方程f(x)=x+a(a∈R)有三个不相同的实数根时,-<a<2;当方程f(x)=x+a(a∈R)有且仅有两个不相同的实数根时,a=-或a=2.∴符合题意的实数a取值的集合为7.下列四组函数中的f(x)与g(x)表示同一函数的有________.(填序号)① f(x)=x0,g(x)=;② f(x)=,g(x)=;③ f(x)=x2,g(x)=()4;④ f(x)=|x|,g(x)=【答案】④【解析】两个函数是否为同一函数,主要是考查函数三要素是否相同,而值域是由定义域和对应法则所唯一确定的,故只须判断定义域和对应法则是否相同,④符合.8.若函数满足,对定义域内的任意恒成立,则称为m 函数,现给出下列函数:①;②;③;④其中为m函数的序号是 .(把你认为所有正确的序号都填上)【答案】②③【解析】①若,则由得,即,所以不存在常数使成立,所以①不是m函数。

2024-2025学年四川省成都市高三上学期数学综合测试试题(含解析)

2024-2025学年四川省成都市高三上学期数学综合测试试题(含解析)

一、单选题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的2024-2025学年四川省成都市高三上学期数学综合测试试题.1. 已知复数112i z =+,则z 的虚部是( )A. 2B. 2iC. 2i 5-D. 25-【答案】D 【解析】【分析】应用复数的除法计算化简,再结合复数的虚部的定义判断即可.【详解】因为()()2112i 12i 12i 12i 12i 12i 14i 55z --====-++--,所以z 的虚部为25-.故选:D.2. 一个盒子中装有5个大小相同的小球,其中3个红球,2个白球.若从中任取两个球,则恰有一个红球的概率为( )A.35B.23C.25D.13【答案】A 【解析】【分析】根据古典概型概率公式求解.【详解】根据题意,任取两球恰有一个红球的概率为112325C C 63C 105P ===.故选:A.3. 对任意的()20,,210x x mx ∞∈+-+>恒成立,则m 的取值范围为( )A. ()1,1-B. (),1-∞C. ()1,+∞D. ()(),11,-∞-⋃+∞【答案】B 【解析】【分析】分离参数,可得()110,,2x m x x ∞⎛⎫∈+<+ ⎪⎝⎭恒成立,结合基本不等式即可求得答案.【详解】对任意的()20,,210x x mx ∞∈+-+>恒成立,即对任意的()110,,2x m x x ∞⎛⎫∈+<+ ⎪⎝⎭恒成立,因为12x x +≥=,当且仅当1x x =,即1x =时取等号,故1m <,故m 的取值范围为(),1∞-.故选:B4. 已知tan 2α=,则1cos2sin2αα+=( )A. 3B.13C. 2D.12【答案】D 【解析】【分析】应用二倍角余弦公式及二倍角正弦公式计算再结合同角三角函数关系求解.【详解】21cos22cos 11sin22sin cos tan 2αααααα+===.故选:D.5. 设,a b ∈R ,则使a b >成立的一个充分不必要条件是( )A. 33a b > B. ()lg 0a b ->C. 22a b > D. a b>【答案】B 【解析】【分析】根据充分条件及必要条件定义结合不等式的性质判定各个选项即可.【详解】对于A ,33a b a b >⇔>,故33a b >是a b >的充要条件;对于B ,由()lg 0a b ->得1a b >+,能推出a b >,反之不成立,所以()lg 0a b ->是a b >的充分不必要条件;对于C ,由22a b >无法得到,a b 之间的大小关系,反之也是,所以22a b >是a b >的既不充分也不必要条件;对于D ,由a b >不能推出a b >,反之则成立,所以a b >是a b >的必要不充分条件.故选:B .6. 定义在(0,)+∞上函数()f x 的导函数为()f x ',若()()0xf x f x '-<,且(3)0f =,则不等式(2)()0x f x -<的解集为( )A. (0,2)(2,3)⋃B. (0,2)(3,)+∞C. (0,2)(2,)⋃+∞D. (0,3)(3,)+∞ 【答案】B 【解析】【分析】根据给定条件构造函数()()f x g x x=,利用导数确定单调性,结合(3)0f =求解不等式即得.【详解】依题意,令()()f x g x x =,求导得2()()()0'-'=<xf x f x g x x,则()g x 在(0,)+∞上单调递减,由(3)0f =,得(3)0g =,不等式(2)0(2)0(2)0()()()f x f x x g x x xx -<⇔-⋅<⇔-<,则20()0x g x -<⎧⎨>⎩或20()0x g x ->⎧⎨<⎩,即203x x <⎧⎨<<⎩或23x x >⎧⎨>⎩,解得02x <<或3x >,所以不等式(2)()0x f x -<解集为(0,2)(3,)+∞ .故选:B7. 已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为1F ,O 为坐标原点,若在C 的右支上存在关于x轴对称的两点,P Q ,使得1PF Q △为正三角形,且1OQ F P ⊥,则C 的离心率为( )A.B. 1C.D. 1+【答案】D 【解析】【分析】根据条件,利用几何关系得到12π2F PF ∠=,又21π6F F P ∠=,得到21,PF c PF ==,再结2c a -=,即可求解.【详解】设双曲线的焦距为2(0)c c >,右焦点为2F ,直线OQ 交1F P 于点M ,连接2PF ,因为1PF Q △为正三角形,1OQ F P ⊥,所以M 为1F P 的中点,所以2//OM F P ,的的故12π2F PF ∠=,易知21π6F F P ∠=,所以21,PF c PF ==,由双曲线的定义知122PF PF a -=,2c a -=,得1c e a ===+故选:D .8. 如图,在直三棱柱111ABC A B C -中,ABC V 是等边三角形,1AA =,2AB =,则点C 到直线1AB 的距离为( )A.B.C.D.【答案】C 【解析】【分析】取AC 的中点O ,以OB 所在直线为x 轴,OC 所在直线为y 轴,O 与11A C 中点连线所在直线为z 轴,建立空间坐标系,利用空间向量求解即可.【详解】解:取AC 的中点O ,则,BO AC BO ⊥=,以OB 所在直线为x 轴,OC 所在直线为y 轴,O 与11A C 中点连线所在直线为z 轴,建立如图所示的空间直角坐标系O xyz -,所以()()10,1,0,,0,1,0A B C -,所以()1,0,2,0AB CA ==-,所以CA 在1AB上的投影的长度为11||||CA AB AB ⋅==,故点C 到直线1AB的距离为d ===故选:C.