衍射光强分布测量

合集下载

衍射光强分布的测实验报告

衍射光强分布的测实验报告

篇一:衍射光强分布的测实验报告衍射光强分布的测量1008406006 物理师范陈开玉摘要:为了观察并验证单缝衍射和多缝衍射的图样以及它们的规律,本实验设计了基于水平光路的测量方法。

运用自动光强记录仪来对衍射现象进行比较函数化的观察。

实验观察到衍射条纹随着缝宽变窄而模糊和间距扩大,并且通过仪器对光强图样的位置定位和夫琅禾费光强的公式来计算单缝的缝宽。

该实验装置结构简单、调节方便、条纹移动清晰。

关键词:衍射自动光强记录仪单缝多缝一、引言光的衍射现象是光的波动性的重要表现,并在实际生活中有较多应用,如运用单缝衍射测量物体之间的微小间隔和位移,或者用于测量细微物体的尺寸等。

本实验要求通过观察、测量夫琅禾费衍射光强分布,加深对光的衍射现象的理解和掌握。

二、实验原理1,衍射的定义: 波遇到障碍物或小孔后通过散射继续传播的现象。

衍射现象是波的特有现象,一切波都会发生衍射现象,而光也是波的一种, 光在传播路径中,遇到不透明或透明的障碍物或者小孔(窄缝),绕过障碍物,产生偏离直线传播的现象称为光的衍射。

衍射时产生的明暗条纹或光环,叫衍射图样2,光的衍射分为夫琅禾费衍射和菲涅尔衍射, 夫琅禾费衍射是指光源和观察点距障碍物为无限远,即平行光的衍射;而菲涅尔衍射是指光源和观察点距障碍物为有限远的衍射.本实验研究的只是夫琅禾费衍射.实际实验中只要满足光源与衍射体之间的距离 ,衍射体至观察屏之间的距离都远大于就满足了夫琅禾费衍射的条件,其中a为衍射物的孔径,λ为光源的波长.3,单缝、单丝衍射原理:如上图所示,a为单缝宽度,缝和屏之间的距离为,为衍射角,其在观察屏上的位置为,离屏幕中心的距离为 =,设光源波长为λ,则有单缝夫琅禾费衍射的光强公式为:式中是中心处的光强,与缝宽的平方成正比。

若将所成衍射图样的光强画成函数图象在坐标系中,则所成函数图象大致如下除主极强外,次极强出现在的位置,它们是超越方程的根,其数值为:对应的值为当角度很小时,满足,则可以近似为因而我们可以通过得出函数中次级强的峰值的横坐标只差来确定狭缝的宽度a4,多缝衍射和干涉原理多缝衍射的示意图如上图,每条缝的宽度为a,两条缝的中心距离为d,其中的每个单缝的衍射光强强度都和之前的单缝衍射光强公式一致。

实验十五光衍射相对光强分布的测量

实验十五光衍射相对光强分布的测量

射光强分布谱横坐标的长度数值,即构成一把测定位移的光栅尺.光栅尺可精确测定位移
量,正是利用这个特点在精密仪器和自动控制机床等计量领域,光栅位移传感器有广泛的
应用.本实验中用的光栅尺中,200 mm 长度的光栅为主光栅,它相当于标准器,固定不动.可
动小型光栅为指示光栅,它与光栅探测器联为一体.也就是光栅移动,光探测器同步移动,
衍射导致了光强在空间的重新分布,利用光电传感元件测量和探测光强的相对变化, 是近代技术中常用的光强测量方法之一.
【实验目的】
1.掌握在光学平台上组装、调整光的衍射实验光路; 2.观察不同条件下产生的衍射,归纳总结单缝衍射现象的规律和特点; 3.学习利用光电元件测量相对光强的实验方法,研究单缝衍射中相对光强的分布规律; 4.学习微机自动控制测衍射光强分布谱和相关参数.
为 时,观察点的光强 I值与光波波长和单缝宽度 a 相关.[sin (u) / u]2 常称为单缝衍射 因子,表征衍射光场内任一点相对光强(I I0)的大小.若以 sin为横坐标,(I I0)为 纵坐标,可得到单缝衍射光强的分布谱(如图 2 所示).
当= 时,
I = I 0
sin k a
(4)
同理,由图 1 也可看出,k 级暗条纹对应的衍射角
tgk
k

