综合题:高一数学函数经典习题及答案

合集下载

高一数学函数经典练习题(含答案)

高一数学函数经典练习题(含答案)

《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y =⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y =⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学函数综合试题答案及解析

高一数学函数综合试题答案及解析

高一数学函数综合试题答案及解析1.已知函数=e x-1,=-x2+4x-3.若有,则的取值范围为().A.[2-,2+]B.(2-,2+)C.[1,3]D.(1,3)【答案】B.【解析】由于,因此,所以,解之得,因此.【考点】一元二次不等式的解法.2.已知二次函数(1)当时,的最大值为,求的最小值;(2)对于任意的,总有,试求的取值范围.【答案】(1)的最小值为(2)【解析】(1)由已知条件可知,当时取得最大值,由此得到的解析式,进而得到f(x)的最小值.(2)根据已知条件结合换元法把命题转化为:任给,不等式,恒成立.由此入手,能够求出实数a的取值范围.试题解析:(1)由知,故当时取得最大值,即,所以,所以,所以的最小值为.(2)对于任意的,总有,令,则命题转化为:任给,不等式,当时,满足;当时,有对于任意的恒成立;由得,所以,所以要使恒成立,则有.【考点】二次函数的性质;正弦函数的定义域和值域.3.已知二次函数,,的最小值为.⑴求函数的解析式;⑵设,若在上是减函数,求实数的取值范围;⑶设函数,若此函数在定义域范围内不存在零点,求实数的取值范围.[【答案】(1);(2);(3)。

【解析】(1)由可设,再由的最小值求a的值;(2)首先对二次项系数分、、三种情况讨论,然后确定对称轴与给定区间端点的关系;(3)要满足题意,须有有解,且无解.然后求的最小值,令,但不属于的值域,即可得实数的取值范围。

⑴由题意设,∵的最小值为,∴,且,∴,∴ .⑵∵,①当时,在[-1, 1]上是减函数,∴符合题意.②当时,对称轴方程为:,ⅰ)当,即时,抛物线开口向上,由,得,∴;ⅱ)当,即时,抛物线开口向下,由,得,∴.综上知,实数的取值范围为.⑶法一:∵函数在定义域内不存在零点,必须且只须有有解,且无解.∴,且不属于的值域,又∵,∴的最小值为,的值域为,∴,且∴的取值范围为.法二:,令,必有,得,因为函数在定义域内不存在零点,,得,即,又(否则函数定义域为空集,不是函数),的取值范围是。

高一数学函数经典练习题(答案)

高一数学函数经典练习题(答案)

《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y ⑽ 4y = ⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

综合题高一数学函数经典习题及答案

综合题高一数学函数经典习题及答案

函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y =⑽4y =⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236xy x -=+的递减区间是;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学函数综合试题答案及解析

高一数学函数综合试题答案及解析

高一数学函数综合试题答案及解析1.已知函数是R上的增函数,则的取值范围是A.≤<0B.≤≤C.≤D.<0【答案】B【解析】若递增,则,若递增,则,若函数是R上的增函数,还需,综上可得的取值范围是≤≤。

【考点】函数的单调性2.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的一年收益与投资额成正比,其关系如图(1);投资股票等风险型产品的一年收益与投资额的算术平方根成正比,其关系如图(2).(注:收益与投资额单位:万元)(1)分别写出两种产品的一年收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使一年的投资获得最大收益,其最大收益是多少万元?【答案】(1),(2)投资债券类产品万元,则股票类投资为万元,收益最大,为万元.【解析】(1)根据题意设,,然后把分别代入,可求出两种产品的一年收益与投资额的函数关系;(2)该家庭的收益等于债卷收益+股票收益,设投资债券类产品万元,则股票类投资为万元,由(1)知债卷收益,股票收益,则总收益为,利用换元法求其最大值。

试题解析:(1)设,,所以,,即,; 5分(2)设投资债券类产品万元,则股票类投资为万元,依题意得:,令,则,所以当,即万元时,收益最大,万元. 13分【考点】(1)待定系数法求函数的解析式;(2)数形结合思想的应用;(3)换元法的应用。

