高中理科数学公式整理总结大全高考必备
【高考复习】高考理科必背数学公式大全

【高考复习】高考理科必背数学公式大全高中数学公式是高考数学复习的重要知识点高三考生行为高考一一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1*x2=c/a注:韦达定理判别式b2-4a=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不相等的个实根B2-4ac<0注:方程有共轭复数根1三维图形和平面图形的公式圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆x2+Y2+DX+ey+F=0的一般方程注:D2+e2-4f>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱镜侧面积s=C*h斜棱镜侧面积s=C'*h正棱锥侧面积s=1/2c*h'正棱台侧面积s=1/2(c+c')h'圆桌的侧面面积s=1/2(c+c’)l=pi(R+R)l球的表面积s=4Pi*R2圆柱侧面积s=c*h=2pi*h圆锥侧面积s=1/2*c*l=pi*r*l弧长公式L=a*RA是圆中心角的弧度数,R>0,扇形面积公式s=1/2*L*R 锥体体积公式v=1/3*s*h圆锥体体积公式v=1/3*pi*r2h倾斜棱镜的体积v=s'L注:其中s'是直截面的面积,L是侧边的长度柱体体积公式v=s*h圆柱体v=pi*r2h一图形周长、面积、体积公式矩形的周长=(长+宽)×2正方形的周长=边长×4矩形面积=长度×宽度正方形的面积=边长×边长三角形面积已知三角形底a,高h,则s=ah/2如果三角形有三条边a、B、C和半周长P,那么s=√ [P(P-A)(P-B)(P-C)](海伦公式)(P=(A+B+C)/2)和:(a+b+c)*(a+b-c)*1/4如果我们知道三角形两边的a和B,以及这两条边之间的角c,那么s=absinc/2设三角形三边分别为a、b、c,内切圆半径为r然后三角形面积=(a+B+C)R/2设三角形三边分别为a、b、c,外接圆半径为r然后三角形面积=ABC/4R。
高三理科数学知识点公式

高三理科数学知识点公式在高三阶段,理科数学是学生们需要重点掌握和应用的学科之一。
数学公式在解题中起着至关重要的作用,它们可以帮助我们快速计算、理解问题以及发现问题的内在规律。
下面将列举高三理科数学中常用的一些知识点公式,并对其进行简要说明。
1. 二次函数的顶点坐标公式:对于一元二次函数y = ax^2 + bx + c,它的顶点坐标为(-b/2a, f(-b/2a)),其中f(x)表示函数y = ax^2 + bx + c的值。
2. 二次函数的对称轴公式:一元二次函数y = ax^2 + bx + c的对称轴的方程为x = -b/2a。
对称轴是函数图像关于该轴对称的直线。
3. 三角函数和三角比的基本关系:- 正弦定理:对任意三角形ABC,其边长分别为a,b和c,对应的角度为A,B和C,则有a/sin(A) = b/sin(B) = c/sin(C)。
- 余弦定理:对任意三角形ABC,其边长分别为a,b和c,对应的角度为A,B和C,则有c^2 = a^2 + b^2 - 2ab*cos(C)。
- 正切定理:对任意三角形ABC,其边长分别为a,b和c,对应的角度为A,B和C,则有tan(A) = a/b,tan(B) = b/a。
4. 常用数列的通项公式:- 等差数列的通项公式:对于一个等差数列an,其通项公式为an = a1 + (n-1)d,其中a1是首项,d是公差。
- 等比数列的通项公式:对于一个等比数列bn,其通项公式为bn = b1 * q^(n-1),其中b1是首项,q是公比。
5. 概率与统计的关键公式:- 排列公式:对于从n个元素中取r个元素进行排列,有P(n,r) = n!/(n-r)!,其中n!表示n的阶乘。
- 组合公式:对于从n个元素中取r个元素进行组合,有C(n,r) = n!/[(n-r)! * r! ]。
6. 导数和微分的基本公式:- 基本导数公式:对于常数函数y = c,其导数为dy/dx = 0;对于幂函数y = x^n,其中n是实数,其导数为dy/dx = nx^(n-1)。
高中理科数学必背公式

高中理科数学必背公式高中数学必背公式、常用结论一、二次函数和一元二次方程、一元二次不等式1.二次函数 $y=ax^2+bx+c$ 的图像的对称轴方程是 $x=-\frac{b}{2a}$,顶点坐标是 $\left(-\frac{b}{2a},\frac{4ac-b^2}{4a}\right)$。
2.实系数一元二次方程 $ax^2+bx+c=0$ 的解:①若 $\Delta=b^2-4ac>0$,则 $x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}$;②若 $\Delta=b^2-4ac=0$,则 $x_1=x_2=-\frac{b}{2a}$;③若 $\Delta=b^2-4ac<0$,则它在实数集$\mathbb{R}$ 内没有实数根;在复数集 $\mathbb{C}$ 内有且仅有两个共轭复数根 $x=\frac{-b\pm\sqrt{\Delta}}{2a}$。
3.一元二次不等式$ax^2+bx+c>0$($a>0$)的解的讨论:二次函数 $y=ax^2+bx+c$ 的图像一元二次方程 $ax^2+bx+c=0$ 的根一元二次不等式 $ax^2+bx+c>0$($a>0$)的解集x_1,x_2$($x_1<x_2$)x_1=x_2=-\frac{b}{2a}$XXXx|xx_2\}$x|x\neq-\frac{b}{2a}\}$mathbb{R}$x|x_1<x<x_2\}$二、指数、对数函数1.运算公式:⑴分数指数幂:$a^\frac{m}{n}=n\sqrt[n]{a^m}$;$a^{-\frac{m}{n}}=\frac{1}{n\sqrt[n]{a^m}}$(以上$a>0,m,n\in\mathbb{N}$,且 $n>1$)。
⑵指数计算公式:$a^m\cdot a^n=a^{m+n}$;$(a\cdotb)^m=a^m\cdot b^m$;$(a^m)^n=a^{mn}$。
高中理科数学公式大全(完整版)

