高中数学模块测试卷新人教A版必修4
2021高中同步创新课堂数学优化方案人教A版必修4习题:模块综合检测 Word版含答案

模块综合检测(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设向量a =(1,0),b =⎝⎛⎭⎫12,12,则下列结论中正确的是( ) A .|a |=|b | B .a·b =22C .a -b 与b 垂直D .a ∥b解析:选C .a -b =⎝⎛⎭⎫12,-12,(a -b )·b =0, 所以a -b 与b 垂直.故选C .2.已知sin(π+α)=13,则cos 2α=( )A .79B .89C .-79D .429解析:选A .由于sin(π+α)=13,所以sin α=-13,所以cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫-132 =79.3.下列函数中同时满足最值是12,最小正周期是6π的三角函数的解析式是( )A .y =12sin ⎝⎛⎭⎫x 3+π6 B .y =12sin ⎝⎛⎭⎫3x +π6 C .y =2sin ⎝⎛⎭⎫x 3-π6D .y =12sin ⎝⎛⎭⎫x +π6 解析:选A .由题意得,A =12,2πω=6π,ω=13,故选A .4.已知平面对量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-5,-10) B .(-4,-8) C .(-3,-6)D .(-2,-4)解析:选B .由于a =(1,2),b =(-2,m ), 所以1×m -2×(-2)=0, 所以m =-4.所以2a +3b =(2,4)+(-6,-12)=(-4,-8).5.在△ABC 中,A =15°,则3sin A -cos(B +C )的值为( ) A .22B .32C . 2D .2解析:选C .由于A +B +C =180°, 所以原式=3sin A -cos(180°-A ) =3sin A +cos A =2sin(A +30°) =2sin(15°+30°)=2sin 45°=2.6.已知向量a ,b ,c 满足|a |=1,|b |=2,c =a +b ,c ⊥a ,则a 与b 的夹角等于( ) A .30° B .60° C .120°D .90°解析:选C .设a ,b 的夹角为θ,由c ⊥a ,c =a +b ⇒(a +b )·a =a 2+a·b =0⇒a·b =-1⇒cos θ=a·b |a ||b |=-12且0°≤θ≤180°⇒θ=120°.故选C .7.已知α,β为锐角,且tan α=17,sin β=35,则α+β等于( )A .3π4B .2π3C .π4D .π3解析:选C .由于β为锐角,sin β=35,所以cos β=1-sin 2β=45,所以tan β=sin βcos β=34, 所以tan(α+β)=tan α+tan β1-tan αtan β=17+341-17×34=1.由于α,β为锐角,所以α+β∈(0,π), 所以α+β=π4.8.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .π12B .π6C .π3D .5π6解析:选B .y =f (x )=3cos x +sin x =2sin ⎝⎛⎭⎫x +π3,向左平移m (m >0)个单位长度后得f (x +m )=2sin ⎝⎛⎭⎫x +m +π3,由于图象关于y 轴对称,令x =0,得⎪⎪⎪⎪2sin ⎝⎛⎭⎫m +π3=2, 从而m +π3=2k π±π2,故m =2k π+π6或m =2k π-5π6,k ∈Z .又m >0,所以m min =π6.9.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,x ≥0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (11)的值等于( )A .2B .2+ 2C .2+2 2D .-2-2 2解析:选C .由图象可知,函数的振幅为2,初相为0,周期为8,则A =2,φ=0,2πω=8,从而f (x )=2sinπ4x . 所以f (1)+f (2)+f (3)+…+f (11)=f (1)+f (2)+f (3)=2sin π4+2sin π2+2sin 3π4=2+22.10.已知向量a =(2cos φ,2sin φ),φ∈⎝⎛⎭⎫π2,π,b =(0,-1),则a 与b 的夹角为( ) A .φ B .π2-φC .π2+φ D .3π2-φ 解析:选D .|a |=(2cos φ)2+(2sin φ)2=2,|b |=1,a·b =-2sin φ,设a 与b 的夹角为θ,则cos θ=a·b |a |·|b |=-2sin φ2×1=-sin φ=sin(-φ)=cos ⎝⎛⎭⎫3π2-φ,即cos θ=cos ⎝⎛⎭⎫3π2-φ,且3π2-φ∈⎝⎛⎭⎫π2,π,所以θ=3π2-φ.故选D .11.已知|p |=22,|q |=3,p ,q 的夹角为π4,如图所示,若AB →=5p +2q ,AC →=p -3q ,D 为BC 的中点,则|AD →|为( )A .152B .152C .7D .18解析:选A .由于AD →=12(AC →+AB →)=12(5p +2q +p -3q )=12(6p -q ),所以|AD →|=|AD →|2=12(6p -q )2=1236p 2-12p ·q +q 2=1236×()222-12×22×3×cos π4+32=152.12.已知函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,其图象与直线y =2的交点的横坐标为x 1,x 2,若|x 1-x 2|的最小值为π,则( )A .ω=2,θ=π2B .ω=12,θ=π2C .ω=12,θ=π4D .ω=2,θ=π4解析:选A .由于函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,所以θ=π2,所以y =2cos ωx ,排解C ,D ;y =2cos ωx ∈[-2,2],结合题意可知T =π,所以2πω=π,所以ω=2,排解B ,故选A .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知2sin θ+3cos θ=0,则tan(3π+2θ)=________.解析:由同角三角函数的基本关系式,得tan θ=-32,从而tan(3π+2θ)=tan 2θ=2tan θ1-tan 2 θ=2×⎝⎛⎭⎫-321-⎝⎛⎭⎫-322=125. 答案:12514.在平面直角坐标系xOy 中,已知OA →=(-1,t ),OB →=(2,2).若∠ABO =90°,则实数t 的值为________. 解析:由于∠ABO =90°,所以AB →⊥OB →,所以OB →·AB →=0. 又AB →=OB →-OA →=(2,2)-(-1,t )=(3,2-t ), 所以(2,2)·(3,2-t )=6+2(2-t )=0. 所以t =5. 答案:515.已知函数f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos 2x -1,x ∈⎣⎡⎦⎤π4,π2,则f (x )的最小值为________. 解析:f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos 2x -1=1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π4+x -3cos 2x -1 =-cos ⎝⎛⎭⎫π2+2x -3cos 2x =sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3, 由于π4≤x ≤π2,所以π6≤2x -π3≤2π3,所以12≤sin ⎝⎛⎭⎫2x -π3≤1. 所以1≤2sin ⎝⎛⎭⎫2x -π3≤2, 所以1≤f (x )≤2,所以f (x )的最小值为1. 答案:116(2021·高考安徽卷)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是________.(写出全部正确结论的编号)①a 为单位向量;②b 为单位向量;③a ⊥b ;④b ∥BC →;⑤(4a +b )⊥BC →. 解析:由于 AB →2=4|a |2=4,所以|a |=1,故①正确;由于 BC →=AC →-AB →=(2a +b )-2a =b ,又△ABC 为等边三角形,所以|BC →|=|b |=2,故②错误; 由于 b =AC →-AB →,所以a ·b =12AB →·(AC →-AB →)=12×2×2×cos 60°-12×2×2=-1≠0,故③错误;由于 BC →=b ,故④正确;由于 (AB →+AC →)·(AC →-AB →)=AC →2-AB →2=4-4=0, 所以(4a +b )⊥BC →,故⑤正确. 答案:①④⑤三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)在平面直角坐标系中,A (1,-2),B (-3,-4),O 为坐标原点. (1)求OA →·OB →;(2)若点P 在直线AB 上,且OP →⊥AB →,求OP →的坐标. 解:(1)OA →·OB →=1×(-3)+(-2)×(-4)=5. (2)设P (m ,n ),由于P 在AB 上,所以BA →与P A →共线.BA →=(4,2),P A →=(1-m ,-2-n ),所以4·(-2-n )-2(1-m )=0. 即2n -m +5=0.①又由于OP →⊥AB →,所以(m ,n )·(-4,-2)=0. 所以2m +n =0.②由①②解得m =1,n =-2,所以OP →=(1,-2).18.(本小题满分12分)已知tan α=-13,cos β=55,α,β∈(0,π).(1)求tan(α+β)的值;(2)求函数f (x )=2sin(x -α)+cos(x +β)的最大值. 解:(1)cos β=55,β∈(0,π), 得sin β=255,即tan β=2.所以tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1.(2)由于tan α=-13,α∈(0,π),所以sin α=110,cos α=-310. 所以f (x )=-355sin x -55cos x +55cos x -255sin x =-5sin x .所以f (x )的最大值为5.19.(本小题满分12分)已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)争辩f (x )在区间⎣⎡⎦⎤0,π2上的单调性. 解:(1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx=2(sin 2ωx +cos 2ωx )+2 =2sin ⎝⎛⎭⎫2ωx +π4+2. 由于f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2, 即0≤x ≤π8时,f (x )单调递增;当π2<2x +π4≤5π4,即π8<x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增,在区间⎝⎛⎦⎤π8,π2上单调递减. 20.(本小题满分12分)(2021·高考湖北卷)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上全部点向左平行移动π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.