3.定义在上的函数,如果对于任意给定的等比数列,有仍是等比数列,则称为“保等比数列函数”.现有定义在上的如下函数:①=;②=;③;④=||,则其中是“保等比数列函数”的的序号为【答案】①③【解析】设等比数列的公比为,对于函数得为常数,因此得为保等比数列函数;对于函数得不是常数,因此不是保等比数列函数;对于函数得为常数,因此是保等比数列函数;对于函数得不是常数,因此不是保等比数列函数.【考点】判断是否为等比数列.4.函数y=-xcosx的部分图象是().【答案】D.【解析】选判断函数的奇偶性,此时,有,可知此函数为奇函数,排除A,C;又当x>0时,取时,可知此时,易知图像与x轴交于,而当时,,故选D.【考点】函数图像的辨析与识别,奇偶函数的定义与性质,排除法,特殊角的三角函数值.5.已知函数定义在上,对任意的,,且.(1)求,并证明:;(2)若单调,且.设向量,对任意,恒成立,求实数的取值范围.【答案】(1)(2)【解析】(1)借助于特殊值得,然后把变形= 即可,(2)首先判断出函数是增函数,然后找出,代入整理的,最后用分类讨论的思想方法求出即可.(1)令得,又∵,, 2分由得=,∵,∴. 5分(2)∵,且是单调函数,∴是增函数. 6分而,∴由,得,又∵因为是增函数,∴恒成立,.即. 8分令,得 (﹡).∵,∴,即.令, 10分①当,即时,只需,(﹡)成立,∴,解得; 11分②当,即时,只需,(﹡)成立,∴,解得,∴. 12分③当,即时,只需,(﹡)成立,∴,∴, 13分综上,. 14分【考点】抽象函数;函数的单调性;向量的数量积公式;不等式恒成立的问题;分类讨论的思想方法.6.已知函数,则______.【答案】【解析】若,则,,故【考点】分段函数,特殊角的三角函数值.7.设关于x函数其中0将f(x)的最小值m表示成a的函数m=g(a);是否存在实数a,使f(x)>0在上恒成立?是否存在实数a,使函数f(x) 在上单调递增?若存在,写出所有的a组成的集合;若不存在,说明理由.【答案】(1)(2)不存在a;(3).【解析】(1)先利用二倍角公式将化简,将其看成的二次函数,从而转化成求二次函数的最值问题.因为含参数,要注意定义域的范围,对参数进行讨论.(2)恒成立,即求的最大值大于0即可.而的最大值为,所以无解.故不存在a,使得恒成立.(3)本题可看成二次函数在上递增,只需在上单调递减,故.(1)设, 由知,恒成立由于的最大值为,所以无解.故不存在a,使得恒成立.(3)上的减函数,故在上递增,只需在上单调递减,故所以存在,使函数为增函数.【考点】二倍角公式,二次函数的性质,最值,恒成立问题,等价转化的方法,函数的单调性.8.已知函数.(1)若在上存在零点,求实数的取值范围;(2)当时,若对任意的,总存在使成立,求实数的取值范围.【答案】(1);(2).【解析】(1)在上存在零点,只需即可;(2)本问是存在性问题,只需函数的值域为函数的值域的子集即可.试题解析:(1)的对称轴为,所以在上单调递减,且函数在存在零点,所以即解得.故实数的取值范围为.(2)由题可知函数的值域为函数的值域的子集,以下求函数的值域:①时,为常函数,不符合题意;②,,∴解得;③,,∴解得.综上所述,的取值范围为.【考点】1.