xk L

k xk aL
(6)
(5)
由以上讨论可知
(1)中央亮条纹的宽度被 k = ±1 的两
暗条纹的衍射角所确定,即中央亮条纹的角宽
度为 2 . a
(2)衍射角与缝宽 a 成反比,缝加宽
莫尔条纹也移动,位移量为正值;如果指示光栅改变移动方向,光探测器也反方向移动,
莫尔条纹随着改变运动方向,位移量是负值.因而光栅尺能准确地测定指示光栅运动的位

单缝衍射光强的分布测量实验报告

单缝衍射光强的分布测量实验报告

竭诚为您提供优质文档/双击可除单缝衍射光强的分布测量实验报告篇一:衍射光强分布测量衍射光强分布测量***,物理学系摘要:本实验利用激光为光源研究激光经过单缝与单丝时的衍射光强度分布情况。

激光的高准直性符合夫琅和费远场条件,且高单色性保证测量时没有不同波长光的叠加影响。

光感应器方面使用光栅尺与电脑连接做0.02毫米/点的高精度自动扫描。

通过巴比涅原理迂回得到了没有直射光时单丝的衍射光强分布,完整验证了运用衍射光强分布来测量小微物体的长度的方法和可行性,并实际运用此法测量了铜丝和头发丝的直径。

关键词:衍射分布巴比涅原理单缝直径测量ThemeasurementoftheDistributionofLightDiffraction YixiongKeYiLin,DepartmentofphysicsAbstarct:Thisexperimentmadeuseoflaserasthelightsourcetoverif yaseriesofdiffractionpatternsof633nmlaserviadiffere ntsingleslitsandmonofilaments.Thecollimationfeature ofthelasermeetstheconditionofFraunhoferdiffraction, themonochromicfeatureoflaserprovideabetterexperimen talenvironmentthatthediffractionpatternwon`tbeinter ferebythelightofotherwavelength.weuselinearencorder connectedtopcviauLI(universalLaboratoryInterface)as thesensortoautomaticallyscanthediffractionpatternwi ththeratioof0.02mmperdot.weusebabinet’sprincipletogetthediffractionpatternofamonofilament p letelyverifiedthemethodandfeasibilityofmeasuringati nyobjectwithitsdiffractionpattern.Inaddition,wetryt omeasurethediameterofacopperwireandpeople’shairinthiswayKeywords:Diffractiondistributionbabinet`sprinciplesingleslitsmeasureDiameterofthewire1一、引言衍射是波遇到障碍物时便利直线传播的现象。

单缝衍射光强的分布测量实验报告

单缝衍射光强的分布测量实验报告

单缝衍射光强的分布测量实验报告实验名称:单缝衍射光强的分布测量实验目的:1. 了解单缝衍射现象及其规律;2. 掌握测量单缝衍射光强的方法和步骤。

实验器材:1. 单缝光源2. 单缝衍射装置3. 光电探测器4. 数字多道分析器5. 电脑与连接线6. 实验支架7. 高精度尺子实验原理:当光传播到单缝上时,由于光的波动性,出现了衍射现象。