解:(1)依据表中已知数据,解得A =5,ω=2,φ=-π6,数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1),知f (x )=5sin ⎝⎛⎭⎫2x -π6, 因此g (x )=5sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=5sin ⎝⎛⎭⎫2x +π6. 由于y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为⎝⎛⎭⎫k π2-π12,0,k ∈Z ,其中离原点O 最近的对称中心为⎝⎛⎭⎫-π12,0. 21.(本小题满分12分)将射线y =17x (x ≥0)围着原点逆时针旋转π4后所得的射线经过点A (cos θ,sin θ).(1)求点A 的坐标;(2)若向量m =(sin 2x ,2cos θ),n =(3sin θ,2cos 2x ),求函数f (x )=m·n ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的值域. 解:(1)设射线y =17x (x ≥0)与x 轴的非负半轴所成的锐角为α,则tan α=17,α∈⎝⎛⎭⎫0,π2. 所以tan α<tan π4,所以α∈⎝⎛⎭⎫0,π4, 所以tan θ=tan ⎝⎛⎭⎫α+π4=17+11-17×1=43,θ∈⎝⎛⎭⎫π4,π2,所以由⎩⎪⎨⎪⎧sin 2θ+cos 2θ=1,sin θcos θ=43,得⎩⎨⎧sin θ=45,cos θ=35.所以点A 的坐标为⎝⎛⎭⎫35,45. (2)f (x )=3sin θ·sin 2x +2cos θ·2cos 2x =125sin 2x +125cos 2x =1225sin ⎝⎛⎭⎫2x +π4. 由x ∈⎣⎡⎦⎤0,π2, 得2x +π4∈⎣⎡⎦⎤π4,5π4, 所以sin ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1, 所以函数f (x )的值域为⎣⎡⎦⎤-125,1225.22.(本小题满分12分)已知向量OA →=(cos α,sin α),α∈[-π,0],向量m =(2,1),n =()0,-5,且m ⊥(OA →-n ).(1)求向量OA →; (2)若cos(β-π)=210,0<β<π,求cos(2α-β)的值. 解:(1)由于OA →=(cos α,sin α), 所以OA →-n =()cos α,sin α+5. 由于m ⊥(OA →-n ),所以m ·(OA →-n )=0, 所以2cos α+sin α+5=0.① 又sin 2α+cos 2α=1,②由①②得sin α=-55,cos α=-255, 所以OA →=⎝⎛⎭⎫-255,-55. (2)由于cos(β-π)=210, 所以cos β=-210, 又0<β<π, 所以sin β=1-cos 2β=7210,且π2<β<π. 又由于sin 2α=2sin αcos α=2×⎝⎛⎭⎫-55×⎝⎛⎭⎫-255=45,cos 2α=2cos 2α-1=2×45-1=35,所以cos(2α-β)=cos 2αcos β+sin 2αsin β =35×⎝⎛⎭⎫-210+45×7210 =25250=22.。
【名师一号】2014-2015学年高中数学 三角恒等变换单元测评 新人教A版必修4

三角恒等变换(时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.已知sin(α-β)cos α-cos(α-β)sin α=45,且β是第三象限角,则cos β2的值等于A .±55 B .±255C .-55D .-255解析:由已知,得sin[(α-β)-α]=sin(-β)=45,得sin β=-45.∵β在第三象限,∴cos β=-35.∴cos β2=±1+cos β2=± 15=±55. 答案:A2.若tan α=3,则sin2αcos 2α的值等于 A .2 B .3 C .4 D .6解析:sin2αcos 2α=2sin αcos αcos 2α=2tan α=2³3=6. 答案:D3.函数y =cos2x +sin2x cos2x -sin2x 的最小正周期为A .2πB .π C.π2D.π4解析:y =1+tan2x 1-tan2x =tan ⎝ ⎛⎭⎪⎫2x +π4,∴T =π2. 答案:C4.设a =sin14°+cos14°,b =sin16°+cos16°,c =62,则a ,b ,c 的大小关系是 A .a <b <cB .b <a <cC .c <b <aD .a <c <b解析:a =2sin59°,b =2sin61°,c =2sin60°, ∴a <c <b . 答案:D5.函数y =sin x cos x +3cos 2x -3的图像的一个对称中心是 A.⎝⎛⎭⎪⎫2π3,-32B.⎝ ⎛⎭⎪⎫5π6,-32C.⎝ ⎛⎭⎪⎫-2π3,32D.⎝⎛⎭⎪⎫π3,-3解析:y =12sin2x +32(1+cos2x )-3=12sin2x +32²cos2x -32=sin ⎝ ⎛⎭⎪⎫2x +π3-32,令2x+π3=k π,x =k π2-π6(k ∈Z ),当k =2时,x =5π6,对称中心是⎝ ⎛⎭⎪⎫56π,-32. 答案:B6.已知点P (cos α,sin α),Q (cos β,sin β),则|PQ →|的最大值是 A. 2 B .2 C .4D.22解析:PQ →=(cos β-cos α,sin β-sin α),则 |PQ →|=β-cos α2+β-sin α2=2-α-β,故|PQ →|的最大值为2. 答案:B7.若(4tan α+1)(1-4tan β)=17,则tan(α-β)的值为 A.14 B.12C .4D .12 解析:由已知得:4(tan α-tan β)=16(1+tan αtan β),即tan α-tan β1+tan αtan β=4,所以tan(α-β)=4. 答案:C8.函数f (x )=sin x -cos ⎝⎛⎭⎪⎫x +π6的值域为A .[-2,2]B .[-3,3]C .[-1,1]D.⎣⎢⎡⎦⎥⎤-32,32 解析:因为f (x )=sin x -32cos x +12sin x =3²⎝ ⎛⎭⎪⎫32sin x -12cos x =3sin ⎝ ⎛⎭⎪⎫x -π6,所以函数f (x )的值域为[-3,3].答案:B9.函数y =sin ⎝⎛⎭⎪⎫2x -π3-sin2x 的一个单调递增区间是A.⎣⎢⎡⎦⎥⎤-π6,π3B.⎣⎢⎡⎦⎥⎤π12,712πC.⎣⎢⎡⎦⎥⎤512π,1312πD.⎣⎢⎡⎦⎥⎤π3,5π6解析:y =sin ⎝ ⎛⎭⎪⎫2x -π3-sin2x =-sin ⎝ ⎛⎭⎪⎫2x +π3,其增区间是函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的减区间,即π2+2k π≤2x +π3≤3π2+2k π,∴π12+k π≤x ≤7π12+k π,当k =0时,x ∈⎣⎢⎡⎦⎥⎤π12,7π12.答案:B10.已知sin2α=35⎝ ⎛⎭⎪⎫π2<2α<π,tan(α-β)=12,则tan(α+β)的值为A .-2B .-1C .-211D.211解析:由sin2α=35,且π2<2α<π,可得cos2α=-45,所以tan2α=-34,所以tan(α+β)=tan[2α-(α-β)]=tan2α-α-β1+tan2αα-β=-2.答案:A第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.若π4<α<β<π2,sin α+cos α=a ,sin β+cos β=b ,则a ,b 的大小关系是__________.解析:sin α+cos α=2sin ⎝ ⎛⎭⎪⎫α+π4,sin β+cos β=2sin ⎝ ⎛⎭⎪⎫β+π4,因为π4<α<β<π2,所以π2<α+π4<β+π4<3π4,所以sin ⎝ ⎛⎭⎪⎫α+π4>sin ⎝ ⎛⎭⎪⎫β+π4,所以a >b .答案:a >b12.已知θ∈⎝ ⎛⎭⎪⎫π2,π,1sin θ+1cos θ=22,则sin ⎝ ⎛⎭⎪⎫2θ+π3的值为__________. 解析:由已知条件可得sin ⎝⎛⎭⎪⎫θ+π4=sin2θ,又θ∈⎝ ⎛⎭⎪⎫π2,π,可知θ+π4+2θ=3π,即θ=11π12,sin ⎝ ⎛⎭⎪⎫2θ+π3=sin 13π6=12. 答案:1213.已知cos αcos(α+β)+sin αsin(α+β)=-35,β是第二象限角,则tan2β=__________.解析:由已知可得,cos β=-35,可求tan β=-43,∴tan2β=247.答案:24714.关于函数f (x )=cos2x -23sin x cos x ,下列命题:①存在x 1,x 2,当x 1-x 2=π时,f (x 1)=f (x 2)成立;②f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递增;③函数f (x )的图像关于点⎝⎛⎭⎪⎫π12,0成中心对称图形;④将函数f (x )的图像向左平移5π12个单位长度后将与y =2sin2x 的图像重合.其中正确命题的序号是__________(注:把你认为正确的序号都填上). 解析:∵f (x )=2sin ⎝ ⎛⎭⎪⎫π6-2x=2sin ⎝⎛⎭⎪⎫2x +5π6=2sin2⎝⎛⎭⎪⎫x +5π12,∴周期T =π,故①正确;∵π2≤2x +5π6≤3π2,解得x ∈⎣⎢⎡⎦⎥⎤-π6,π3,∴⎣⎢⎡⎦⎥⎤-π6,π3是其递减区间,故②错误;∵对称中心的横坐标满足2x +5π6=k π(k ∈Z )⇒x =k π2-5π12(k ∈Z ),当k =1时,得③正确;应该是向右平移,故④不正确. 答案:①③三、解答题:本大题共4小题,满分50分.15.(12分)已知A ,B ,C 为△ABC 的三个内角,且A <B <C ,sin B =45,cos(2A +C )=-45,求cos2A 的值.解:∵A <B <C ,A +B +C =π, ∴0<B <π2,A +C >π2,0<2A +C <π.∵sin B =45,∴cos B =35.∴sin(A +C )=sin(π-B )=45,cos(A +C )=-35.(4分)∵cos(2A +C )=-45,∴sin(2A +C )=35.(8分)∴sin A =sin[(2A +C )-(A +C )] =35³⎝ ⎛⎭⎪⎫-35-⎝ ⎛⎭⎪⎫-45³45 =725. ∴cos2A =1-2sin 2A =527625.(12分)16.(12分)已知函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π4. (1)求f (x )的定义域与最小正周期;(2)设α∈⎝ ⎛⎭⎪⎫0,π4,若f ⎝ ⎛⎭⎪⎫α2=2cos2α,求α的大小.解:(1)由2x +π4≠π2+k π,k ∈Z ,得x ≠π8+k π2,k ∈Z ,所以f (x )的定义域为{x ∈R |x ≠π8+k π2,k ∈Z }.(4分)f (x )的最小正周期为π2.(6分)(2)由f ⎝ ⎛⎭⎪⎫α2=2cos2α,得tan ⎝ ⎛⎭⎪⎫α+π4=2cos2α,即sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝⎛⎭⎪⎫α+π4=2(cos 2α-sin 2α),整理得sin α+cos αcos α-sin α=2(cos α+sin α)(cos α-sin α).(8分)因为α∈⎝⎛⎭⎪⎫0,π4,所以sin α+cos α≠0.因此(cos α-sin α)2=12,即sin2α=12.