函数的零点;2.恒成立问题.9.设函数,用二分法求方程的近似根过程中,计算得到,则方程的根落在区间A.B.C.D.【答案】A【解析】解:取,因为,所以方程近似根取,因为,所以方程近似根所以应选A.【考点】二分法.10.已知函数,为偶函数,且当时,.记.给出下列关于函数的说法:①当时,;②函数为奇函数;③函数在上为增函数;④函数的最小值为,无最大值.其中正确的是A.①②④B.①③④C.①③D.②④【答案】B【解析】解:根所题意,函数的图象如下图所示为分段函数,其解析式为由此可知①③④正确,故选B.【考点】函数图象和性质.11.若定义在区间上的函数满足:对于任意的,都有,且时,有,的最大值、最小值分别为,则的值为( )A.2012B.2013C.4024D.4026【答案】C【解析】令,所以.即.再令.代入可得.设.所以.又因为.所以可得.所以可得函数是递增.所以.又因为.故选C.【考点】1.函数的单调性.2.函数的特殊值法寻找等量关系.3.等式与不等式间的互化.4.归纳化归的能力.12.已知为偶函数,当时,,满足的实数的个数为()A.2B.4C.6D.8【答案】D【解析】因为为偶函数,当时,.所以函数的解析式为作出图像如图所示. .由于函数是关于y轴对称,考虑研究x>0部分的图像.当时.或.因为.所以有四个不同的值.因为,所以不存在.所以有四个值.有对称性可得在x<0部分也有一个x的值符合.所以对应有四个值.故选D.【考点】1.分段函数的性质.2.复合函数的运算.3.数形结合的思想.13.定义函数,若存在常数C,对于任意的,存在唯一的,使得,则称函数在D上的“均值”为,已知,则函数上的均值为()A.B.C.D.10【答案】A【解析】因为过点的中点的纵坐标为,所以对于任意的,存在唯一的,使得.所以均值.故选A.本小题的关键是考查函数的对称性问题.【考点】1.新定义的函数问题.2.函数的对称性.14.函数f(x)=x3-2x2+3x-6在区间[-2,4]上的零点必在所在区间是 ( )A.[-2,1]B.[,4]C.[1,]D.[,]【答案】D【解析】因为,,又,由二分法知函数在区间必有零点.故正确答案为D.【考点】二分法15.设函数.(Ⅰ)画出的图象;(Ⅱ)设A=求集合A;(Ⅲ)方程有两解,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(1)需将函数解析式改写成分段函数后在画图(2)利用整体思想把先看成整体,然后再去绝对值(3)方程有两个解即函数和函数的图像有两个交点,利用数形结合思想分析问题试题解析:(Ⅰ)图像如图(1)所示(Ⅱ)即(舍)或或(Ⅲ)由图像(2)分析可知当方程有两解时,或【考点】(1)函数图像的画法(2)一元二次不等式和绝对值不等式(3)数形结合思想16.已知函数,若存在当时,则的取值范围是【答案】【解析】如图所示当时有,当时有所以即【考点】分段函数,要使时,,即使与函数有两个不同的交点,数形结合思想.17.已知,符号表示不超过的最大整数,若关于的方程(为常数)有且仅有3个不等的实根,则的取值范围是( ).A.B.C.D.【答案】B【解析】因为,所以;分和的情况讨论,显然有.若,此时;若,则;若,因为,故,即.且随着的增大而增大。