在单缝前方远离缝的一定距离处,出现一系列亮暗的条纹,即衍射图样。

衍射图样反映了波阵面在缝后的衍射情况,通过测量这些条纹的亮度,可以得到单缝衍射光强的分布。

实验步骤:1. 将实验装置搭建好,确保光路正常且稳定。

2. 将光电探测器放置在远离单缝的一定距离处,调整其位置使其刚好能接收到衍射光。

3. 将电脑与数字多道分析器连接。

4. 打开数据采集软件,设置好采集参数。

5. 开始采集数据,持续一段时间,确保得到足够多的数据点。

6. 关闭数据采集软件,保存数据并进行数据分析。

7. 根据采集到的数据绘制单缝衍射光强分布图。

实验结果分析:根据采集到的数据,可以得到每个位置上的光强数值。

通过绘制光强与位置的关系图,可以观察到一系列亮暗条纹的分布。

根据衍射理论可以推导出单缝衍射的光强分布公式:I(x) = (I_0 * sin(β)/β)^2 * (sin(α)/α)^2其中,I(x)为位置x处的光强,I_0为中央最大光强,β为sin(β) = (π* b * sin(α))/λ,b为单缝宽度,α为入射光与垂直方向的夹角,λ为入射光波长。

实验误差分析:1. 由于实验器材和环境的限制,实际测量中可能会存在一定的误差。

2. 光电探测器的位置调整可能不够精确,导致实际测量的位置与理论位置存在偏差。

3. 光源的稳定性对实验结果也有一定影响,光源的波动性会导致实际测量的数值偏差。

4. 数据采集时的误差也需要注意,包括噪声、干扰等。

实验结论:通过实验测量单缝衍射光强的分布,可以得到一系列亮暗条纹的分布情况。

光强分布的测量

光强分布的测量

光强分布的‎测量实验一、实验目的1.观察单缝衍‎射现象,加深对衍射‎理论的理解‎。

2.会用光电元‎件测量单缝‎衍射的相对‎光强分布,掌握其分布‎规律。

3.学会用衍射‎法测量微小‎量。

4.验证马吕斯‎定律。

二、实验原理如图1所示‎,图1 夫琅禾费单‎缝衍射光路‎图与狭缝E 垂‎直的衍射光‎束会聚于屏‎上P 0处,是中央明纹‎的中心,光强最大,设为I 0,与光轴方向‎成Ф角的衍‎射光束会聚‎于屏上PA ‎处,PA 的光强‎由计算可得‎:式中,b 为狭缝的‎宽度,λ为单色光的‎波长,当0=β时,光强最大,称为主极大‎,主极大的强‎度决定于光‎强的强度和‎缝的宽度。

当πβk =,即:220sin ββI I A =)sin (λφπβb =bKλφ=sin ),,,⋅⋅⋅±±±=321(K时,出现暗条纹‎。

除了主极大‎之外,两相邻暗纹‎之间都有一‎个次极大,由数学计算‎可得出现这‎些次极大的‎位置在β=±1.43π,±2.46π,±3.47π,…,这些次极大‎的相对光强‎I/I0依次为‎0.047,0.017,0.008,…图2 夫琅禾费衍‎射的光强分‎布夫琅禾费衍‎射的光强分‎布如图2所‎示。

图3 夫琅禾费单‎缝衍射的简‎化装置用氦氖激光‎器作光源,则由于激光‎束的方向性‎好,能量集中,且缝的宽度‎b 一般很小‎,这样就可以‎不用透镜L ‎1,若观察屏(接受器)距离狭缝也‎较远(即D 远大于‎b )则透镜L2‎也可以不用‎,这样夫琅禾‎费单缝衍射‎装置就简化‎为图3,这时,由上二式可‎得三、实验装置激光器座、半导体激光‎器、导轨、二维调节架‎、一维光强测‎试装置、分划板、可调狭缝、平行光管、起偏检偏装‎置、光电探头、小孔屏、数字式检流‎计、专用测量线‎等。

Dx /ta n s i n =≈φφxD K b /λ=图4 衍射、干涉等一维‎光强分布的‎测试四、实验步骤1. 接上电源(要求交流稳‎压220V ‎±11V ,频率50H ‎Z 输出),开机预热1‎5分钟;2. 量程选择开‎关置于“1”档,衰减旋钮顺‎时针置底,调节调零旋‎钮,使数据显示‎为-.000; (一)单缝衍射一‎维光强分布‎的测试1、 按图4搭好‎实验装置。