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对得部分分,有选错的得0分.9. 对于函数()ln 1f x x =-,则下列判断正确的是( )A. 直线22exy =是()f x 过原点一条切线B. ()f x 关于y x =对称的函数是1e x y +=C. 过一点(),a b 可以有3条直线与()f x 相切D. ()2f x x ≤-【答案】ABD 【解析】【分析】由导数的几何意义可判定A ,由反函数的概念可判定B ,利用对数函数的图像可判定C ,利用常用的切线放缩可判定D.【详解】对于A ,设切点(),ln 1m m -,则()1ln 100m k f m m m --=='=-,∴1ln 1m m m-=⋅,∴ln 2m =,∴2e m =,切点()2e ,1所以过原点的切线方程为222e 1e ex xy y --=⇒=,∴A正确;的对于B ,由反函数的概念可得111ln ee y x y x x y +++=⇒=⇒=,故与()f x 关于y x =对称的函数为1e x y +=,∴B 正确;对于C ,当点(),a b 在()f x 上方,如下图所示,结合图象可知,最多有两条切线,如果在()f x 下方,没有切线,在曲线上,只有一条切线C 正错误;对于D ,由于x +∀∈R ,设()()1ln 1x g x x x g x x'-=--⇒=,令()01g x x >'⇒>,令()001g x x <⇒<<',∴()g x 在(1,+∞)上单调递增,在()01,上单调递减;∴()()()10ln 12g x g x x f x x ≥=⇒≤-⇒≤-,∴D 正确.故选:ABD10. 等差数列{}n a 中,10a >,则下列命题正确的是( )A. 若374a a +=,则918S =B. 若125a a +=,349a a +=,则7817a a +=C. 若150S >,250S <,则2219a a <D. 若910S S =,则110S >【答案】ABD 【解析】【分析】利用等差数列的性质,对于A ,()()193799922a a a a S ++==,计算即可;对于B ,由已知计算数列公差,再求值即可;对于C ,结合数列单调性比大小;对于D ,由10a >,100a =,得()111116111102a a S a +==>.【详解】等差数列{}n a 中,10a >,设公差为d ,若374a a +=,则()()19379991822a a a a S ++===,A 正确;若125a a +=,349a a +=,则()()3412954a a a a d +-+=-=,得1d =,27811251217a a a d a ++===++,B 正确;若()115158151502a a S a +==>,()1252513252502a a S a +==<,所以公差0d <,当90a >时,有190a a >>,则有2219a a >,当90a <时,有79820a a a +=>,得790a a >->,所以1790a a a >->>,则有2219a a >,C 错误;若910S S =,则100a =,因为10a >,所以()111116111102a a S a +==>,D 正确.故选:ABD .11. 设定义在R 上的函数()f x 与()g x 的导函数分别为()f x '和()g x '.若()()42f x g x --=,()()2g x f x ''=-,且()2f x +为奇函数,则下列说法中一定正确的是( )A. 函数()f x 的图象关于点()2,0对称B. ()()352g g +=-C.20241()2024k g k ==-∑D.20241()0k f k ==∑【答案】AD 【解析】【分析】根据给定条件,结合奇函数性质,借助赋值法探讨对称性、周期性,再逐项分析判断即得.【详解】对于A ,由(2)f x +为奇函数,得(2)(2)f x f x -+=-+,即(2)(2)0f x f x -++=,因此函数()f x 的图象关于点(2,0)对称,A 正确;由()(2)g x f x ''=-,得()(2)g x f x a =-+,则(4)(2)g x f x a -=-+,又()(4)2f x g x --=,于是()(2)2f x f x a =-++,令1x =,得2a =-,即()(2)f x f x =-,则(2)()f x f x +=-,(4)(2)()f x f x f x +=-+=,因此函数()f x 是周期函数,周期为4,对于B ,由()(2)2g x f x =--,得(3)(5)(1)2(3)24g g f f +=-+-=-,B 错误;对于C ,显然函数()g x 是周期为4的周期函数,(1)(3)(3)(5)4g g g g +=+=-,(2)(4)(0)2(2)24g g f f +=-+-=-,则2024411()506()506(8)4048k k g k g k ====⨯-=-∑∑,C 错误;对于D ,(1)(3)0f f +=,(2)(4)0f f +=,则2024411()506()0k k f k f k ====∑∑,D 正确.故选:AD【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,①存在常数a ,b 使得()(2)2()()2f x f a x b f a x f a x b +-=⇔++-=,则函数()y f x =图象关于点(,)a b 对称.②存在常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.三、填空题:本题共3个小题,每小题5分,共15分.12. 在5ax ⎛ ⎝展开式中2x 的系数为270-,则a 的值为__________.【答案】3-【解析】【分析】根据二项式定理可得展开式的通项为()35255C 1r rrrxa--⋅-,令3522r -=,求得r 代入运算即可.【详解】因为展开式的通项为()()3552555C C ,0,1,2,3,,145rr r r rrrax x r a ---⎛⋅= ⎝=-,令3522r -=,解得2r =,因为2x 的系数为()5323211C 2700a a -=-=,解得3a =-.故答案为:3-.13. 函数2()ln 2f x x ax =+-在[1,2]内存在单调递增区间,则a 的取值范围是______.