高一数学函数经典题目及答案

高一数学函数经典题目及答案

1函数解析式的特殊求法例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式例2 若x x x f 21(+=+),求f(x)例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式例5 已知f(x)满足x xf x f 3)1()(2=+,求)(x f2函数值域的特殊求法例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

例2. 求函数22x 1x x 1y +++=的值域。

例3求函数y=(x+1)/(x+2)的值域例4. 求函数1e 1e y x x +-=的值域。

例1下列各组中的两个函数是否为相同的函数? ①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y③21)52()(-=x x f 52)(2-=x x f2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(-(B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。

(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。

例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅,(2)(,)a b C ∈同时成立.证明题1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).答案1解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

综合题:高一数学函数经典习题及答案

综合题:高一数学函数经典习题及答案

综合题高一数学函数经典习题及答案一、 求函数的定义域 1、求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y =⑽4y =⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++⑵y =⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236xy x -=+的递减区间是;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学函数综合试题答案及解析

高一数学函数综合试题答案及解析

高一数学函数综合试题答案及解析1.定义运算:,对于函数和,函数在闭区间上的最大值称为与在闭区间上的“绝对差”,记为,则= .【答案】.【解析】记,,于是构造函数,则当时,;当或时,所以.即为所求.【考点】函数的最值及其几何意义.2.设,那么()A.B.C.D.【答案】B.【解析】观察题意所给的递推式特征可知:,所以,故选B.【考点】数列的递推公式.3.函数y=-xcosx的部分图象是().【答案】D.【解析】选判断函数的奇偶性,此时,有,可知此函数为奇函数,排除A,C;又当x>0时,取时,可知此时,易知图像与x轴交于,而当时,,故选D.【考点】函数图像的辨析与识别,奇偶函数的定义与性质,排除法,特殊角的三角函数值.4.方程在区间内的所有实根之和为 .(符号表示不超过的最大整数).【答案】2.【解析】设,当时,;当时,;当时,;当时,;即;令,得;令,得;的所有根为0,2,之和为2.【考点】新定义题、函数图像的交点.5.若不等式对任意的上恒成立,则的取值范围是()A.B.C.D.【答案】D.【解析】∵,又∵,,∴,又∵,根据二次函数的相关知识,可知当,时,,综上所述,要使不等式对于任意的恒成立,实数的取值范围是.【考点】1.函数求最值;2.恒成立问题的处理方法.6.下列四个命题:①方程若有一个正实根,一个负实根,则;②函数是偶函数,但不是奇函数;③函数的值域是,则函数的值域为;④一条曲线和直线的公共点个数是,则的值不可能是.其中正确的有________________(写出所有正确命题的序号).【答案】①④【解析】,故①正确;根据定义域,,所以,所以也是奇函数;故②不正确;仅是定义域变了,值域没有改变;故③不正确;是关于对称轴对称的图像,所以与其交点个数只能是偶数个,不可能是1.故④正确.【考点】1.方程根与系数的关系;2.函数奇偶性;3.抽象函数;4.函数图像.7.已知函数,则下列说法中正确的是()A.若,则恒成立B.若恒成立,则C.若,则关于的方程有解D.若关于的方程有解,则【答案】D.【解析】绝对值不等式,当时,则,此时,所以A错误;当恒成立时,有,此时假设,则由绝对值不等式可知恒成立,此时与恒成立矛盾,再结合对A选项的分析,可知,所以B选项错误;当时,则,此时,方程,左边是正数,右边是负数,无解,所以C错误;对于D,当关于的方程有解时,由上述C选项的分析可知不可能小于0,当时,,也不满足有解,所以,此时由有解,可得,所以,所以,选项D正确,故选D.【考点】函数与绝对值不等式.8.如果二次函数不存在零点,则的取值范围是()A.B.C.D.【答案】B【解析】∵二次函数不存在零点,二次函数图象向上,∴,可得,解得,故选D.【考点】1、函数零点;2、函数与方程的关系.9.已知函数是定义在上的奇函数,当时的解析式为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的零点.【答案】(Ⅰ)(Ⅱ)零点为【解析】(Ⅰ)先利用奇函数的性质求时的解析式,再求时的解析式,最后写出解析式. 本小题的关键点:(1)如何借助于奇函数的性质求时的解析式;(2)不能漏掉时的解析式.(Ⅱ)首先利用求零点的方法:即f(x)=0,然后解方程,同时注意限制范围.试题解析:(Ⅰ)依题意,函数是奇函数,且当时,,当时,, 2分又的定义域为,当时, 2分综上可得, 2分(Ⅱ)当时,令,即,解得,(舍去) 2分当时,, 1分当时,令,即,解得,(舍去) 2分综上可得,函数的零点为 1分【考点】1、奇函数的性质;2、求方程的零点.10.函数的零点所在的区间是()A.B.C.D.【答案】C.【解析】因为函数的定义域为大于零的实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函 数 练 习 题
一、 求函数的定义域 1、求下列函数的定义域:
⑴33y x =+-
⑵y =
⑶01
(21)111
y x x =+-++
-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定
义域为________;
3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x
+的定义域为 。

4、
知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实
数m 的取值范围。

二、求函数的值域
5、求下列函数的值域:
⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=
+ ⑷31
1
x y x -=+ (5)x ≥ ⑸
y = ⑹ 22
5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼
y =⑽
4y =
⑾y x =
6、已知函数22
2()1
x ax b
f x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、
已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _
()f x 在R 上的解析式为
5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且
1
()()1
f x
g x x +=
-,求()f x 与()g x 的解析表达式 四、求函数的单调区间
6、求下列函数的单调区间:
⑴ 223y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是
8、函数236
x
y x -=
+的递减区间是 ;函数y =的递减区间是
五、综合题
9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3
)
5)(3(1+-+=
x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;
⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3
44
2++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )
A 、(-∞,+∞)
B 、(0,43]
C 、(43,+∞)
D 、[0, 4
3
)
11、若函数()f x =的定义域为R ,则实数m 的取值范围是( )
(A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是( ) (A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<<
13、函数()f x = )
A 、[2,2]-
B 、(2,2)-
C 、(,2)(2,)-∞-+∞
D 、{2,2}- 14、函数1()(0)f x x x x
=+≠是( )
A 、奇函数,且在(0,1)上是增函数
B 、奇函数,且在(0,1)上是减函数
C 、偶函数,且在(0,1)上是增函数
D 、偶函数,且在(0,1)上是减函数
15、函数2
2(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩
,若()3f x =,则x =
16、已知函数f x ()的定义域是(]01,,则g x f x a f x a a ()()()()=+⋅--<≤12
0的定义域为 。