干涉与衍射光强分布测量

干涉与衍射光强分布测量

前言随着科技进步,当今先进的光谱实验室已不再使用照相干版法获得光谱图形,先进的光学实验室也不再用测量望远镜或丝杠带动光电池来测量干涉、衍射花样的光强分布,所使用的都是以CCD器件为核心构成的各种光学测量仪器。

LM99PC单缝衍射仪/多道光强分布测量系统用线阵CCD器件接收光谱图形和光强分布,利用计算机的强大数据处理能力对采集到的数据进行分析处理,通过直观的方式得到我们需要的结果。

与其他产品相比,LM99PC具有分辨率高(微米级),实时采集、实时处理和实时观测,观察方式多样,物理现象显著,物理内涵丰富,软件功能强大等明显的优点,是传统单缝衍射仪的升级换代产品。

第1章硬件组成一套完整的LM99PC由光具座、激光器、组合光栅、LM501/601 CCD光强分布测量仪和计算机数据采集盒(USB接口),外加一套计算机组成。

LM99PC外观1.激光器:小功率的半导体激光器或He-Ne激光器均可在LM99PC上使用;2.组合光栅:由光栅片和二维调节架构成,见图1,光栅片上有7组图形,见图2。

光栅片上部/ 下部第1组:单缝(a=0.12mm)/ 单丝(0.12mm)第2组:单缝(a=0.10mm)/ 单丝(0.10mm)第3组:单缝(a=0.07mm)/ 双缝(a=0.07mm,d=2)第4组:单缝(a=0.07mm)/ 双缝(a=0.07mm,d=3)第5组:单缝(a=0.07mm)/ 双缝(a=0.07mm,d=4)第6组:双缝(a=0.02mm)/ 三缝(a=0.02mm,d=2)第7组:四缝(a=0.02mm)/ 五缝(a=0.02mm,d=2)d为缝中心的间距与缝宽的比值。

几组多缝结构按排是针对母国光等编第 1 页 共 21 页《光学》P223~P227;P325~P331的教学内容所设计。

3.计算机数据采集盒:计算机数据采集盒用USB 接口与计算机相连,同时以DB15插座通过电缆线与LM601/501 CCD 光强仪后面板各插孔相连。

单缝衍射光强分布的测定

单缝衍射光强分布的测定

单缝衍射光强分布的测定光的衍射现象是光的波动性又一重要特征。

单缝衍射是衍射现象中最简单的也是最典型的例子。

在近代光学技术中,如光谱分析、晶体分析、光信息处理等到领域,光的衍射已成为一种重要的研究手段和方法。

所以,研究衍射现象及其规律,在理论和实践上都有重要意义。

实验目的1. 观察单缝衍射现象及特点。

2. 测定单缝衍射时的相对光强分布3. 应用单缝衍射的光强分布规律计算缝的宽度α。

实验仪器光具导轨座,He-Ne 激光管及电源,二维调节架,光强分布测定仪,可调狭缝,狭缝A 、B 。

扩束镜与起偏听偏器,分划板,光电探头,小孔屏,数字式检流计(全套)等。

实验原理光在传播过程中遇到障碍时将绕过障碍物,改变光的直线传播,称为光的衍射。

光的衍射分为夫琅和费衍射与菲涅耳衍射,亦称为远场衍射与近场衍射。

本实验只研究夫琅和费衍射。

理想的夫琅和费衍射,其入射光束和衍射光束均是平行光。

单缝的夫琅和费衍射如图二 所示。

当处于夫琅和费衍射区域,式中α是狭缝宽度,L 是狭缝与屏之间的距离,λ是入射光的波长。

实验时,若取α≤10-4m, L ≥1.00m ,入射光是He-Ne激光,其波长是632.8nm,就可满足上述条件。

所以,实验时就可以采用如图一装置。

λ<<L82α如图二 单缝衍射的光路图1、导轨2、激光电源3、激光器4、单缝或双缝二维调节架5、小孔屏6、一维光强测量装置7、WJF 型数字式检流计根据惠更斯-菲涅耳原理,可导出单缝衍射的光强分布规律为当衍射角ϕ等于或趋于零时,即ϕ=0(或ϕ→0),按式,有故I=I 0,衍射花样中心点P 0的光强达到最大值(亮条纹),称为主极大。