【答案】1(,)2-+∞【解析】【分析】根据给定条件,求出函数()f x 的导数()f x ',再利用()0f x '>在(1,2)内有解即可.【详解】函数2()ln 2f x x ax =+-,求导得1()2f x ax x'=+,由函数()f x 在[1,2]内存在单调递增区间,得不等式()0f x '>在(1,2)内有解,不等式21()02f x a x'>->⇔,而函数212y x =-在(1,2)上单调递增,当(1,2)x ∈时,21122x ->-,因此12a >-,所以a 的取值范围是1(,)2-+∞.故答案为:1(,)2-+∞14. 双曲线的离心率可以与其渐近线有关,比如函数1y x=的图象是双曲线,它的实轴在直线y x =上,虚轴在直线y x =-上,实轴顶点是()()1,1,1,1--,焦点坐标是,(,已知函数y x =+e .则其在一象限内的焦点横坐标是__________,其离心率2e =__________.【答案】 ①.②.43【解析】【分析】根据材料得到双曲线的轴和顶点的定义,根据双曲线的离心率和其渐近线的斜率之间的关系求双曲线的离心率,利用双曲线的离心率的定义求双曲线的焦点坐标.【详解】直线y x =和y 轴是双曲线的两条渐近线,由阅读材料可知,双曲线的焦点所在的对称轴是直线y =,由顶点的定义知,对称轴与双曲线的交点即顶点,联立得2y x x y ⎧⎫=+⎪⎪⎭⎨⎪=⎩,解得:1x y =⎧⎪⎨=⎪⎩1x y =-⎧⎪⎨=⎪⎩(,若将双曲线绕其中心适当旋转可使其渐近线变为直线y x =,则双曲线的离心率e ==243e =,设双曲线的位于第一象限的焦点的坐标为()00,x y ,则01x =,所以0x =,所以002y ==,所以双曲线的位于第一象限的焦点的坐标为2⎫⎪⎪⎭,.43.【点睛】思路点睛:关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言;(3)将已知条件代入新定义的要素中;(4)结合数学知识进行解答.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤15. 根据统计, 某蔬菜基地西红柿亩产量的增加量 y (百千克)与某种液体肥料每亩的使用量x (千克)之间 的对应数据的散点图如图所示.(1)从散点图可以看出, 可用线性回归方程拟合 y 与x 的关系, 请计算样本相关系数r 并判断它们的相关程度;(2)求 y 关于x 的线性回归方程ˆˆˆybx a =+, 并预测液体肥料每亩的使用量为 12 千克时西红柿亩产量的增加量.附:()()()121ˆˆˆnn i i i n i i x x y y x x y y r b ay bx x x ==----===--∑∑,.【答案】(1)r = ; y 与x 程正线性相关, 且相关程度很强. (2) 1.50.7y x =+; 9.9 百千克.【解析】【分析】(1)由图形中的数据结合相关系数公式求得相关系数r ,再由0.75r >即可求解;(2)求出线性回归方程,再取12x =代入,即可求解.【小问1详解】由题知: 24568345675555x y ++++++++====,所以()()()()55522111142010i i i i i i i x x y y x x y y ===--=-=-=∑∑∑,,所以50.75x x y y r --===>所以 y 与x 程正线性相关, 且相关程度很强.小问2详解】因为 ()()()51521140.70ˆ2i ii i i x x y y b x x ==--===-∑∑,ˆˆ50.75 1.5a y bx =-=-⨯=,所以 y 关于x 的线性回归方程为 1.507ˆ.yx =+,当 12x =时, 1.50.712ˆ9.9y=+⨯=.所以预测液体肥料每亩的使用量为 12 千克时西红柿亩产量的增加量为 9.9 百千克.16. 已知数列{a n }的前n 项和为n S ,且223n S n n =+,数列{b n }满足24log 1n n a b =+.(1)求,n n a b ;(2)设n n n c a b =⋅,数列{}n c 的前n 项和为n T ,求n T .【【答案】(1)41,2n n n a n b =+=(2)()16432n n T n +=+-⋅【解析】【分析】(1)由n a 与n S 的关系,再结合24log 1n n a b =+即可求解;(2)由错位相减法即可求解.【小问1详解】由223n S n n =+,当2n ≥时,()221232(1)3141n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦.当1n =时,115a S ==,也适合41n a n =+.综上可得,41n a n =+.由24log 141n n a b n =+=+,所以2n n b =.【小问2详解】由(1)知()412nn n a b n =+⋅()125292412nn T n =⨯+⨯+++ ()()23125292432412n n n T n n +=⨯+⨯++-⋅++⋅ ①①-②得()21104242412n n n T n +-=+⨯++⨯-+⋅ ②()()()111412104412643212n n n n T n n -++--=+⨯-+⋅=---⋅-,所以()16432n n T n +=+-⋅.17. 在三棱柱111ABC A B C -中,平面11AA C C ⊥平面ABC ,11AA A C =,2AC =,AC BC ⊥,11AA AC ⊥.(1)证明:1BB ⊥平面1A BC ;(2)若异面直线11,AB CA 所成角的余弦值为13,求BC .【答案】(1)证明过程见解析(2)【解析】【分析】(1)由面面垂直得到线面垂直,进而得到BC ⊥1AA ,结合11AA A C ⊥得到1AA ⊥平面1A BC ,再由平行关系得到证明;(2)作出辅助线,证明出1A P ⊥平面ABC ,建立空间直角坐标系,设BC m =,写出各点坐标,利用异面直角夹角的余弦值列出方程,求出m =,得到答案.