(10分)由α∈⎝ ⎛⎭⎪⎫0,π4,得2α∈⎝⎛⎭⎪⎫0,π2.所以2α=π6,即α=π12.(12分)17.(13分)设f (x )=6cos 2x -3sin2x . (1)求f (x )的最大值及最小正周期;(2)若锐角α满足f (α)=3-23,求tan ⎝ ⎛⎭⎪⎫45α的值.解:(1)f (x )=6³1+cos2x2-3sin2x=3+3cos2x -3sin2x =23⎝⎛⎭⎪⎫32cos2x -12sin2x +3=23cos ⎝⎛⎭⎪⎫2x +π6+3,(4分) 故f (x )的最大值为23+3.最小正周期T =2π2=π.(6分)(2)由f (α)=3-23,得23cos ⎝⎛⎭⎪⎫2α+π6+3=3-23,故cos ⎝ ⎛⎭⎪⎫2α+π6=-1.(8分) 又由0<α<π2,得π6<2α+π6<7π6,故2α+π6=π, 解得α=512π.(10分)从而tan ⎝ ⎛⎭⎪⎫45α=tan π3= 3.(13分) 18.(13分)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x -π3+2sin ⎝ ⎛⎭⎪⎫3π2-x .(1)求函数f (x )的单调减区间;(2)求函数f (x )的最大值并求f (x )取得最大值时的x 的取值集合; (3)若f (x )=65,求cos ⎝ ⎛⎭⎪⎫2x -π3的值.解:f (x )=2cos x cos π3+2sin x sin π3-2cos x=cos x +3sin x -2cos x =3sin x -cos x=2sin ⎝⎛⎭⎪⎫x -π6.(1)令2k π+π2≤x -π6≤2k π+32π(k ∈Z ),∴2k π+2π3≤x ≤2k π+5π3(k ∈Z ),∴单调递减区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3(k ∈Z ).(4分)(2)f (x )取最大值2时,x -π6=2k π+π2(k ∈Z ),则x =2k π+2π3(k ∈Z ). ∴f (x )的最大值是2,取得最大值时的x 的取值集合是{x |x =2k π+2π3,k ∈Z }.(8分)(3)f (x )=65即2sin ⎝⎛⎭⎪⎫x -π6=65,∴sin ⎝⎛⎭⎪⎫x -π6=35.∴cos ⎝ ⎛⎭⎪⎫2x -π3=1-2sin 2⎝⎛⎭⎪⎫x -π6=1-2³⎝ ⎛⎭⎪⎫352=725.(13分)。
高中数学(人教A版)必修4第3章 三角恒等变换 测试题(含详解)

第三章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin105°cos105°的值为( ) A.14 B .-14C.34D .-34解析 原式=12sin210°=-12sin30°=-14.答案 B2.若sin2α=14,π4<α<π2,则cos α-sin α的值是( )A.32B .-32C.34D .-34解析 (cos α-sin α)2=1-sin2α=1-14=34.又π4<α<π2, ∴cos α<sin α,cos α-sin α=-34=-32. 答案 B3.sin15°sin30°sin75°的值等于( ) A.14 B.34 C.18D.38解析 sin15°sin30°sin75° =sin15°cos15°sin30° =12sin30°sin30°=12×12×12=18. 答案 C4.在△ABC 中,∠A =15°,则 3sin A -cos(B +C )的值为( ) A. 2 B.22C.32D. 2解析 在△ABC 中,∠A +∠B +∠C =π, 3sin A -cos(B +C ) =3sin A +cos A =2(32sin A +12cos A ) =2cos(60°-A )=2cos45°= 2. 答案 A5.已知tan θ=13,则cos 2θ+12sin2θ等于( )A .-65B .-45C.45D.65解析 原式=cos 2θ+sin θcos θcos 2θ+sin 2θ=1+tan θ1+tan 2θ=65.答案 D6.在△ABC 中,已知sin A cos A =sin B cos B ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰三角形或直角三角形解析 ∵sin2A =sin2B ,∴∠A =∠B ,或∠A +∠B =π2.答案 D 7.设a =22(sin17°+cos17°),b =2cos 213°-1,c =32,则( ) A .c <a <b B .b <c <a C .a <b <c D .b <a <c 解析 a =22sin17°+22cos17°=cos(45°-17°)=cos28°,b =2cos 213°-1=cos26°,c =32=cos30°, ∵y =cos x 在(0,90°)内是减函数, ∴cos26°>cos28°>cos30°,即b >a >c . 答案 A8.三角形ABC 中,若∠C >90°,则tan A ·tan B 与1的大小关系为( ) A .tan A ·tan B >1 B. tan A ·tan B <1 C .tan A ·tan B =1D .不能确定解析 在三角形ABC 中,∵∠C >90°,∴∠A ,∠B 分别都为锐角. 则有tan A >0,tan B >0,tan C <0. 又∵∠C =π-(∠A +∠B ),∴tan C =-tan(A +B )=-tan A +tan B1-tan A ·tan B <0,易知1-tan A ·tan B >0, 即tan A ·tan B <1. 答案 B9.函数f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数解析 f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫π4-x -sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫x -π4-sin 2⎝⎛⎭⎫x -π4 =cos ⎝⎛⎭⎫2x -π2 =sin2x . 答案 A10.y =cos x (cos x +sin x )的值域是( ) A .[-2,2] B.⎣⎢⎡⎦⎥⎤1+22,2C.⎣⎢⎡⎦⎥⎤1-22,1+22D.⎣⎡⎦⎤-12,32 解析 y =cos 2x +cos x sin x =1+cos2x 2+12sin2x=12+22⎝⎛⎭⎫22sin2x +22cos2x =12+22sin(2x +π4).∵x ∈R , ∴当sin ⎝⎛⎭⎫2x +π4=1时,y 有最大值1+22; 当sin ⎝⎛⎭⎫2x +π4=-1时,y 有最小值1-22. ∴值域为⎣⎢⎡⎦⎥⎤1-22,1+22.答案 C11.已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为( )A.335 B.45 C .±35D .±45解析 由sin(π-θ)=2425,得sin θ=2425.∵θ为第二象限的角,∴cos θ=-725.∴cos θ2=±1+cos θ2=± 1-7252=±35. 答案 C12.若α,β为锐角,cos(α+β)=1213,cos(2α+β)=35,则cos α的值为( )A.5665 B.1665C.5665或1665D .以上都不对解析 ∵0<α+β<π,cos(α+β)=1213>0,∴0<α+β<π2,sin(α+β)=513.∵0<2α+β<π,cos(2α+β)=35>0,∴0<2α+β<π2,sin(2α+β)=45.∴cos α=cos [(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β) =35×1213+45×513=5665. 答案 A二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上) 13.若1+tan α1-tan α=2012,则1cos2α+tan2α=______.解析1cos2α+tan2α=1+sin2αcos2α=sin 2α+cos 2α+2sin αcos αcos 2α-sin 2α=tan 2α+1+2tan α1-tan 2α=(tan α+1)21-tan 2α=1+tan α1-tan α=2012.答案 201214.已知cos2α=13,则sin 4α+cos 4α=________.解 ∵cos2α=13,∴sin 22α=89.∴sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α =1-12sin 22α=1-12×89=59.答案 5915.sin (α+30°)+cos (α+60°)2cos α=________.解析 ∵sin(α+30°)+cos(α+60°)=sin αcos30°+cos αsin30°+cos αcos60°-sin αsin60°=cos α,∴原式=cos α2cos α=12.答案 1216.关于函数f (x )=cos(2x -π3)+cos(2x +π6),则下列命题:①y =f (x )的最大值为2; ②y =f (x )最小正周期是π;③y =f (x )在区间⎣⎡⎦⎤π24,13π24上是减函数;④将函数y =2cos2x 的图像向右平移π24个单位后,将与已知函数的图像重合.其中正确命题的序号是________. 解析 f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3+sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3-sin ⎝⎛⎭⎫2x -π3 =2·⎣⎡⎦⎤22cos ⎝⎛⎭⎫2x -π3-22sin ⎝⎛⎭⎫2x -π3 =2cos ⎝⎛⎭⎫2x -π3+π4 =2cos ⎝⎛⎭⎫2x -π12, ∴y =f (x )的最大值为2,最小正周期为π,故①,②正确.又当x ∈⎣⎡⎦⎤π24,13π24时,2x -π12∈[0,π],∴y =f (x )在⎣⎡⎦⎤π24,13π24上是减函数,故③正确. 由④得y =2cos2⎝⎛⎭⎫x -π24=2cos ⎝⎛⎭⎫2x -π12,故④正确. 答案 ①②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知向量m =⎝⎛⎭⎫cos α-23,-1,n =(sin x,1),m 与n 为共线向量,且α∈⎣⎡⎦⎤-π2,0.(1)求sin α+cos α的值; (2)求sin2αsin α-cos α的值.解 (1)∵m 与n 为共线向量, ∴⎝⎛⎭⎫cos α-23×1-(-1)×sin α=0, 即sin α+cos α=23. (2)∵1+sin2α=(sin α+cos α)2=29,∴sin2α=-79.∴(sin α-cos α)2=1-sin2α=169. 又∵α∈⎣⎡⎦⎤-π2,0,∴sin α-cos α<0. ∴sin α-cos α=-43.∴sin2αsin α-cos α=712. 18.(12分)求证:2-2sin ⎝⎛⎭⎫α+3π4cos ⎝⎛⎭⎫α+π4cos 4α-sin 4α=1+tan α1-tan α. 证明 左边=2-2sin ⎝⎛⎭⎫α+π4+π2cos ⎝⎛⎭⎫α+π4(cos 2α+sin 2α)(cos 2α-sin 2α) =2-2cos 2⎝⎛⎭⎫α+π4cos 2α-sin 2α =1-cos ⎝⎛⎭⎫2α+π2cos 2α-sin 2α=1+sin2αcos 2α-sin 2α=(sin α+cos α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α. ∴原等式成立.19.