当衍射角ϕ满足时,u=k π 则I=0,对应点的光强为极小(暗条纹), k 称为极小值级次。

若用X k 表示光强极小值点到中心点P 0的距离,因衍射角ψ甚小,则故X k =L ϕ=k λL/α,当λ、L 固定时,X k 与α成反比。

缝宽α变大,衍射条纹变密;缝宽α变小,衍射条纹变疏。

单缝衍射光强分布的测定

单缝衍射光强分布的测定

实验名称: 单缝衍射光强分布的测定 实验时间: 实验者:院系: 学号:指导教师签字: 实验目的:1.测定单缝衍射的相对光强分布;2.测定半导体激光器激光的波长。

实验仪器设备:光具座 半导体激光器 可调单缝 硅光电池 光电检流器 移测显微镜 光屏实验原理:1. 夫琅禾费衍射当光在传播过程中经过障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。

衍射通常分为两类:一类是满足衍射屏离光源或接收屏的距离为有限远的衍射,称为菲涅耳衍射;另一类是满足衍射屏与光源和接收屏的距离都是无限远的衍射,也就是照射到衍射屏上的入射光和离开衍射屏的衍射光都是平行光的衍射,称为夫琅禾费衍射。

以波长为λ的单色平行光(实验用散射角极小的激光器产生激光束)垂直通过单缝,经衍射后,在屏上可以得到一组平行于单缝的明暗相间的条纹(夫琅禾费衍射条纹)。

如图所示。

根据惠更斯——菲涅耳原理,可知220sin ββθI I = 由θλπβsin a =得 220)sin ()sin (sin λθπλθπθa a I I =0I I θ叫做相对光强 暗纹条件)0,,2,1(asin =±±==θλθI k k (θ很小,故θθθ≈≈tan sin ,)中央明纹两侧暗条纹之间的角宽a 2λθ=∆ 相邻两暗条纹之间角宽aλθ=∆’ 0=θ时,0I I =θ,此时光强最大,为主最大。