【小问1详解】因为平面11AA C C ⊥平面ABC ,交线为AC ,AC BC ⊥,⊂BC 平面ABC ,所以BC ⊥平面11AAC C ,因为1AA ⊂平面11AAC C ,所以BC ⊥1AA ,因为11AA A C ⊥,1A C BC C = ,1,AC BC ⊂平面1ABC ,所以1AA ⊥平面1A BC ,又1//BB 1AA ,所以1BB ⊥平面1A BC ;【小问2详解】取AC 的中点P ,连接1PA ,因为11AA A C =,所以1A P ⊥AC ,因为平面11AA C C ⊥平面ABC ,交线为AC ,1A P ⊂平面11AAC C ,所以1A P ⊥平面ABC ,取AB 的中点H ,连接PH ,则//PH BC ,因为AC BC ⊥,所以PH ⊥AC ,故以P 为坐标原点,1,,PH PC PA 所在直线分别为,,x y z 轴,建立空间直角坐标系,因为2AC =,所以1112A P AC ==,故()()()101,0,0,1,0,0,0,1A C A -,设BC m =,则(),1,0B m ,设()1,,B s t h ,由11AA BB = 得()()0,1,1,1,s m t h =--,解得,2,1s m t h ===,故()1,2,1B m ,()()11,3,1,0,1,1AB m CA ==- ,因为异面直线11,AB CA 所成角的余弦值为13,所以11cos ,3AB =,解得m =,故BC =18. 已知抛物线Γ:24y x =,在Γ上有一点A 位于第一象限,设A 的纵坐标为(0)a a >.(1)若A 到抛物线Γ准线的距离为3,求a 的值;(2)当4a =时,若x 轴上存在一点B ,使AB 的中点在抛物线Γ上,求O 到直线AB 的距离;(3)直线l :3x =-,抛物线上有一异于点A 的动点P ,P 在直线l 上的投影为点H ,直线AP 与直线l 的交点为.Q 若在P的位置变化过程中,4HQ >恒成立,求a 的取值范围.【答案】(1)a =(2(3)(]0,2【解析】【分析】(1)先求出点A 的横坐标,代入抛物线方程即可求解;(2)先通过中点在抛物线上求出点B 的坐标,进一步求出直线AB 方程,利用点到直线距离公式求解即可;(3)设22(,),(,),(3,)(0)44t a P t Aa H t t a -≠>,联立方程求出点Q 的坐标,根据4HQ >恒成立,结合基本不等式即可求解.【小问1详解】抛物线Γ:24y x =的准线为1x =-,由于A 到抛物线Γ准线的距离为3,则点A 的横坐标为2,则2428(0)a a =⨯=>,解得a =【小问2详解】当4a =时,点A 的横坐标为2444=,则()4,4A ,设(),0B b ,则AB 的中点为4,22b +⎛⎫⎪⎝⎭,由题意可得24242b +=⨯,解得2b =-,所以B (−2,0),则402423AB k -==+,由点斜式可得,直线AB 的方程为()223y x =+,即2340x y -+=,所以原点O 到直线AB =;【小问3详解】如图,设()22,,,,3,(0)44t a P t A a H t t a ⎛⎫⎛⎫-≠> ⎪ ⎪⎝⎭⎝⎭,则22444AP t a k t a t a -==+-,故直线AP 的方程为244a y a x t a ⎛⎫-=- ⎪+⎝⎭,令3x =-,可得2434a y a t a ⎛⎫=-+⋅ ⎪+⎝⎭,即243,34a Q a t a ⎛⎫⎛⎫--+⋅ ⎪ ⎪ ⎪+⎝⎭⎝⎭,则2434a HQ t a t a ⎛⎫=-++⋅ ⎪+⎝⎭,依题意,24344a t a t a⎛⎫-++⋅> ⎪+⎝⎭恒成立,又2432204a t a a a t a⎛⎫+++⋅-≥-> ⎪+⎝⎭,则最小值为24a ->,即2a >+2a >+,则221244a a a +>++,解得02a <<,又当2a =时,1624442t t ++-≥-=+,当且仅当2t =时等号成立,而a t ≠,即当2a =时,也符合题意.故实数a 的取值范围为(]0,2.19. 已知函数22()ln(1),(1,)2x f x x x x ax=+-∈-+∞++.(1)当1a =时,求曲线()y f x =在1x =处切线的方程;(2)当0a =时,试判断()f x 零点的个数,并说明理由;(3)是否存在实数a ,使(0)f 是()f x 的极大值,若存在,求出a 的取值集合;若不存在,请说明理由.【答案】(1)388ln270x y -+-=;(2)1个,理由见解析;(3)存在,1{}6a ∈-.【解析】【分析】(1)把1a =代入,求出函数的导数,利用导数的几何意义求出切线方程.(2)把0a =代入,利用导数探讨函数的单调性即可得解.(3)利用连续函数极大值意义求出a 值,再验证即可得解.【小问1详解】当1a =时,22()ln(1)2x f x x x x =+-++,求导得222142()1(2)x f x x x x -=-+++',则3(1)8f '=,而1(1)ln22f =-,于是切线方程是13ln2)(1)(28x y -=--,所以曲线()y f x =在1x =处切线的方程388ln270x y -+-=.【小问2详解】当0a =时,24()ln(1)ln(1)222x f x x x x x=+-=++-++,的求导得22214()01(2)(1)(2)x f x x x x x '=-=≥++++,函数()f x 在(1,)-+∞上单调递增,又(0)0f =,所以函数()f x 有且仅有一个零点,是0.【小问3详解】由(0)f 是()f x 的极大值,得0,0m n ∃<>,使得当(,)x m n ∈时,220x ax ++>且()(0)f x f ≤恒成立,求导得22222(461)()(1)(2)x a x ax a f x x ax x '+++=+++,因此0x =是22()461h x a x ax a =+++的变号零点,即(0)0h =,解得16a =-,经检验,当16a =-时,322(24)()(1)(612)x x f x x x x -=+--',则当(1,0)x ∈-时()0f x '>,当(0,24)x ∈时()0f x '<,于是(0)f 是()f x 的极大值,符合条件,所以a 的取值集合为1{}6-.【点睛】结论点睛:函数()y f x =是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。

高三数学函数综合试题答案及解析

高三数学函数综合试题答案及解析