(12分)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f ⎝⎛⎭⎫π3的值;(2)求f (x )的最大值和最小值. 解 (1)f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3-4cos π3 =2×⎝⎛⎭⎫-12+⎝⎛⎭⎫322-4×12 =-1+34-2=-94.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1=3⎝⎛⎭⎫cos x -232-73, ∵x ∈R ,cos x ∈[-1,1],∴当cos x =-1时,f (x )有最大值6; 当cos x =23时,f (x )有最小值-73.20.(12分)已知cos ⎝⎛⎭⎫x -π4=210,x ∈⎝⎛⎭⎫π2,3π4. (1)求sin x 的值; (2)求sin ⎝⎛⎭⎫2x +π3的值. 解 (1)解法1:∵x ∈⎝⎛⎭⎫π2,3π4, ∴x -π4∈⎝⎛⎭⎫π4,π2, 于是sin ⎝⎛⎭⎫x -π4= 1-cos 2⎝⎛⎭⎫x -π4=7210.sin x =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π4+π4=sin ⎝⎛⎭⎫x -π4cos π4+cos ⎝⎛⎭⎫x -π4sin π4 =7210×22+210×22=45. 解法2:由题设得22cos x +22sin x =210, 即cos x +sin x =15.又sin 2x +cos 2x =1, 从而25sin 2x -5sin x -12=0, 解得sin x =45,或sin x =-35,因为x ∈⎝⎛⎭⎫π2,3π4,所以sin x =45. (2)∵x ∈⎝⎛⎭⎫π2,3π4,故 cos x =-1-sin 2x =-1-⎝⎛⎭⎫452=-35. sin2x =2sin x cos x =-2425.cos2x =2cos 2x -1=-725.∴sin ⎝⎛⎭⎫2x +π3 =sin2x cos π3+cos2x sin π3=-24+7350.21.(12分)已知函数 f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 解 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin2x +2cos 2x -1=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6所以f (x )的最小正周期为π.(2)-π6≤x ≤π4,所以-π6≤2x +π6≤2π3,当2x +π6=π2时,即x =π6,f (x )取得最大值2;当2x +π6=-π6时,即x =-π6,f (x )取得最小值-1.22.(12分)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.解 (1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+sin ⎝⎛⎭⎫x -3π4+π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加,得2cos βcos α=0, ∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.。
2019—2020年最新人教A版高中数学必修四第1单元综合测试含答案.doc

单元综合测试一时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.若角600°的终边上有一点(-4,a),则a 的值是( ) A .-4 3B .±4 3 C.3D .43解析:因为tan600°=a-4=tan(540°+60°)=tan60° =3,故a =-43.答案:A2.已知cos(π2+φ)=32,且|φ|<π2,则tan φ=( )A .-33B.33 C .-3D.3解析:由cos(π2+φ)=32,得sin φ=-32,又|φ|<π2,∴cos φ=12,∴tan φ=-3.答案:C3.下列函数中,最小正周期为π,且图象关于直线x =π3对称的是( )A .y =sin(2x +π6)B .y =sin(x2+π6)C .y =sin(2x -π6)D .y =sin(2x -π3)解析:∵最小正周期为π,∴ω=2,又图象关于直线x =π3对称,∴f(π3)=±1,故只有C 符合. 答案:C4.若2k π+π<θ<2k π+5π4(k ∈Z),则sin θ,cos θ,tan θ的大小关系是( )A .sin θ<cos θ<tan θB .cos θ<tan θ<sin θC .cos θ<sin θ<tan θD .sin θ<tan θ<cos θ解析:设π<α<54π,则有sin θ=sin α,cos θ=cos α,tan θ=tan α, ∵tan α>0,而sin α<0,cos α<0,∴B 、D 排除,又∵cos α<-22<sin α,即cos α<sin α,排除A.选C.答案:C5.已知A 是三角形的内角,且sinA +cosA =52,则tanA 等于( )A .4+15B .4-15C .4±15D .以上均不正确解析:因为sinA +cosA =52,所以2sinAcosA =14>0.所以A 为锐角.又(sinA -cosA)2=1-2sinAcosA =1-14=34,所以sinA -cosA=±32.从而可求出sinA ,cosA 的值,从而求出tanA =4±15.答案:C6.函数y =2sin(π6-2x)(x ∈[0,π])的单调递增区间是( )A .[0,π3]B .[π12,7π12]C .[π3,5π6]D .[5π6,π]解析:由π2+2k π≤2x -π6≤3π2+2k π可得π3+k π≤x ≤5π6+k π(k ∈Z).∵x ∈[0,π],∴单调递增区间为[π3,5π6].答案:C7.为得到函数y =cos ⎝ ⎛⎭⎪⎫x +π3的图象,只需将函数y =sinx 的图象( )A .向左平移π6个单位长度B .向右平移π6个单位长度C .向左平移5π6个单位长度D .向右平移5π6个单位长度解析:∵y =cos ⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3+π2=sin ⎝ ⎛⎭⎪⎫x +5π6,∴只需将y =sinx 的图象向左平移5π6个单位长度.答案:C8.已知函数f(x)=2sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则函数f(x)的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-7π12,5π12 B.⎣⎢⎡⎦⎥⎤-7π12,-π12C.⎣⎢⎡⎦⎥⎤-π4,π6D.⎣⎢⎡⎦⎥⎤11π12,17π12 解析:由图形可得14T =23π-512π,∴T =π,则ω=2,又图象过点⎝ ⎛⎭⎪⎫512π,2.∴2sin ⎝ ⎛⎭⎪⎫2×512π+φ=2,∴φ=-π3,∴f(x)=2sin ⎝⎛⎭⎪⎫2x -π3,其单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+512π(k ∈Z),取k =1,即得选项D. 答案:D9.设a 为常数,且a>1,0≤x ≤2π,则函数f(x)=cos 2x +2asinx -1的最大值为( )A .2a +1B .2a -1C .-2a -1D .a 2解析:f(x)=cos 2x +2asinx -1=1-sin 2x +2asinx -1 =-(sinx -a)2+a 2, ∵0≤x ≤2π,∴-1≤sinx ≤1,又a>1,∴f(x)max =-(1-a)2+a 2=2a -1. 答案:B 10.函数y =cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,A ,B 分别为最高点与最低点,并且两点间的距离为22,则该函数图象的一条对称轴方程为( )A .x =2πB .x =π2C .x =1D .x =2解析:函数y =cos(ωx +φ)(ω>0,0<φ<π)的最大值为1,最小值为-1,所以周期T =2222-22=4,所以ω=π2,又函数为奇函数,所以cos φ=0(0<φ<π)⇒φ=π2,所以函数解析式为y =cos(π2x +π2)=-sin π2x ,所以直线x =1为该函数图象的一条对称轴.答案:C11.中国最高的摩天轮是“南昌之星”,它的最高点离地面160米,直径为156米,并以每30分钟一周的速度匀速旋转,若从最低点开始计时,则摩天轮进行5分钟后离地面的高度为( )A .41米B .43米C .78米D .118米解析:摩天轮转轴离地面高160-⎝ ⎛⎭⎪⎫1562=82(米),ω=2πT =π15,摩天轮上某个点P 离地面的高度h 米与时间t 的函数关系是h =82-78cos π15t ,当摩天轮运行5分钟时,其离地面高度为h =82-78cosπ15t =82-78×12=43(米).答案:B12.设ω>0,函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( )A.23B.43C.32D .3解析:方法一:函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后得到函数y =sin[ω(x -4π3)+π3]+2=sin(ωx -4π3ω+π3)+2的图象.∵两图象重合,∴ωx +π3=ωx -4π3ω+π3+2k π,k ∈Z ,解得ω=32k ,k ∈Z.又ω>0,∴当k =1时,ω的最小值是32.方法二:由题意可知,4π3是函数y =sin(ωx +π3)+2(ω>0)的最小正周期T 的正整数倍,即4π3=kT =2k πω(k ∈N *),ω=32k ,ω的最小值为32.答案:C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.在扇形中,已知半径为8,弧长为12,则圆心角是________弧度,扇形面积是________.解析:圆心角α=lr =128=32,扇形面积S =12lr =12×12×8=48.答案:324814.方程sinx =lgx 的解的个数为________.解析:画出函数y =sinx 和y =lgx 的图象(图略),结合图象易知这两个函数的图象有3个交点.答案:315.设f(x)=asin(πx +α)+bcos(πx +β),其中a ,b ,α,β为非零常数.若f(2 013)=-1,则f(2 014)=________.解析:f(2 013)=asin(2 013π+α)+bcos(2 013π+β) =-1,f(2 014)=asin(2 014π+α)+bcos(2 014π+β) =asin[π+(2 013π+α)]+bcos[π+(2 013π+β)]=-[asin(2 013π+α)+bcos(2 013π+β)]=1. 答案:116.关于函数f(x)=cos ⎝⎛⎭⎪⎫2x +π3+1有以下结论:①函数f(x)的值域是[0,2];②点⎝ ⎛⎭⎪⎫-512π,0是函数f(x)的图象的一个对称中心;③直线x =π3是函数f(x)的图象的一条对称轴;④将函数f(x)的图象向右平移π6个单位长度后,与所得图象对应的函数是偶函数.其中,所有正确结论的序号是________.