其两侧相邻两暗条纹间都有一个次最大,角位置分别为。

,、、 a47.3a 46.2a 43.1sin λλλθ±±±= 相应的 008.0017.0047.00、、=I I θ 得到单缝衍射相对光强分布曲线2.测入射光波波长dθD x 亮暗在实验中,θ很小,设单缝距屏L ,屏上条纹距中心点为x ,Lx tan sin =≈θθ 由asin λθk=,得对应第一级暗条纹有Lb ∆==asin λθ 则可以测得入射光波波长Lb∆=a λ 操作步骤:1. 根据指导书上的装置图安装好实验仪器;2. 打开激光器,使激光束对准可调狭缝且垂直照射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
头发丝直径为a=0.07605 mm
可以认为是比较准确的。
4.多缝衍射现象与理论的比较
时间关系无法进行细致的实验验证,仅用一张图像定性验证多缝夫琅禾费衍射性质。
③铜丝和头发:用透明胶将铜丝和头发固定在光具座上,调整铜丝和头发的方向,使得衍射图像与感应器移动方向水平。
④多缝片:与单缝片一样测量,仅作对比比较。
实际所用实验器材:
GJS-250 型He-Ne激光器、光具座、GSZF—1型衍射光强分布自动记录仪、衍射片(单丝、单缝、多缝)、铜丝、头发丝。
四、实验结果
使用Origin自定义拟合每个衍射曲线,对于每个衍射曲线的所有数据,将在Origin中使用自定义函数功能进行拟合。初步处理过程如下:
其中, 为记录仪的位置坐标, 为读出的主极大位置,a为已经通过千分尺等给出的缝宽, 为光波长,L为衍射缝与感应器的距离,I为记录仪记录下的光强度。上式中的X即为衍射表达公式中的 。
4.巴比涅原理
巴比涅原理针对互补屏衍射的情况,它指出互补屏造成的衍射场中的复振幅之和等于自由波场的复振幅。也就是说,除几何像点的地方之外,两个互补屏平面产生的衍射图样完全一样。
5.单缝、单丝衍射原理:
如右图所示,a为单缝宽度,缝和屏之间的距离为V, 为衍射角,其在观察屏上的位置为x,x离屏幕中心O的距离为 ,设光源波长为 ,则有单缝夫琅禾费衍射的光强公式为:
通过测量一一对应的固定单丝和单缝的衍射强度分布,结果如下图所示:
图像上我们将分布图放在同一个坐标下,可以发现一级、二级次极大都是吻合的,如表:
单缝
单丝
误差(%)
#1
7.16
7.45
3.8926
#2
10.9
11.5
5.2174
鉴于我们在找主极大的时候受制于扫描精度,因此这样一个误差率认为是可以接受的,即巴比涅原理得到了验证。
实际缝宽a/mm
一级次极大坐标mm
测量值
计算值
误差率(%)
0.07
16.1
0.0135852
0.012927
5.090384
0.12
9.5
0.0080166
0.007541
6.309001
0.17
6.6
0.0055695
0.005323
4.632177
0.22
5.1
0.0043038
0.004113
6.多缝衍射和干涉原理
多缝衍射的示意图如上图,每条缝的宽度为a,两条缝的中心距离为d,其中的每个单缝的衍射光强强度都和之前的单缝衍射光强公式一致。
多缝衍射与单缝的最大区别在于缝之间存在着干涉,如上图所示,对相同的衍射角 ,相邻两缝之间的光程差为 ,如果缝的数目为N,则干涉引起的强度分布因子为:
其中
右图为干涉因子的函数曲线,其特点是:
其函数图像就是单缝衍射函数图像和干涉因子的函数图像的合成,如下图
由于实验仪器仅提供一维扫描,故圆屏圆孔实验不进行,此处也不加赘述。
三、实验装置及过程
1.打开激光器预热,调整光具座水平,调节各元件高度位置(依次分别为激光器,衍射片,光强分布自动记录仪),使其同轴,并使得激光器差不多对准自动记录仪的中心;打开电脑熟悉软件使用方法和操作技巧。
1.研究(验证)单缝缝宽和衍射强度分布的关系
直接通过可调节光缝上的螺旋测微器来确定缝宽,以机器刚好可扫描出出射光斑为标准校准缝宽度,缝零点的读数为+0.03mm以后的数据均为校正后的宽度值。
对于可调节光缝的数据主极大未超出量程即直接由主极大的极大位置处直接读出,对于固定单丝及单缝的数据由于主极大部分并非衍射造成而是混杂透过的直射激光,因此这部分的主极大部分并不能直接读出而是只能读出各个次级大和暗纹的位置再求平均来确定实际主极大位置。
式中 是中心处的光强,与缝宽的平方成正比。
若将所成衍射图样的光强画成函数图象在坐标系中则所成函数图象大致如右图。除主极强外,次极强出现在 的位置,它们是超越方程 的根,其数值为:
对应的 值为
当角度很小时,满足 ,则 可以近似为
因而我们可以通过得出函数中次级强的峰值的横坐标之差来确定狭缝的宽度a。
而对于单丝,巴比涅原理指出单丝与单缝除几何像点之外其他的部分完全相同,因此在不考虑主极大的情况下,单丝与单缝图案将完全一样。
0.9995
这一拟合结果验证了(1)式,单缝夫琅禾费衍射光强公式,由于一级次极大是最容易被观测到的,因此在实际运用夫琅禾费衍射测量小尺度物体的长度时,主要凭借的是一级次极大到主极大的距离,结合波长来得到的,即:
式中 为一级次极大的衍射角。
因此,我们列出下表,再次确认了使用一级次极大来推算尺度的误差率在6%以下,是可以接受的误差范围之内,因此的确可以利用夫琅禾费衍射法来测定微小物体的尺度。