高三数学函数综合试题答案及解析1.给出四个函数,分别满足①;②;③;④,又给出四个函数的图象如下:则正确的配匹方案是()A.①—M ②—N③—P ④—QB.①—N②—P③—M④—QC.①—P②—M③—N④—QD.①—Q②—M③—N④—P【答案】D【解析】图象M是指数型函数,具有性质②;图象N是对数型函数,具有性质③图象P是幂函数,具有性质④,图象Q是正比例函数,具有性质①,故选D【考点】基本初等函数的图象与性质.2.下图展示了一个由区间到实数集的映射过程:区间中的实数对应数上的点,如图1;将线段围成一个圆,使两端点恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在轴上,点的坐标为,如图3.图3中直线与轴交于点,则的象就是,记作.下列说法中正确命题的序号是 .(填出所有正确命题的序号)①方程的解是;②;③是奇函数;④在定义域上单调递增;⑤的图象关于点对称.【答案】①④⑤【解析】①则,正确;②当时,∠ACM=,此时故,不对;③的定义域为不关于原点对称,是非奇非偶函数;④显然随着的增大,也增大;所以在定义域上单调递增,正确;⑤又整个过程是对称的,所以正确.【考点】1、函数的性质;2、创新意识.3.下图展示了一个由区间到实数集的映射过程:区间中的实数对应数上的点,如图1;将线段围成一个圆,使两端点恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在轴上,点的坐标为,如图3.图3中直线与轴交于点,则的象就是,记作.下列说法中正确命题的序号是 .(填出所有正确命题的序号)①方程的解是;②;③是奇函数;④在定义域上单调递增;⑤的图象关于点对称.【答案】①④⑤【解析】①则,正确;②当时,∠ACM=,此时故,不对;③的定义域为不关于原点对称,是非奇非偶函数;④显然随着的增大,也增大;所以在定义域上单调递增,正确;⑤又整个过程是对称的,所以正确.【考点】1、函数的性质;2、创新意识.4.函数的部分图像可能是()A B C D【答案】B【解析】∵,∴为奇函数,且存在多个零点导致存在多个零点,故的图像应为含有多个零点的奇函数图像.故选B.【考点】通过图像考查函数的奇偶性以及单调性.5.已知函数,若直线对任意的都不是曲线的切线,则的取值范围为.【答案】.【解析】f(x)=x3-3ax(a∈R),则f′(x)=3x2-3a若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,则直线的斜率为-1,f(x)′=3x2-3a与直线x+y+m=0没有交点,又抛物线开口向上则必在直线上面,即最小值大于直线斜率,则当x=0时取最小值,-3a>-1,则a的取值范围为,即答案为.【考点】线性规划.6.已知函数的两个极值点分别为,且,,点表示的平面区域为,若函数的图象上存在区域内的点,则实数的取值范围为()A.B.C.D.【答案】B【解析】∵函数的两个极值点分别为x1,x2,且x1∈(0,1),x2∈(1,+∞),的两根x1,x2满足0<x1<1<x2,则x1+x2=-m,x1x2=>0,,即n+3m+2<0,∴-m<n<-3m-2,为平面区域D,如图:∴m<-1,n>1.∵的图象上存在区域D内的点,∴loga(-1+4)>1,∴∵a>1,∴lga>0,∴1g3>lga.解得1<a<3;故选B.【考点】1.利用导数研究函数的极值;2.不等式组表示平面区域.7.噪声污染已经成为影响人们身体健康和生活质量的严重问题.实践证明,声音强度(分贝)由公式(为非零常数)给出,其中为声音能量.(1)当声音强度满足时,求对应的声音能量满足的等量关系式;(2)当人们低声说话,声音能量为时,声音强度为30分贝;当人们正常说话,声音能量为时,声音强度为40分贝.当声音能量大于60分贝时属于噪音,一般人在100分贝~120分贝的空间内,一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪.【答案】(1)解应用题问题,关键正确理解题意,列出对应的等量关系:(2)本题实质是解一个不等式:由题意得,,,即,当声音能量时,人会暂时性失聪.【解析】(1) (2)(1)2分4分6分(2)由题意得 10分12分14分答:当声音能量时,人会暂时性失聪. 15分【考点】实际问题应用题8.已知函数f(x)=ln x+2x,若f(x2+2)<f(3x),则实数x的取值范围是________.【答案】(1,2)【解析】由f(x)=ln x+2x,x∈(0,+∞)得f′(x)=+2x ln 2>0,所以f(x)在(0,+∞)上单调递增.又f(x2+2)<f(3x),得0<x2+2<3x,所以x∈(1,2).9.函数的图象可能是()【答案】【解析】函数的定义域为,可排除;又时,,即,故选.【考点】函数的图象,函数的定义域,正弦函数、对数函数的性质.10.已知函数f(x)=若f(f(1))>3a2,则a的取值范围是________.【答案】(-1,3)【解析】由题知,f(1)=2+1=3,f(f(1))=f(3)=32+6a,若f(f(1))>3a2,则9+6a>3a2,即a2-2a-3<0,解得-1<a<3.11.(5分)(2011•广东)设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),则下列等式恒成立的是()A.((f°g)•h)(x)=((f•h)°(g•h))(x)B.((f•g)°h)(x)=((f°h)•(g°h))(x)C.((f°g)°h)(x)=((f°h)°(g°h))(x)D.((f•g)•h)(x)=((f•h)•(g•h))(x)【答案】B【解析】根据定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g (x));(f•g)(x)=f(x)g(x),然后逐个验证即可找到答案.解:A、∵(f°g)(x)=f(g(x)),(f•g)(x)=f(x)g(x),∴((f°g)•h)(x)=(f°g)(x)h(x)=f(g(x))h(x);而((f•h)°(g•h))(x)=(f•h)((g•h)(x))=f(g(x)h(x))h(g(x)h(x));∴((f°g)•h)(x)≠((f•h)°(g•h))(x)B、∵((f•g)°h)(x)=(f•g)(h(x))=f(h(x))g(h(x))((f°h)•(g°h))(x)=(f°h)•(x)(g°h)(x)=f(h(x))g(h(x))∴((f•g)°h)(x)=((f°h)•(g°h))(x)C、((f°g)°h)(x)=((f°g)(h(x))=f(h(g(x))),((f°h)°(g°h))(x)=f(h(g(h(x))))∴((f°g)°h)(x)≠((f°h)°(g°h))(x);D、((f•g)•h)(x)=f(x)g(x)h(x),((f•h)•(g•h))(x)=f(x)h(x)g(x)h(x),∴((f•g)•h)(x)≠((f•h)•(g•h))(x).故选B.点评:此题是个基础题.考查学生分析解决问题的能力,和知识方法的迁移能力.12.已知函数f(x)=lnx+a,其中a为大于零的常数.(1)若函数f(x)在区间[1,+∞)内单调递增,求实数a的取值范围.(2)求证:对于任意的n∈N*,且n>1时,都有lnn>++…+恒成立.