解析:①∵-1≤cos ⎝ ⎛⎭⎪⎫2x +π3≤1,∴0≤cos ⎝⎛⎭⎪⎫2x +π3+1≤2;②∵f ⎝ ⎛⎭⎪⎫-5π12=cos ⎝ ⎛⎭⎪⎫-5π6+π3+1=cos ⎝ ⎛⎭⎪⎫-π2+1=1≠0,∴点⎝ ⎛⎭⎪⎫-512π,0不是函数f(x)图象的一个对称中心;③∵f ⎝ ⎛⎭⎪⎫π3=cos ⎝ ⎛⎭⎪⎫2π3+π3+1=cos π+1=0,函数取得最小值,∴直线x =π3是函数f(x)的图象的一条对称轴;④将函数f(x)的图象向右平移π6个单位长度后,与所得图象对应的函数解析式为g(x)=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π3+1=cos2x +1,此函数是偶函数.综上所述,①③④正确.答案:①③④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知sin θ=45,π2<θ<π,(1)求tan θ;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值.解:(1)∵sin 2θ+cos 2θ=1,∴cos 2θ=1-sin 2θ=925.又π2<θ<π,∴cos θ=-35. ∴tan θ=sin θcos θ=-43.(2)sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857.18.(12分)(1)已知cos(75°+α)=13,其中α为第三象限角,求cos(105°-α)+sin(α-105°)的值;(2)已知π<θ<2π,cos(θ-9π)=-35,求tan(10π-θ)的值.解:(1)cos(105°-α)=cos[180°-(75°+α)] =-cos(75°+α)=-13,sin(α-105°)=-sin[180°-(75°+α)] =-sin(75°+α). ∵α为第三象限角,∴75°+α为第三或第四象限角,又cos(75°+α)=13>0,∴75°+α为第四象限角, ∴sin(75°+α)=-1-cos 275=-1-⎝ ⎛⎭⎪⎫132=-223,∴cos(105°-α)+sin(α-105°)=-13+223=22-13.(2)由已知得cos(θ-9π)=-35,∴cos(π-θ)=-35,∴cos θ=35,∵π<θ<2π,∴3π2<θ<2π,∴sin θ=-45,∴tan θ=-43,∴tan(10π-θ)=tan(-θ)=-tan θ=43.19.(12分)已知函数f(x)=2cos(2x -π4),x ∈R.(1)求函数f(x)的最小正周期和单调递增区间.(2)求函数f(x)在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x 的值.解:(1)因为f(x)=2cos(2x -π4),所以函数f(x)的最小正周期为T =2π2=π.由-π+2k π≤2x -π4≤2k π(k ∈Z),得-3π8+k π≤x ≤π8+k π(k ∈Z),故函数f(x)的单调递增区间为[-3π8+k π,π8+k π](k ∈Z).(2)因为f(x)=2cos(2x -π4)在区间[-π8,π8]上为增函数,在区间[π8,π2]上为减函数,又f(-π8)=0,f(π8)=2,f(π2)=2cos(π-π4)=-2cos π4=-1,所以函数f(x)在区间[-π8,π2]上的最大值为2,此时x =π8;最小值为-1,此时x =π2.20.(12分)函数f 1(x)=Asin(ωx +φ)(A>0,ω>0,|φ|<π2)的一段图象过点(0,1),如图所示.(1)求函数f 1(x)的表达式;(2)把f 1(x)的图象向右平移π4个单位长度得到f 2(x)的图象,求f 2(x)取得最大值时x 的取值.解:(1)由图知,T =π,于是ω=2πT =2.将y =Asin2x 的图象向左平移π12,得y =Asin(2x +φ)的图象,于是φ=2×π12=π6.将(0,1)代入y =Asin(2x +π6),得A =2.故f 1(x)=2sin(2x +π6).(2)依题意,f 2(x)=2sin[2(x -π4)+π6]=-2cos(2x +π6),当2x +π6=2k π+π(k ∈Z),即x =k π+5π12(k ∈Z)时,y max =2.此时x 的取值为{x|x =k π+5π12,k ∈Z}.21.(12分)已知函数f(x)=2sin(2x +π6)-1.(1)若点P(1,-3)在角α的终边上,求f(α2-π12)的值;(2)若x ∈[-π6,π3],求f(x)的值域.解:(1)因为点P(1,-3)在角α的终边上,所以sin α=-32,cos α=12,所以f(α2-π12)=2sin[2×(α2-π12)+π6]-1=2sin α-1=2×(-32)-1=-3-1.(2)令t =2x +π6,因为x ∈[-π6,π3],所以-π6≤2x +π6≤5π6,而y =sint 在[-π6,π2]上单调递增,在[π2,5π6]上单调递减, 且sin(-π6)=-12,sin 5π6=12,所以函数y =sint 在[-π6,5π6]上的最大值为1,最小值为-12,即-12≤sin(2x +π6)≤1,所以f(x)的值域是[-2,1].22.(12分)已知函数f(x)=Asin(ωx +φ)+B(A>0,ω>0)的一系列对应值如下表:(1)根据表格提供的数据求函数f(x)的一个解析式;(2)根据(1)的结果,若函数y =f(kx)(k>0)的最小正周期为2π3,当x ∈[0,π3]时,方程f(kx)=m 恰有两个不同的解,求实数m 的取值范围.解:(1)设f(x)的最小正周期为T , 得T =11π6-(-π6)=2π,由T =2πω,得ω=1.又⎩⎨⎧B +A =3,B -A =-1.解得⎩⎨⎧A =2,B =1.令ω·5π6+φ=π2,即5π6+φ=π2,解得φ=-π3,∴f(x)=2sin(x -π3)+1.(2)∵函数y =f(kx)=2sin(kx -π3)+1的最小正周期为2π3,又k>0,∴k =3,令t =3x -π3,∵x ∈[0,π3],∴t ∈[-π3,2π3],若sint =s 在[-π3,2π3]上有两个不同的解,则s ∈[32,1),∴方程f(kx)=m 在x ∈[0,π3]时恰好有两个不同的解,则m ∈[3+1,3),即实数m的取值范围是[3+1,3).。
高中数学第二章平面向量新人教A版必修4

平面向量一、选择题1.下列命题中正确的是( )( A ) 两个相等的向量的起点,方向,长度必须都相同( B) 若a,b是两个单位向量,则a= b( C) 若向量a和b共线,则向量a, b 的方向相同( D) 零向量的长度为0,方向是任意的2.如图,在平行四边形ABCD 中,下列结论中错误的是( )( A ) ( C) AB DCAB AD BD( B )( D )AD AB ACAD CB03.在四边形ABCD 中,CB AB BA( )(A) DB (B) CA(C) CD (D) DC4.已知a,b为非零向量,且|a+ b|=| a|+| b|,则一定有( )( A ) a=b ( B ) a∥b,且a,b方向相同( C) a=-b ( D ) a∥b,且a,b方向相反5.化简下列向量: ( 1) AB BC CA (2) AB AC BD CD(3) FQ QP EF EM (4) OA OB AB,结果为零向量的个数是( )(A)1 (B)2 (C)3 (D)4二、填空题6.对于下列命题①相反向量就是方向相反的向量②不相等的向量一定不平行③相等的向量一定共线④共线的单位向量一定相等⑤共线的两个向量一定在同一条直线上其中真命题的序号为______.3 3点A 的位置向量为 ______.8.一艘船以 5 km 的速度出发向垂直于对岸的方向行驶,而船实际的航行方向与水流成30°,则船的实际速度的大小为______ ,水流速度的大小为______.9.如图,在□ABCD中,AO a ,DO b ,用向量a, b 表示下列向量CB______AB =_____.10.已知平面内有□ABCD和点O,若OA a ,OB b,OC c ,OD d,则a-b+c -d=______.三、解答题11.化简:(1) AB AC BD(2) AB CD CB DA12.在单位圆中, B 是 OA 的中点, PQ 过 B 且 PQ∥Ox,MP⊥ Ox,NQ⊥ Ox,则在向量OM,ON,MP,NQ,OP,OQ,OB,OA,PQ 中.( 1) 找出相等的向量;( 2) 找出单位向量;( 3) 找出与OM共线的向量;( 4) 向量OM,ON的长度.13.已知正方形A BCD 的边长为1,若AB a ,BC b ,AC c ,求作向量a-b+c,并求出 |a-b+c|.14.已知向量a, b 满足:| a|=3,| a+ b|=5,| a- b|=5,求| b|.向量的线性运算 ( 二 ) 一、选择题1.若 3( x+ 3a) - 2( a-x) =0,则向量 x= ( ) ( A ) 2a ( B) - 2a ( C) 7a ( D ) 7 a5 52.若AB5e, CD7e且 | AD | | BC |,则四边形ABCD 是 ( ) ( A ) 平行四边形( B ) 非等腰梯形( C)菱形( D)等腰梯形3.如图所示, D 是△ ABC 的边上的中点,则向量CD 等于()(A) BC 1BA ( B ) BC1BA 2 2(C) BC 1BA (D) BC 1 BA2 2 )4.已知向量1- 2e2,b=- 2e1+ 4e2,则向量a与b满足关系 (a= e( A ) b= 2a ( B) 共线且方向相反 ( C) 共线且方向相同(D)不平行5.下列结论中正确的个数是 ( )①若| b|=2| a|,则 b=±2a ②若 a∥ b,b∥ c,则 a∥ c ③若 m a=m b,则a=b④ 0a=0⑤若向量a与b共线,则一定存在一个实数,使得 a= b(A)0个(B)1个(C)2个(D)3 个二、填空题6.化简: 5( 3a- 2b) + 4( 2b-3a) = ______.7.与非零向量a共线的单位向量为 ____________.8.数轴上的点 A,B,C 的坐标分别为2x,- 2,x,且AB 3BC ,则x=______;|AB|= ______.9.已知向量 a 与 b 方向相反,|a|=6,| b|=4,则 a=______b.10.在□ ABCD 中,AB a ,AD b ,AN3NC ,M为BC的中点,则 MN____.三、解答题11.点 D 是△ ABC 边 BC 上一点,且BD 1 BC.设试AB a,AC b,用向量a,b表示3AD.12.已知向量a, b 满足求| a|∶| b|.11 1(a3b)(a b)(3a2b) ,求证:向量 a 与 b 共线,并52 513.已知|a|= 1,|b|= 2.若a=b,求|a-b|的值.14.已知平面中不同的四点A,B,C,D 和非零向量a,b,且AB a2b,CD 5a6b,CD =7a-2b.( 1) 证明: A, B, D 三点共线;( 2) 若a与b共线,证明A, B, C,D 四点共线.向量的分解与向量的坐标表示一、选择题1.已知向量a= ( 4,2) ,向量 b=( x,3),且 a∥b,则x=( )(A)9 (B)6 (C)5 (D)32.已知点 A( 0, 1) , B( 1, 2) , C( 3, 4) ,则AB 2BC的坐标为 ( )( A)( 3,3) ( B)( -3,- 3) ( C)( - 3, 3) ( D)( 3,- 3)3.已知基底 { e1,e2} ,实数 x,y 满足 ( 3x- 4y) e1+ ( 2x-3y) e2= 6e1+ 3e2,则 x- y 的值等于( )(A)3(B)-3(C)0(D)24.在基底 { e1,e2} 下,向量a=e1+ 2e2,b= 2e1-e2,若a∥b,则的值为()(A)0(B)-21(D)-4( C)25.设向量a= ( 1,- 3) ,b= ( - 2,4) ,c= ( - 1,- 2) ,若表示向量4a,4b-2c,2( a-c) ,d 的有向线段首尾相连能构成四边形,则向量 d 为( )( A)( 2,6) ( B)( -2,6)( C)( 2,- 6) ( D)( - 2,- 6)二、填空题6.