高中数学公式大全(最新整理版)§01. 集合与简易逻辑1。
元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=4。
容斥原理()()card A B cardA cardB card A B =+-.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空的真子集有2n –2个。
6。
二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7。
解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件。
特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a b k +<-<,或0)(2=k f 且22122k ab k k <-<+。
9。
闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a 〉0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p a bx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =。
高中理科数学公式大全

高中理科数学公式大全-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1*x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac<0注:方程有共轭复数根圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r拓展阅读:学习数学的方法先看笔记后做作业有的高一学生感到,老师讲过的,自己已经听得明明白白了。
高中理科数学公式大全完整版

高中理科数学公式大全完整版高中理科数学公式大全完整版一、数学公式1、圆的面积 S=πR²2、圆周长 C=2πR3、圆柱体 V=πR²h4、圆锥体 V=πR²h/35、圆周角 a=∠C×π6、勾股定理 c²=a²+b²7、正弦定理 a/sinA=b/sinB=c/sinC=2R8、余弦定理 b²=a²+c²-2accosB9、弧长公式 l=n/180×π×r²10、扇形面积 s=n/360×π×r²11、弓形面积 s=[(b-a)×h]/212、三角形面积 s=√[p(p-a)(p-b)(p-c)] 其中 p=(a+b+c)/213、重心定理三条中线的交点叫重心,重心分中线为2:1(顶点到重心)14、平行四边形性质:平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分;平行四边形内角和外角和都为360度。
15、平行四边形判定:一组对边平行且相等的四边形为平行四边形;两组对边分别相等的四边形为平行四边形;对角线互相平分的四边形为平行四边形;两组对角分别相等的四边形为平行四边形。
16、菱形性质:菱形四边都相等;菱形对角线互相垂直;菱形内角和都为360度;菱形是轴对称图形,有四条对称轴。
17、菱形判定:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边都相等的四边形是菱形;两条对角线分别平分各自对角的四边形为菱形。
18、正方形性质:正方形的四边都相等;正方形的四个角都是直角;正方形的对角线相等并互相垂直平分;正方形的邻边互相垂直;正方形的内角和外角和都为360度。
19、正方形判定:邻边相等的矩形是正方形;有一个角是直角的菱形是正方形;对角线互相垂直的矩形是正方形。
20、等腰梯形性质:等腰梯形两腰相等;等腰梯形两底角相等;等腰梯形的两条对角线相等。
高考数学公式理科总结

高考数学公式理科总结高考数学公式理科总结数学作为高考的一门科目,深受大多数理科生的青睐。
因为无论是数学的思维锻炼还是需要掌握的数学公式,都是高考备考不可或缺的一部分。
今天,我们就来总结一下理科数学中常用的数学公式及其应用。
一、代数部分1.一元二次方程公式:ax²+bx+c=0,求根公式为x=(-b±√b²-4ac)/2a。
应用:用于求解一元二次方程,例如求解公路修建所需要的材料和成本等。
2.等比数列公式:an=a1q^(n-1)(其中a1为首项,q为公比,an为第n项)。
应用:用于解决各种与成长或增长相关的问题,如人口增长、利润的增长等。
3.排列组合公式:排列公式为A(n,m)=n!/(n-m)!,组合公式为C(n,m)=n!/m!(n-m)!。
应用:用于处理不同的复杂问题,例如排列组合问题、选择问题、不重复随机抽样问题等。
二、几何部分1.三角函数公式:sinθ=对边/斜边,cosθ=邻边/斜边,tanθ=对边/邻边。
应用:用于三角函数问题,例如角度求解、三角函数值等。
2.圆公式:圆的面积公式为A=πr²,圆的周长公式为C=2πr。
应用:用于解决圆形问题,例如圆周运动、圆的切线、圆的切点等。
3.立体几何公式:三棱锥表面积公式为S=ab+a√(a²+b²+c²-2abcosA),三棱锥体积公式为V=1/3abh。
应用:用于解决空间几何问题,例如三棱锥表面积和体积的计算等。
三、概率统计部分1.样本调查公式:样本调查中常用的统计量有平均数、中位数、众数、方差、标准差、相关系数、回归方程等。
应用:用于处理随机事件、样本调查、统计数据等问题。
2.基本概率公式:P(A)=m/n,其中m表示事件A的样本点个数,n表示整个样本点个数。
应用:用于基本的统计概率问题,例如计算事件发生的概率等。
3.正态分布公式:正态分布的概率密度函数为f(x)=1/σ√2πexp(-(x-μ)²/(2σ²))。
高中理科数学公式知识点总结

高中理科数学公式知识点总结高中理科数学公式学问点总结一.圆的公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f0】二.椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有消失椭圆周率t,但这两个公式都是通过椭圆周率t推导演化而来。
三.两角和公式1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+ta natanb)4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctg b-ctga)四.倍角公式1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a五.半角公式1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+co sa))4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-co sa))六.和差化积1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)si n((a-b)/2)4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb七.等差数列1、等差数列的通项公式为:an=a1+(n-1)d (1)2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N-,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)-项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1八.等比数列1、等比数列的通项公式是:An=A1-q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N-,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap-aq;②在等比数列中,依次每 k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.九.抛物线1、抛物线:y=ax-+bx+c就是y等于ax的平方加上bx再加上c。