【答案】(1)(0,1] (2)见解析【解析】(1)f′(x)=(x>0),由已知,得f′(x)≥0在[1,+∞)上恒成立,即a≤x在[1,+∞)上恒成立,又因为当x∈[1,+∞)时,x≥1,所以a≤1,即a的取值范围为(0,1].(2)由(1)知函数f(x)=lnx+-1在[1,+∞)上为增函数,当n>1时,因为>1,所以f>f(1),即lnn-ln(n-1)>,对于n∈N*,且n>1恒成立,lnn=[lnn-ln(n-1)]+[ln(n-1)-ln(n-2)]+…+[ln3-ln2]+[ln2-ln 1]>++…++,所以对于n∈N*,且n>1时,lnn>++…+恒成立.13.已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.(1)求f(x)的解析式;(2)若g(x)=f(x)·x+ax,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.【答案】(1)f(x)=x+(2)(-∞,-4]【解析】(1)∵f(x)的图象与h(x)的图象关于点A(0,1)对称,设f(x)图象上任意一点坐标为B(x,y),其关于A(0,1)的对称点B′(x′,y′),则∴∵B′(x′,y′)在h(x)上,∴y′=x′++2.∴2-y=-x-+2,∴y=x+,即f(x)=x+.(2)∵g(x)=x2+ax+1,且g(x)在[0,2]上为减函数,∴-≥2,即a≤-4.∴a的取值范围为(-∞,-4].14.已知函数则函数的零点个数为()A.1B.2C.3D.4【答案】B【解析】函数,.即.所以函数的零点个数即等价于,方程的解得个数,即等价于函数的交点的个数.如图所示.所以共有两个交点.故选B.【考点】1.分段函数的性质.2.函数的零点问题.3.等价转换的数学能力.4.分类讨论的数学思想.15.已知符号函数则函数的零点个数为().A.1B.2C.3D.4【答案】B【解析】,时,,解得;当时,;当时,,即无解。

高三数学函数试题答案及解析

高三数学函数试题答案及解析

高三数学函数试题答案及解析1.一个平面图由若干顶点与边组成,各顶点用一串从1开始的连续自然数进行编号,记各边的编号为它的两个端点的编号差的绝对值,若各条边的编号正好也是一串从1开始的连续自然数,则称这样的图形为“优美图”.已知如图是“优美图”,则点A,B与边a所对应的三个数分别为________.【答案】3、6、3【解析】观察图中编号为4的边,由于6-2=5-1=4,而数字2已为一端点的编号,故编号为4的边的左、右两端点应为5、1,从而易知编号为1的边的左、右两端点应为4、3.考虑到图中编号为1的边,易知点A对应的数为3,点B对应的数为6.故应填3、6、3.2.对于实数x,符号[x]表示不超过x的最大整数.例如,[π]=3,[-1.08]=-2.如果定义函数f(x)=x-[x],那么下列命题中正确的一个是()A.f(5)=1B.方程f(x)=有且仅有一个解C.函数f(x)是周期函数D.函数f(x)是减函数【答案】C【解析】f(5)=5-[5]=0,故A错误;因为f()=-[]=,f()=-[]=,所以B错误;函数f(x)不是减函数,D错误;故C正确.3. [2012·江苏高考]已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为________.【答案】9【解析】通过值域求a,b的关系是关键.由题意知f(x)=x2+ax+b=(x+)2+b-.∵f(x)的值域为[0,+∞),∴b-=0,即b=.∴f(x)=(x+)2.又∵f(x)<c,∴(x+)2<c,即--<x<-+.∴②-①,得2=6,∴c=9.4.下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x【答案】C【解析】若f(x)=|x|,则f(2x)=|2x|=2|x|=2f(x);若f(x)=x-|x|,则f(2x)=2x-|2x|=2(x-|x|)=2f(x);若f(x)=-x,则f(2x)=-2x=2f(x);若f(x)=x+1,则f(2x)=2x+1,不满足f(2x)=2f(x).5.(3分)(2011•重庆)已知,则a=()A.1B.2C.3D.6【答案】D【解析】先将极限式通分化简,得到,分子分母同时除以x2,再取极限即可.解:原式==(分子分母同时除以x2)===2∴a=6故答案选D.点评:关于高中极限式的运算,一般要先化简再代值取极限,本题中运用到的分子分母同时除以某个数或某个式子,是极限运算中常用的计算技巧.6.如果函数在上的最大值和最小值分别为、,那么.根据这一结论求出的取值范围().A.B.C.D.【答案】B【解析】函数在区间上最大值为1,最小值为,即,所以,,即取值范围为,选B.【考点】新定义概念与函数的最值.7.设函数,其中,为正整数,,,均为常数,曲线在处的切线方程为.(1)求,,的值;(2)求函数的最大值;(3)证明:对任意的都有.(为自然对数的底)【答案】(1);(2);(3)见解析.【解析】(1)在切点处的的函数值,就是切线的斜率为,可得;根据切点适合切线方程、曲线方程,可得,.(2)求导数,求驻点,讨论区间函数单调性,确定最值.(3)本小题有多种思路,一是要证对任意的都有只需证;二是令,利用导数确定,转化得到.令,证明.(1)因为, 1分所以,又因为切线的斜率为,所以 2分,由点(1,c)在直线上,可得,即 3分4分(2)由(1)知,,所以令,解得,即在(0,+上有唯一零点 5分当0<<时,,故在(0,)上单调递增; 6分当>时,,故在(,+上单调递减; 7分在(0,+上的最大值=== 8分(3)证法1:要证对任意的都有只需证由(2)知在上有最大值,=,故只需证 9分,即① 11分令,则,①即② 13分令,则显然当0<t<1时,,所以在(0,1)上单调递增,所以,即对任意的②恒成立,所以对任意的都有 14分证法2:令,则. 10分当时,,故在上单调递减;而当时,,故在上单调递增.在上有最小值,.,即. 12分令,得,即,所以,即.由(2)知,,故所证不等式成立. 14分【考点】导数的几何意义,直线方程,应用导数研究函数的单调性、最(极)值、证明不等式,转化与化归思想,分类讨论思想,应用导数研究恒成立问题.8.对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.B.C.D.【答案】B【解析】∵,∴函数f(x)=(x2﹣2)⊗(x﹣x2)=,由图可知,当c∈函数f(x)与y=c的图象有两个公共点,∴c的取值范围是,故选B.9.设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是()A.A=N*,B=NB.