点 A( 1,- 2) 关于点 B 的对称点为 ( - 2, 3) ,则点 B 的坐标为 ______.7.若 M( 3,- 2) ,N( - 5,- 1) 且MP 1 MN,则 P 点的坐标为 ______________.28.已知点 O( 0,0) , A( 1,2) ,B( 4,5) ,点 P 满足OP OA t AB ,当点P在x轴上时,t= _______.9.已知□ABCD 的三个顶点A( - 1, 3) , B( 3, 4) ,C( 2, 2) ,则顶点D的坐标为 ______.10.向量OA(k,12) , OB (4,5) , OB (10, k) 若A、B、C三点共线,则k= ______.三、解答题11.已知梯形ABCD 中,AB2DC ,M,N分别是DC,AB的中点.设 AD a,AB b 选择基底 { a,b} ,求向量DC,NM在此基底下的分解式.12.已知向量a=( 3,-2),b=(-2,1), c=( 7,-4),( 1) 证明:向量a, b 是一组基底;( 2) 在基底 { a,b} 下,若c= x a+ y b,求实数x, y 的值.13.已知向量a=( 1,2), b=(-3,x).若 m=2a+ b, n= a-3b,且 m∥ n,求实数x的值并判断此 m 时 n 与的方向相同还是相反.14.已知点O( 0,0) , A( 1, 4) ,B( 4,- 2) ,线段 AB 的三等分点C,D ( 点 C 靠近 A) .OC2OD平面向量的数量积及其运算律一、选择题1.若| a |= 4, | b |= 3,〈a , b 〉= 135°,则 a 2 b = ( )(A)6( B)(C)6 2 (D) 622.已知 | a |= 8, e 为单位向量,〈 a , e 〉2π,则 a 在 e 方向上的正射影的数量为 ( )3(A)4 3(B)4(C) 43(D)-4 3.若向量 a , b , c 满足 a 2 b = a 2 c ,则必有 ()( A ) a = 0( B) b = c( C) a =0 或 b = c ( D ) a ⊥ ( b - c )4.若| a |= 1,| b |= 2,且 ( a + b ) ⊥ a ,则〈 a , b 〉= ()( A) 30° ( B) 60°( C) 120° (D)150°5.平面上三点 A ,B ,C ,若 | AB | 3,|BC | 4,|CA | 5,则 AB BC BC CA CA AB= ( )A .25 ( B) -25(C)50(D)-50二、填空题6.已知 a 2 b =- 4, a 在 b 方向上的正射影的数量为-8,则在| a |和 | b | 中,可求出具体数值的是 ______,它的值为 ______.7.已知 a , b 均为单位向量, 〈 a , b 〉= 60°,那么| a + 3b | = ______. 8.已知| a |= 4,| b | = 1,| a - 2b | = 4,则 cos 〈a , b 〉= ______.9.下列命题中,正确命题的序号是______.( 1) | a | 2=a 2;( 2) 若向量 a , b 共线,则 a 2 b =| a || b | ;( 3)( a 2 b ) 2= a 22 b 2;( 4) 若 a 2 b = 0,则 a = 0 或 b = 0( 5)( a -b ) 2 ( a +b ) =| a | 2-| b | 2;10.设向量 a , b , c 满足 a + b +c = 0, ( a -b ) ⊥ c , a ⊥b .若| a |= 1,则 | a | 2+| b |2+| c | 2的值是 ______. 三、解答题11.已知| a |= 5,| b |= 4,〈a , b 〉π,求 ( a + b ) 2 a 和| a + b |.312.向量 a , b 满足 ( a - b ) 2 ( 2a + b ) =- 4,且 | a | = 2,| b |= 4,求〈 a ,b 〉.13.已知 O 为△ ABC 所在平面内一点,且满足(OB OC) (OB OA) 0 ,试判断△ ABC的形状.14.已知向量 a , b 满足:| a |= 1,| b | = 2,| a - b | = 7 .( 1) 求| a - 2b |; ( 2) 若 ( a + 2b ) ⊥( k a - b ) ,求实数 k 的值.向量数量积的坐标运算与度量公式一、选择题1.已知 a = ( - 4, 3) , b = ( 5,6) ,则 3a 2-4a 2 b =()(A)83(B)63(C)57(D)232.已知向量 a ( 3, 1) , b 是不平行于 x 轴的单位向量,且 a b3 ,则 b =()(A)(3, 1) (B) (1,3 ) (C) (1,3 3) ( D)( 1,0)2222443.在△ ABC 中, A( 4, 6) , B( - 4,10) , C( 2, 4) ,则△ ABC 是 ( )( A ) 等腰三角形( B) 锐角三角形( C) 钝角三角形( D ) 直角三角形4.已知 a = ( 0, 1) ,b = ( 1,1) ,且〈 aπ的值为( )b ,a 〉,则实数2(A)-1(B)0(C)1(D)25.已知 a = ( 1, 2) ,b = ( - 2,- 4) , | c |5 ,若 (ab )c 5 ),则〈 a , c 〉= (2( A) 30°( B) 60°( C) 120°(D)150°二、填空题,b 〉=.若a + = ( - ,-1) , - =,- ,则=,〈 a ______ .6 b 2 a b ( 4 3) a 2 b ______7.向量 a = ( 5, 2) 在向量 b =( - 2, 1) 方向上的正射影的数量为 ______. 8.在△ ABC 中, A( 1, 0) , B( 3, 1) , C( 2, 0) 则∠ BCA = ____________. 9.若向量 a 与 b = ( 1, 2) 共线,且满足 a 2 b =- 10,则 a = ______.10.已知点 A( 0,3) ,B( 1,4) ,将有向线段 AB 绕点 A 旋转角π到 AC 的位置,则点C 的2坐标为 ______. 三、解答题11.已知 a = ( - 3,2) ,b = ( 1,2) ,求值: | a + 2b |,( 2a - b ) 2 ( a +b ) ,cos 〈a + b ,a - b 〉.12.若 |a |2 13 , b = ( - 2, 3) ,且 a ⊥ b ,求向量 a 的坐标.13.直角坐标系 xOy 中,已知点 A( 0,1) 和点 B( -3, 4) ,OC 为△ AOB 的内角平分线,且OC 与 AB 交于点 C ,求点 C 的坐标.14.已知 k Z ,AB ( k ,1),AC ( 2,4),| AB | 4 ,且△ ABC 为直角三角形, 求实数 k 的值.用心爱心专心测试十二向量的应用Ⅰ学习目标1.会用向量的方法解决某些简单的平面几何问题.2.会用向量的方法解决物理中简单的力学和速度问题;能将物理问题转化为数学问题,同时会用建立起来的数学模型解释相关的物理问题.Ⅱ基础性训练一、选择题1.作用于原点的两个力f1=( 1,1), f2=( 2,3),为使它们平衡,需要增加力f3,则力 f3 的大小为 ( )( A)( 3,4) ( B)( -3,- 4)( C) 5 (D)252.在水流速度为自西向东,10 km / h 的河中,如果要使船以10 3 km/ h的速度从河南岸垂直到达北岸,则船出发时行驶速度的大小和方向( )( A ) 北偏西 30°, 20 km/ h( B ) 北偏西 60°, 20 km / h( C) 北偏东 30°, 20 km/ h( D ) 北偏东 60°, 20 km / h3.若平行四边形ABCD 满足| AB AD | | AB AD |,则平行四边形ABCD 一定是 ( )(A)正方形(B)矩形(C)菱形(D)等腰梯形4.已知□ABCD 对角线的交点为O,P 为平面上任意一点,且PO =a,则PA PB PC PD = ( )( A ) 2a ( B) 4a ( C) 6a ( D ) 8a5.已知非零向量AB与 AC满足(AB AC)BC 0且 AB.AC 1|AB | |AC | |AB| |AC| 2,则△ ABC为 ( )( A ) 三边均不相等的三角形( B ) 直角三角形( C) 等腰非等边三角形( D ) 等边三角形二、填空题6.自 50 m 高处以水平速度10 m/ s 平抛出一物体,不考虑空气阻力,则该物2s 时的速度的大小为 ______,与竖直向下的方向成角为,则tan=______( g=10 m/ s2).7.夹角为 120°的两个力f1和 f2作用于同一点,且| f 1|=| f2|=m( m>0),则 f1和 f2的合力 f 的大小为______, f 与 f2的夹角为____________.8.正方形ABCD 中, E,F 分别为边DC , BC 的中点,则cos∠ EAF = ____________.9.在△ ABC 中,有命题:①AB AC BC ;②若 ( AB AC) ( AB A C )0 ,则△ABC 为等腰三角形;③AB BC CA=0;④若 AB BC 0 ,则为△ABC锐角三角形.上述命题中正确的是____________( 填上你认为正确的所有序号)三、解答题10.水平电线AB 对竖直电杆BD 的拉力为300 N,斜拉索BC 的拉力为600 N,此时电杆恰好不偏斜,求斜拉索与地面成角的大小以及由此引起的电杆对地面的压力( 电杆自重不计).11.某运动员在风速为东偏北60°, 2 m/ s 的情况下正在以 10 m/ s 的速度向东跑.若风停止,运动员用力不变的情况下,求该运动员跑步速度的大小和方向.12.对于平行四边形ABCD ,点 M 是 AB 的中点,点N 在 BD 上,且BN 1 BD.用向量3的方法证明:M, N, C 三点共线.Ⅲ拓展性训练13.在 Rt△ABC 中,∠ C=90°,且 CA= CB, D 是 CB 的中点, E 是 AB 上一点,且AE=2EB.求证: AD ⊥ CE.14.如图,已知点A( 4, 0) , B( 4,4) , C( 2, 6) ,求 AC 与 OB 的交点 P 的坐标.测试十三平面向量全章综合练习一、选择题1.向量( AB MB) (BO CB) OM 化简后等于( )(A) AC (B) BC ( C) AB (D) AM2.点 A 的坐标为 ( 1,- 3) ,向量AB的坐标为 ( 3,7) ,则点 B 的坐标为 ( ) ( A)( 4,4) ( B)( -2,4) ( C)( 2, 10) ( D)( -2,- 10)3.已知向量a= ( -2, 4) ,b= ( - 1,- 2) , c=( 2,3),则( a+ b) 2 ( a- c)的值为( )(A)10 (B)14 ( C) -10 (D)-144.已知向量a= ( 2,t) ,b= ( 1, 2) .若 t= t1时,a∥b; t= t 2时,a⊥b,则 ( ) ( A ) t1=- 4, t2=- 1 ( B ) t1=- 4, t2= 1( C) t1= 4, t2=- 1 ( D ) t1= 4, t2= 15.若点 O 是△ ABC 所在平面内一点,满足OA OB OB OC OC OA ,则点O是△ABC 的 ( )( A ) 三个内角的角分线的交点( B ) 三条边的垂直平分线的交点( C) 三条中线的交点( D ) 三条高线的交点二、填空题6.河水的流速为 2 m/ s,一只小船想要以垂直于河岸方向10 m/ s 的速度驶向对岸,则小船在静水中的速度的大小应为______________.7.数轴上的点A,B,点 A 的坐标为- 3,且向量AB的长度为5,则点 B 的坐标为 ______.8.