17、已知函数21
mx n
y x +=+的最大值为4,最小值为 —1 ,则m = ,n = 18、把函数1
1
y x =
+的图象沿x 轴向左平移一个单位后,得到图象C ,则C 关于原点对称的图象的解析式为
19、求函数12)(2--=ax x x f 在区间[ 0 , 2 ]上的最值
20、若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,求函数()g t 当∈t [-3,-2]时的最值。

21、已知a R ∈,讨论关于x 的方程2680x x a -+-=的根的情况。

22、已知1
13
a ≤≤,若2()21f x ax x =-+在区间[1,3]上的最大值为()M a ,最小值为()N a ,令()()()g a M a N a =-。

(1)求函数()g a 的表达式;(2)判断函数()g a 的单调性,并求()
g a 的最小值。

23、定义在R 上的函数(),(0)0y f x f =≠且,当0x >时,()1f x >,且对任意,a b R ∈,
()()()f a b f a f b +=。

⑴求(0)f ; ⑵求证:对任意,()0x R f x ∈>有;⑶求证:()f x 在R 上是增函数; ⑷若2()(2)1f x f x x ->,求x 的取值范围。

函 数 练 习 题 答 案 一、 函数定义域:
1、(1){|536}x x x x ≥≤-≠-或或 (2){|0}x x ≥ (3)1
{|220,,1}2
x x x x x -≤≤≠≠≠且 2、[1,1]-; [4,9] 3、5[0,];2 11(,][,)32
-∞-+∞ 4、11m -≤≤ 二、 函数值域:
5、(1){|4}y y ≥- (2)[0,5]y ∈ (3){|3}y y ≠ (4)7[,3)3
y ∈ (5)[3,2)y ∈- (6)1{|5}2
y y y ≠≠且 (7){|4}y y ≥ (8)y R ∈ (9)[0,3]y ∈ (10)[1,4]y ∈ (11)1{|}2
y y ≤ 6、2,2a b =±= 三、 函数解析式:
1、2()23f x x x =-- ; 2(21)44f x x +=-
2、2()21f x x x =--
3、4()33
f x x =+
4
、()(1f x x =-
;(10)()(10)
x x f x x x ⎧+≥⎪=⎨<⎪⎩ 5、21()1f x x =- 2
()1x g x x =- 四、 单调区间:
6、(1)增区间:[1,)-+∞ 减区间:(,1]-∞- (2)增区间:[1,1]- 减区间:[1,3]
(3)增区间:[3,0],[3,)-+∞ 减区间:[0,3],(,3]-∞- 7、[0,1] 8、(,2),(2,)-∞--+∞ (2,2]- 五、 综合题:
C D B B D B
14
、(,1]a a -+ 16、4m =± 3n = 17、12
y x =
- 18、解:对称轴为x a = (1)0a ≤时,min
()(0)1f x f ==- , max ()(2)34f x f a ==-
(2)01a <≤时,2min ()()1f x f a a ==-- ,max ()(2)34f x f a ==- (3)12a <≤时,2min ()()1f x f a a ==-- ,max ()(0)1f x f ==- (4)2a >时 ,min ()(2)34f x f a ==- ,max ()(0)1f x f ==-
19、解:221(0)()1(01)22(1)t t g t t t t t ⎧+≤⎪
=<<⎨⎪-+≥⎩
(,0]t ∈-∞时,2()1g t t =+为减函数 ∴ 在[3,2]--上,2()1g t t =+也为减函数 ∴
min ()(2)5g t g =-=, max ()(3)10g t g =-=
20、21、22、(略)。

相关文档
最新文档