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}C.A={x|0<x<1},B=RD.A=Z,B=Q【答案】D【解析】对A选项,存在满足条件,故是“保序同构”. 对B选项,存在满足条件,故是“保序同构”.对C选项,存在满足条件,故是“保序同构”.选D.【考点】1、新定义;2、函数.10.设函数f(x)=x3cosx+1.若f(a)=11,则f(-a)=.【答案】-9【解析】f(a)+f(-a)=a3cosa+1+(-a)3cos(-a)+1=2,而f(a)=11,故f(-a)=2-f(a)=2-11=-9.11.对实数a和b,定义运算“⊗”:a⊗b=设函数f(x)=(x2-1)⊗(x-x2),x∈R.若函数y=f(x)-c恰有两个不同的零点,则实数c的取值范围是()A.(-∞,-1)∪(-,0)B.{-1,-}C.(-1,-)D.(-∞,-1)∪[-,0)【答案】A【解析】由x2-1≤x-x2得-≤x≤1,∴f(x)=函数f(x)的图象如图所示,由图象知,当c<-1或-<c<0时,函数y=f(x)-c恰有两个不同的零点.12.如果f()=,则当x≠0且x≠1时,f(x)=()A.B.C.D.-1【答案】B【解析】令=t,t≠0且t≠1,则x=,∵f()=,∴f(t)=,化简得:f(t)=,即f(x)=(x≠0且x≠1).13.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.【答案】2【解析】设e x=t,则x=ln t(t>0),∴f(t)=ln t+t,∴f′(t)=+1,∴f′(1)=2.14.是R上以2为周期的奇函数,当时,则在时是()A.减函数且B.减函数且C.增函数且D.增函数且【答案】D【解析】因为是R上的奇函数,故,由复合函数单调性知,当时为增函数,故此时;当时,为增函数,又因为是以2为周期的,故在上函数性质和取值完全一样,即时,为增函数,选D.【考点】函数奇偶性、函数单调性.15.直线是函数的切线,则实数.【答案】1【解析】先对函数求导,即,由于切线方程为,所以,,解得:,因此,切点为(2,)或(-2,-),代入切线方程,可得= 1.【考点】函数的导数求法,函数导数的几何意义.16.已知函数若直线与函数的图象有两个不同的交点,则实数的取值范围是 .【答案】.【解析】如下图所示,作出函数的图象如下图所示,当直线与函数的图象有两个不同的交点,则.【考点】分段函数的图象、函数的零点17.设函数.(1)若x=时,取得极值,求的值;(2)若在其定义域内为增函数,求的取值范围;(3)设,当=-1时,证明在其定义域内恒成立,并证明().【答案】(1).(2).(3)转化成.所以.通过“放缩”,“裂项求和”。

高考数学一轮复习专题2.10函数的综合运用练习(含解析)

高考数学一轮复习专题2.10函数的综合运用练习(含解析)

第十讲 函数的综合运用考向一新概念题【例1】对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R)恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.【答案】 ⎝ ⎛⎭⎪⎫1-316,0【解析】 函数f (x )=⎩⎪⎨⎪⎧2x 2-x ,x ≤0,-x 2+x ,x >0的图象如图所示.设y =m 与y =f (x )图象交点的横坐标从小到大分别为x 1,x 2,x 3.由y =-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14,得顶点坐标为⎝ ⎛⎭⎪⎫12,14.当y =14时,代入y =2x 2-x ,得14=2x 2-x ,解得x =1-34(舍去正值),∴x 1∈⎝ ⎛⎭⎪⎫1-34,0.又∵y =-x 2+x 图象的对称轴为x =12,∴x 2+x 3=1,又x 2,x 3>0,∴0<x 2x 3<⎝ ⎛⎭⎪⎫x 2+x 322=14.又∵0<-x 1<3-14,∴0<-x 1x 2x 3<3-116,∴1-316<x 1x 2x 3<0. 【举一反三】1.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .]2,49(--B .[-1,0]C .(-∞,-2]D .),49(+∞-【答案】A【解析】令F (x )=f (x )-g (x )=x 2-3x +4-(2x +m )=x 2-5x +4-m ,则由题意知F (x )=0在[0,3]上有两个不同的实数根,因而2(0)0(3)054(4)0F F m ⎧≥⎪⎪≥⎨⎪∆=-->⎪⎩,即402049m m m -≥⎧⎪--≥⎨⎪>-⎩,解之得-94<m ≤-2,故选A考向二函数性质与零点定理综合运用【例2】已知偶函数 满足 ,当0 时, ,则函数 在区间 内的零点个数为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三函数综合题
1.已知函数f(x)=2x+2-x a(常数a∈R).
(1)若a=-1,且f(x)=4,求x的值;
(2)若a≤4,求证函数f(x)在[1,+∞)上是增函数;
(3)若存在x∈[0,1],使得f(2x)>[f(x)]2成立,求实数a的取值范围.
2.已知函数f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函数f(x)在R上单调递增,求实数a的取值范围;
(3)若a<1且不等式f(x)≥2x-3对一切实数x∈R恒成立,求a的取值范围.
3.已知函数f(x)=x|x-a|+2x-3.
(1)当a=4,2≤x≤5,求函数f(x)的最大值与最小值;
(2)若x≥a,试求f(x)+3>0的解集;
(3)当x∈[1,2]时,f(x)≤2x-2恒成立,求实数a的取值范围.
4.已知函数f(x)=x2-1,g(x)=a|x-1|.
(1)若函数h(x)=|f(x)|-g(x)只有一个零点,求实数a的取值范围;
(2)当a≥-3时,求函数h(x)=|f(x)|+g(x)在区间[-2,2]上的最大值.
答案详解
1.已知函数f(x)=2x+2-x a(常数a∈R).
(1)若a=-1,且f(x)=4,求x的值;
(2)若a≤4,求证函数f(x)在[1,+∞)上是增函数;
(3)若存在x∈[0,1],使得f(2x)>[f(x)]2成立,求实数a的取值范围.解:(1)由a=-1,f(x)=4,可得2x-2-x=4,设2x=t,
则有t-t -1
=4,即t 2
-4t-1=0,解得t=2±5,当t=2+5时,有2x
=2+5,可得x=log 2(2+5).