已知p= ( - 2, 2) ,q= ( 1,3) ,则p在q方向上的正射影的数量为______.9.已知向量a=( 2,3), b=(-1,2),若( a+b)⊥( a+ b),则实数=______.10.给出下列命题:①a b b; a2a②| a|-| b|<| a- b|;③ |a2b|=|a||b|;④ ( b2 c) a- ( c2 a) b与c垂直;⑤已知 a,b 是非零向量,若| a+ b|=| a- b|,则a⊥ b;a2= b2.⑥已知 a, b 是两个单位向量,则所有正确的命题的序号为____________ .三、解答题11.已知点A( - 2, 1) , B( 1,3) .求线段 AB 中点 M 和三等分点P, Q 的坐标.12.已知 | a|= 2, | b|= 4,〈a,b〉2π.求|a-b|和〈a,a-b〉的余弦值.313.已知向量a=( 1,2), b=( x,1).( 1) 求与 a 垂直的单位向量的坐标;( 2) 求| b-2a|的最小值以及此时 b 的坐标;( 3) 当 x 为何值,a+ 2b与b- 2a平行,并确定它们此时是同向还是反向.14.如图,以原点O 和 A( 5,2) 为两个顶点作等腰直角△OAB,使∠ B= 90°.求点 B 的坐标和 AB 的坐标.参考答案第二章平面向量测试七向量的线性运算 ( 一 )一、选择题1.D 2.C 3.C 4.B 5.C二、填空题6.③7.“东偏北 60°, 6 km”或“北偏东30°, 6 km ” 8. 10 km / h 5 3 km/ h9.b-a;a+b10.0三、解答题11.解: ( 1) CD;( 2) 原式=(AB BC CD) DA AD DA =0.12.解: ( 1) MP NQ OB ;( 2) OP,OQ,OA;( 3) ON,PQ ;( 4)|OM | | ON | 3 213.解:AB a, BC b, AC c ,所以DB a b,BE AC c, DE DB BE a b c ,| a- b+ c|=2.14.解:设AB a, AD b ,做□ABCD.则 AC a b, DB a b ,可得 AC BD 5 ,所以□ABCD为矩形,|b | | AD | 52 32=4.测试八 向量的线性运算 ( 二 )一、选择题1.D 2.D 3.A 4. B 5. A二、填空题6. 3a - 2b 7.a 8.- 4; 6 9. a 3b 10. 1 b 1a| a |244三、解答题11.答: AD2 a 1b .33712.略解:化简得 9a = 7b ,即 ab ,所以 a ∥ b ;| a |∶| b |= 7∶ 9.91,λ= 113.略解:由题意,得| a |=| λ|| b |,∴ | λ|=,22| a - b |=| λ- 1|| b |= 2| λ- 1|= 1 或 3.14. (1) 证明:∵ BDCD CB 2a 4b ,∴ BD 2 AB ,∴ AB // BD ,因为二者均经过点 B ,所以 A , B , C 三点共线. (2)证明:∵ a 与 b 共线,设 a = λb ,∴ BD ( 2 4)b , CD (7 2)b∵CD0, BD 0 ∴7λ- 2≠0, 2λ+ 4≠0.∴ BD 24CD ,7 2∴ BD // CD ,所以 B , C , D 三点共线,又 A ,B , D 三点共线.所以 A , B ,C , D 四点共线.测试九 向量的分解与向量的坐标表示一、选择题1.B 2. B 3.A 4.D 5.D 二、填空题6.( 1,1)7.( 1, 3) 8. t2 9.( -2,1) 10.- 2 或 112 223三、解答题11.答: DC1b ; NM a1b .2412. ( 1) 证明:∵32 ,∴ a 与 b 不平行,所以向量 a , b 是一组基底.213x 2 y 7,x 1, ( 2) 略解: ( 7,- 4) = x( 3,- 2) + y( - 2, 1) ,y4,所以2.2x y13.略解: m =( - 1, 4+x) , n =( 10, 2- 3x) ,因为 m ∥ n ,所以- ( 2- 3x) - 10( 4+ x) =0, x =- 6,此时 m = ( - 1,- 2) , n = ( 10, 20) ,有 n =- 10m ,所以 m 与 n 方向相反.14.略解: ( 1) OC OA AC OA 1(1,4)1(2,2) .AB (3, 6)3 3OD OA AD OA 2AB (1,4)2(3, 6) (3,0) .3 3( 2) OC 2OD ( 2,2) 2(3,0) (8,2) .OE OB OC 2OD ( 4, 2) (8,2) (12,0) .测试十平面向量的数量积及其运算律一、选择题1.D 2.D 3.D 4.C 5.B二、填空题6.|b|; 1 7.13 8.19.①⑤10. 42 4提示:10.由a+b+c=0,得c=-a-b,又 ( a-b) ⊥c,∴ (a-b) 2 (-a-b)=0,2 2∴-| a|- a2 b+a2 b+| b|=0,∴|b|=|a|=1.又 c=- a- b,222 2 ∴| c|=|- a- b|=(- a- b) 2 (- a- b)=| a|+2a2 b+| b|=2.另外,可以结合图示,分析解决问题.三、解答题11.解:a2 b= 10, ( a+b) 2 a=a2+a2 b= 35,|a b | ( a b) 2 a 2 2a b b2 61 .12.解:由题意得2a 2-a2 b-b2=- 4,所以 2a2-a2 b-b2=- 4,得a2 b=-4,cos 〈a,b〉 a b 1, 〈a,b〉=120°| a || b | 213.略解:因为(OB OC) (OB OA) 0 ,所以CB AB=0,从而CB AB ,△ABC 为直角三角形.14.略解: ( 1) |a-b|2=a2- 2ab+b2= 7,所以a2 b=- 1,| a-2b|2= a2-4ab+4b2=21,即|a2b | 21.( 2) 由已知得 ( a+ 2b) 2 ( k a-b) = 0,即 k a2-ab+ 2k ab- 2b2= 0,得 k=- 7.测试十一向量数量积的坐标运算与度量公式一、选择题1.A 2.B 3.D 4.A 5.C提示:5.设c= ( x,y) ,由 | c | 5 ,得x2+y2=5,,①,由 ( a b ) c55 5,得 ( 1, 2) ( x, y),∴ x 2 y,, ②222由①②解得 c( 1 3, 13) ,或 c ( 1 3, 13) .22 2213) 时, cos 〈a c5 1 , 当c (3, 1, 〉222a c5 52|a || c |∴〈 a ,c 〉= 120°,另一种情况,计算结果相同.二、填空题6.- 5; 135° 7. 8 510. ( - 1,4) 或 ( 1,2)58.135° 9. ( - 2,- 4)提示:10.设 C( x , y) ,则 AB(1,1), AC ( x, y 3) ,由 AC ⊥ AB 得, AB AC 0 ,即 x + y - 3= 0,, ①又 | AB | AC , ∴ 2= x 2+ ( y - 3) 2,, ②. 结合①②,解得,x 1,x 1y 或y 4 ∴ C( 1, 2) 或 C( -1,4) .2,三、解答题11.答: |a 2b |37 ;( 2a - b ) 2 ( a + b ) =22; cos a b , ab 55.12.解:设 a = ( x ,y) ,则2x 3 y 0 x 6 x6 x2y252,解得:y 4 或,所以 a =( 6,4) 或y 4a = ( -6,- 4) .13.解:设 C( x , y) ,则 OC( x, y) ,由已知可得: 〈 OA,OC 〉=〈 OB, OC 〉AC // ABx y 113 则,所以,解得OC OCOB OC 3 4 x, y,2yxy2|OA ||OB|55所以 C( 1, 3).2 214.解:由 | AB |4 得 k 2≤ 15,∵ k ∈ Z ,∴ k =- 3,- 2,- 1, 0, 1, 2,3,·2k 4 0 所以 k =- 2;当 A = 90°时, AB ACAB ·BC 0,BC (2 - k ,3)当 C= 90°时,,所以 2( 2- k) +12= 0, k= 8( 舍 ) .AC·BC 0,BC (2 - k,3)综上 k=- 1 或- 2 或 3.测试十二向量的应用一、选择题1.C2.A3.B4.B5.D提示:ABm, AC5.设n ,则|m|=|n|=1,|AB| |AC|由已知 (m n) BC 0 .∴ m BC n BC,∴ m BC cos(x B)n BC cos C ∴c osB= c osC,又B、C∈( 0,)∴B= C.又由已知 m n 1,2∴ m n cos A 1 2∴ cos A 1,又(0,π)2∴A= 60°∴△ ABC 为等边三角形.二、填空题18.46. 10 5m/s;7. m, 60°,9.②③2 5三、解答题10.答:= 60°;300 3N.11.解:如图,建立平面直角坐标系,作□ABCD,设|OC | 2,| OB | 10,则C( 1,3 ),B( 10, 0) ,CB (9, 3),得 |CB| 2 21 9.17m/s,tan AOB3.9由计算器计算得∠ AOB≈ 10. 89°.该运动员跑步速度的大小为9. 17 m/ s,方向为东偏南约10. 89°.MN // MC量,再证明二者具有关系 MN MC 即可.设AB e 1 , AD e 2 ,则 BDe 1 e 2 , BN1e 1 1e 2 .3 3MC1e 1 e 2 , MN MB BN 1e 1 ( 1e 11e 2 ) 1 e 1 1e 2 .22 33 6 3所以 MN1MC ,所以 M , N ,C 三点共线.313.证明:设此等腰直角三角形的直角边长为a ,AD CE( AC CD) (CA AE) AC CA AC AECD CA CD AE|AC|2| AC || AE | cos45 0 |CD || AE |cos45a 22 a 21 a 20 所以 AD ⊥ CE .33或以点 C 为原点, CA , CB 所在的直线分别为x ,y 轴建立平面直角坐标系,则 A( a , 0) , D (0, 1 a), E(1 a, 2a), AD ( a, 1 a), CE ( 1 a, 2a),23 3233可得出 AD CE1 a2 1 a 20 ,所以 AD ⊥CE .3 314.解:设 P( x , y) ,则 OP (x, y) , OB = ( 4, 4) ,由 OP,OB ,共线得 4x -4y = 0,,, ①,AP ( x 4, y) , AC = ( - 2, 6) ,由 AP, AC 共线得 6( x - 4) - y( - 2) =0,, ②,由①②解得, P( 3, 3) .测试十三 平面向量全章综合练习一、选择题 1.A2.A3.B4.C5.D二、填空题6. 2 26m/s7.-8 或 2 2 109.1710.④⑤⑥8.59三、解答题11.解: ABOB OA (3,2) ,OM1(OB OA) ( 1,2),所以 M (1,2),2 22OPOA1AB (1, 5) ,所以 p( 1, 5), OQ OA 2AB (0, 7) ,3 3 33 3 7所以 Q(0, ) .2 7 , cos 〈 a , a -b 〉2712.答:| a -b |7.13.略解: ( 1) 设单位向量为 e = k( - 2, 1) = ( - 2k , k) ,因为 | e | = 1,得 k55,2 5 52 5 5e (5 , 5 ) 或 e ( 5 , 5 ) .(2)|b 2 | ( x 2) 29 ,当 x = 2 时, | b - 2a |最小值为 3,此时 b = ( 2,1) .a ( 3) x 1 ,反向.214.解:设 B( x , y) ,则 AB( x 5, y 2), OBAB OB 0(x, y) ,由已知得,| AB| |OB|x( x5) y( y 2) 0x 3x2 7所以,解得 2 或 2 ,x2y2( x 5)21( y 2)2y 1 7 y 2 32 2 所以 B(3,7)或 B(7,3),AB ( 3, 1)或 AB ( 7,3),222 22 22 2用心 爱心 专心。