二、实验原理
1.衍射
衍射是波遇到障碍物是偏离直线传播的现象,出现明显衍射现象的条件是障碍物或狭缝尺寸与光波长所在数量级相近。因此对于波长在数百纳米的可见光来说,在日常生活中能够观察到的衍射现象较少,明显的衍射图样需要在实验室中进行观察与研究。
2.菲涅尔衍射与夫琅禾费衍射
菲涅尔衍射是指点光源或接收屏距离衍射缝有限远的情况(近场条件)。在此条件下光源发出的光到衍射缝有一个不可忽略的张角,即衍射屏中心与衍射屏边缘处存在着不可忽略的光程差,这种衍射情况叫做菲涅尔衍射。
①主极强的位置与缝的数目N无关,只要 即满足
就能出现主极强。此时 ,但
②次级强的数目为N-2,当 时, ,即出现强度为0的点,也就满足:
式中
在同一k之内共有N-1个零点,即有N-2个次级大。同时上式也说明N越大,主极强的角宽度越小,峰越锐。多缝衍射的强度受单缝衍射和多缝干涉共同影响,其强度公式为
其中
Key words:Diffraction distributionBabinet`s Principlesingle slitsMeasure Diameter of the Wire
一、引言
衍射是波遇到障碍物时便利直线传播的现象。通常光的衍射现象难以观察与测量,难点在于很难做到光的单色性导致各个波长光互相叠加难以辨别。实验室中激光由于其高准直性与高单色性而非常适合用于衍射现象的研究,准直性符合夫琅禾费衍射中的远场条件,单色性使我们能得到严格单一波长光的衍射图像而非数个波长的叠加。实验室使用的衍射光强自动记录仪(以下简称光栅尺)使我们能非常方便地自动扫描高达0.02毫米每点的光强度分布曲线,实现了光学实验结果便捷、准确的数字化处理。通过对微小物体造成的衍射图样的分析,可以测量得到微小物体的几何尺度,甚至几何结构。大名鼎鼎的DNA双螺旋结构就是通过对X光衍射图像分析而完成的生命科学史上的巨大突破。
关键词:衍射分布巴比涅原理单缝直径测量
The Measurement oftheDistribution of Light Diffraction
Yixiong KeYi Lin, Department of Physics
Abstarct:
This experiment made use of laser as the light source to verify a series of diffraction patterns of 633nm laser via different single slits and monofilaments.The collimation feature of the laser meets the condition of Fraunhofer diffraction, the monochromic featureof laser provide a better experimental environment that the diffraction pattern won`t be interfereby the light of other wave length. Weuselinear encorder connected to PC via ULI (Universal Laboratory Interface) as the sensor to automatically scan the diffraction pattern with the ratio of 0.02mm per dot.WeuseBabinet’sprincipleto getthe diffraction pattern of a monofilament without the effect of the light which simply go through. Completely verified the method andfeasibilityof measuring a tiny object with its diffraction pattern.In addition, we try to measure the diameter of a copper wireand people’s hair in this way
依照上式中对原始数据处理为X,Y形式后按照以下自定义公式拟合:
各个衍射曲线的直接拟合结果如下:
编号
A
B
C
相关系数
1
1636
0.889
86.4
0.994
2
7169
0.9134
85.9
0.9997
3
7121
0.9330
32.0
0.9996
4
8412
0.8980
57.0
0.995
5
10082
0.9250
42.0
①可调节光缝:需要使用平面镜进行自准直调节,缝宽度需要校准。
②固定单缝与单丝:衍射片本身能进行部分反射,因此可直接进行自准直调节,但注意到若衍射片平面完全垂于激光,激光将在衍射片与激光器激光出射孔间来回反射使衍射屏上有多个激光光点,影响光强测量。因此实际实验时我们将衍射屏在竖直方向上略微倾斜了一点使得不会出现来回反射的现象。
相关文档
最新文档