当t=2-5时,有2x
=2-5,此方程无解.故所求x 的值为log 2(2+5).
(2)设x 1,x 2∈[1,+∞),且x 1>x 2, 则f(x 1)-f(x 2)=(2x
1+2
-x 1
a)-(2x 2+2
-x 2
a)=(2x 1-2x
2)+
2
11
2
2
2
2
x x x x +-a=
2
12
1
2
2
2
x x x x +-(2
x 1+x
2
-a)
由x 1>x 2,可得2x
1>2x 2,即2x
1-2x
2>0,由x 1,x 2∈[1,+∞),x 1>x 2,得x 1+x 2>2,故2x 1+x
2>4>0,
又a≤4,故2x 1+x 2>a ,即2x 1+x
2-a >0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在[1,+∞)上是增函数.
(3)因为函数f (x )=2x +2-x
a ,存在x ∈[0,1],
f (2x )>[f (x )]2⇔22x +2-2x a >22x +2a+2-2x a 2⇔2-2x (a 2
-a )+2a <0 设t=2-2x
,由x ∈[0,1],可得t ∈[
4
1,1],由存在x ∈[0,1]使得f (2x )>[f (x )]2
, 可得存在t ∈[
4
1,1],使得(a 2-a )t+2a <0,令g (t )=(a 2
-a )t+2a <0, 故有g(
41)=4
1(a 2-a)+2a <0或g (1)=(a 2
-a )+2a <0, 可得-7<a <0.即所求a 的取值范围是(-7,0).
2.已知函数f (x )=x 2
+(x-1)|x-a|. (1)若a=-1,解方程f (x )=1;
(2)若函数f (x )在R 上单调递增,求实数a 的取值范围;
(3)若a <1且不等式f (x )≥2x -3对一切实数x ∈R 恒成立,求a 的取值范围.
解析:(1)当a=-1时,f (x )=x 2
+(x-1)|x+1|,故有,f(x)= ⎩⎨⎧-<-≥-11
1
122x x x ,
当x≥-1时,由f (x )=1,有2x 2
-1=1,解得x=1,或x=-1. 当x <-1时,f (x )=1恒成立, ∴方程的解集为{x|x≤-1或x=1}.
(2)f(x)= ⎩⎨⎧<-+≥++-a x a x a a
x a x a x )1()1(22
若f (x )在R 上单调递增,则⎪⎩

⎨⎧>+≤+014
1
a a a ,解得a≥
31,∴当a≥3
1
时,f (x )在R 上单调递增. (3)设g (x )=f (x )-(2x-3),则g(x)=⎩
⎨⎧<+--≥+++-a x a x a a
x a x a ,3)1(,3)3(2x 2,
不等式f (x )
≥2x -3对一切实数x ∈R 恒成立,等价于不等式g (x )≥0对一切实数x ∈R 恒成立.∵a <1,
∴当x ∈(-∞,a )时,g (x )单调递减,其值域为(a 2-2a+3,+∞),∵a 2-2a+3=(a-1)2+2≥2,∴g (x )≥0成立.
3.已知函数f (x )=x|x-a|+2x-3.
(1)当a=4,2≤x≤5,求函数f (x )的最大值与最小值; (2)若x≥a,试求f (x )+3>0的解集;
(3)当x ∈[1,2]时,f (x )≤2x -2恒成立,求实数a 的取值范围. 解析:(1)当a=4时,f (x )=x|x-4|+2x-3,
①2≤x<4时,f (x )=x (4-x )+2x-3=-(x-3)2
+6, 当x=2时,f (x )min =5;当x=3时,f (x )max =6
②当4≤x≤5时,f (x )=x (x-4)+2x-3=(x-1)2
-4, 当x=4时,f (x )min =5;当x=5时,f (x )max =12
综上所述,当x=2或4时,f (x )min =5;当x=5时,f (x )max =12 (2)若x≥a,f (x )+3=x[x-(a-2)],
当a >2时,x >a-2,或x <0,因为a >a-2,所以x≥a; 当a=2时,得x≠0,所以x≥a;
当a <2时,x >0,或x <a-2,①若0<a <2,则x≥a;②若a≤0,则x >0 综上可知:当a >0时,所求不等式的解集为[a ,+∞);(10分) 当a≤0时,所求不等式的解集为(0,+∞)(12分) (3)当x∈[1,2]时,f (x )≤2x -2,即x•|x -a|≤1⇔-
x 1≤x -a≤x 1⇔x-x 1≤a≤x+x
1 因为x-
x
1
在x∈[1,2]上增,最大值是2-21=23,
x+
x
1
在x∈[1,2]上增,最小值是2,故只需23≤a≤2.故实数a 的取值范围是23≤a≤2.
4.已知函数f (x )=x 2
-1,g (x )=a|x-1|.
(1)若函数h (x )=|f (x )|-g (x )只有一个零点,求实数a 的取值范围; (2)当a≥-3时,求函数h (x )=|f (x )|+g (x )在区间[-2,2]上的最大值.
解:(1)∵函数h (x )=|f (x )|-g (x )只有一个零点,即h (x )=|f (x )|-g (x )=|x 2
-1|-a|x-1|只有一个零点,显然x=1是函数的零点,∴即|x+1|-a=0无实数根,∴a <0;
(2)h (x )=|f (x )|+g (x )=)=|x 2
-1|+a|x-1|=⎪⎩
⎪⎨⎧-≤≤--+-<<-++--≤≤--+1211112
11222x a ax x x a ax x x a ax x ,
当1<x≤2时,∵a≥-3,∴-
2a ≤2
3
,当x=2时,h (x )的最大值为h (2)=a+3; 当-2≤x<-1时,
2
a
≥-23,当x=-2时,h (x )的最大值为h (-2)=3a+3;
当-1≤x≤1时,h (x )的最大值为max{h (-1),h (1),h (-
2a )}=max{2a ,0,41a 2+a+1}=4
1a 2
+a+1,
∴函数h (x )最大值为h (a )=⎪⎪⎩⎪
⎪⎨⎧
+>+++<<+≤≤-+62414
1
6240330332a a a x a a a .。

相关文档
最新文档