2019高中数学第二章平面向量单元测试(二)新人教A版必修4

第二章 平面向量注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.设3,sin 2α⎛⎫= ⎪⎝⎭a ,1cos ,3α⎛⎫= ⎪⎝⎭b ,且∥a b ,则锐角α为( )A .30︒B .60︒C .75︒D .45︒2.下列命题正确的是( ) A .单位向量都相等B .若a 与b 共线,b 与c 共线,则a 与c 共线C .若|a +b |=|a -b |,则a ·b =0D .若a 与b 都是单位向量,则a ·b =1.3.设向量()2,3a m m =-+,()21,2b m m =+-,若a 与b 的夹角大于90°,则实数m 的取值范围是( ) A .4,23⎛⎫- ⎪⎝⎭B .()4,2,3⎛⎫-∞-+∞ ⎪⎝⎭C .42,3⎛⎫- ⎪⎝⎭D .()4,2,3⎛⎫-∞+∞ ⎪⎝⎭4.平行四边形ABCD 中,AC 为一条对角线,若()2,4AB =,()1,3AC =,则AD BD ⋅等于( ) A .8B .6C .8-D .6-5.已知1=a ,6=b ,()2⋅-=a b a ,则向量a 与向量b 的夹角是( )A .6π B .4π C .3π D .2π 6.关于平面向量a ,b ,c ,有下列四个命题: ①若a ∥b ,a ≠0,则存在λ∈R ,使得b =λa ; ②若a ·b =0,则a =0或b =0;③存在不全为零的实数λ,μ使得c =λa +μb ; ④若a ·b =a ·c ,则a ⊥(b -c ). 其中正确的命题是( ) A .①③B .①④C .②③D .②④7.已知|a |=5,|b |=3,且12⋅-a b =,则向量a 在向量b 上的投影等于( ) A .4-B .4C .125-D .1258.设O ,A ,M ,B 为平面上四点,()1OM OB OA λλ=+-⋅,且()1,2λ∈,则( ) A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上 D .O ,A ,B ,M 四点共线9.P 是△ABC 内的一点,()13AP AB AC =+,则△ABC 的面积与△ABP 的面积之比为( ) A .32B .2C .3D .610.在△ABC 中,2AR RB =,2CP PR =,若AP mAB nAC =+,则m n +等于( ) A .23B .79 C .89D .111.已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ·(b +c )等于( )A .45-B .35-C .0D .3512.定义平面向量之间的一种运算“⊙”如下:对任意的a =(m ,n ),b =(p ,q ),令a ⊙b =mq -np .下面说法错误的是( ) A .若a 与b 共线,则a ⊙b =0B .a ⊙b =b ⊙aC .对任意的λ∈R ,有(λa )⊙b =λ(a ⊙b )D .(a ⊙b )2+(a ·b )2=|a |2|b |2二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.设向量a =(1,2),b =(2,3),若向量λa +b 与向量()4,7--c =共线,则λ=________.14.a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________.15.已知向量a =(6,2),14,2⎛⎫=- ⎪⎝⎭b ,直线l 过点A (3,-1),且与向量a +2b 垂直,则直线l 的方程为________.16.已知向量()2,1OP =,()1,7OA =,()5,1OB =,设M 是直线OP 上任意一点(O 为坐标原点),则MA MB ⋅的最小值为________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,以向量OA =a ,OB =b 为边作AOBD ,又13BM BC =,13CN CD =,用a ,b 表示OM 、ON 、MN .18.(12分)已知a ,b 的夹角为120°,且|a |=4,|b |=2,求:(1)(a -2b )·(a +b ); (2)|a +b |; (3)|3a -4b |.19.(12分)已知)1=-a,12⎛=⎝⎭b,且存在实数k和t,使得x=a+(t2-3)b,y=-k a+t b,且x⊥y,试求2k tt+的最小值.20.(12分)设()2,5OA =,()3,1OB =,()6,3OC =.在线段OC上是否存在点M,使MA⊥MB?若存在,求出点M的坐标;若不存在,请说明理由.21.(12分)设两个向量e1、e2满足|e1|=2,|e2|=1,e1、e2的夹角为60°,若向量2t e1+7e2与e1+t e2的夹角为钝角,求实数t的取值范围.22.(12分)已知线段PQ过△OAB的重心G,且P、Q分别在OA、OB上,设OA =a,OB =b,OP m=a,OQ n=b.求证:113 m n+=.2018-2019学年必修四第二章训练卷平面向量(二)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】D【解析】31sin cos 23αα⨯=,sin 21α=,290α=︒,45α=︒.故选D .2.【答案】C【解析】∵|a +b |2=a 2+b 2+2a ·b ,|a -b |2=a 2+b 2-2a ·b ,||+-=a b a b . ∴0⋅a b =.故选C . 3.【答案】A【解析】∵a 与b 的夹角大于90°,∴0⋅<a b ,∴()()()()221320m m m m -+++-<,即23280m m -<-,∴423m -<<.故选A .4.【答案】A【解析】∵()1,1AD BC AC AB ==-=--,∴()()()1,12,43,5BD AD AB =-=---=--,∴()()1,13,58AD BD ⋅=--⋅--=. 故选A . 5.【答案】C【解析】∵()22-=⋅-=a b a a b a ,∴3⋅a b =,∴31cos ,·162a b ⋅〈〉===⨯a b a b , ∴,3a b π〈〉=.故选C . 6.【答案】B【解析】由向量共线定理知①正确;若a ·b =0,则a =0或b =0或a ⊥b ,所以②错误;在a ,b 能够作为基底时,对平面上任意向量,存在实数λ,μ使得c =λa +μb , 所以③错误;若⋅⋅a b =a c ,则()0-=a b c ,所以()⊥-a b c ,所以④正确, 即正确命题序号是①④,所以B 选项正确.7.【答案】A【解析】向量a 在向量b 上的投影为12cos ,43a b ⋅⋅〈〉=⋅==-=-a b a b a a a b b . 故选A . 8.【答案】B【解析】∵()()1OM OB OA OA OB OA λλλ=+-⋅=+-,∴AM AB λ=,λ∈(1,2),∴点B 在线段AM 上,故选B . 9.【答案】C【解析】设△ABC 边BC 的中点为D ,则22ABC ABD ABP ABP S S ADS S AP==△△△△. ∵()1233AP AB AC AD =+=,∴32AD AP =,∴32AD AP =.∴3ABC ABP S S =△△.故选C . 10.【答案】B【解析】2224133393AP AC CP AC CR AC AB AC AB AC ⎛⎫=+=+=+-=+ ⎪⎝⎭,故有417939m n +=+=.故选B . 11.【答案】B【解析】由已知得435=--b a c ,将等式两边平方得()()22435=--b a c ,化简得35⋅=-a c .同理由534--c =a b 两边平方得a ·b =0,∴()35=⋅+=⋅-⋅a b c a b +a c .故选B . 12.【答案】B【解析】若a =(m ,n )与b =(p ,q )共线,则mq -np =0,依运算“⊙”知a ⊙b =0,故A 正确.由于a ⊙b =mq -np ,又b ⊙a =np -mq ,因此a ⊙b =-b ⊙a ,故B 不正确. 对于C ,由于λa =(λm ,λn ),因此(λa )⊙b =λmq -λnp ,又λ(a ⊙b )=λ(mq -np )=λmq -λnp ,故C 正确.对于D ,(a ⊙b )2+(a ·b )2=m 2q 2-2mnpq +n 2p 2+(mp +nq )2=m 2(p 2+q 2)+n 2(p 2+q 2)=(m 2+n 2)(p 2+q 2)=|a |2|b |2,故D 正确.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】2【解析】∵a =(1,2),b =(2,3),∴()()(),22,32,23λλλλλ=++++a b =. ∵向量λa +b 与向量()4,7--c =共线,∴-7(λ+2)+4(2λ+3)=0.∴λ=2. 14.【答案】7 【解析】∵()222222125552511310134920⎛⎫==+-⨯+-⨯⨯--⋅=⎝=⨯- ⎪⎭a b a b a b a b .∴|5a -b |=7.15.【答案】2390x y --=【解析】设P (x ,y )是直线上任意一点,根据题意,有()()()23,12,30AP x y ⋅+=-+⋅-=a b ,整理化简得2390x y --=. 16.【答案】8-【解析】设()2,OM tOP t t ==,故有()()()2212,752,152012528MA MB t t t t t t t ⋅=--⋅--=-+=--, 故当t =2时,MA MB ⋅取得最小值8-.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】1566OM =+a b ,2233ON =+a b ,1126MN =-a b .【解析】BA OA OB =-=-a b .∴11153666OM OB BM OB BC OB BA =+=+=+=+a b .又OD =+a b .1122226333ON OC CN OD OD OD =+=+==+a b ,∴221511336626MN ON OM =-=+--=-a b a b a b .18.【答案】(1)12;(2);(3) 【解析】(1)1cos1204242⎛⎫⋅=︒=⨯⨯-=- ⎪⎝⎭a b a b .(a -2b )·(a +b )=a 2-2a ·b +a ·b -2b 2=42-2×(-4)+(-4)-2×22=12. (2)∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=16+2×(-4)+4=12.∴+=a b .(3)|3a -4b |2=9a 2-24a ·b +16b 2=9×42-24×(-4)+16×22=16×19,∴34-=a b 19.【答案】74-.【解析】由题意有2==a,1=b .∵1102⋅=-=a b ,∴⊥a b . ∵x·y =0,∴[a +(t 2-3)b ](-k a +t b )=0.化简得334t tk -=.∴()()222117432444k t t t t t +=+-=+-.即2t =-时,2k t t+有最小值为74-. 20.【答案】存在,M 点的坐标为(2,1)或2211,55⎛⎫⎪⎝⎭.【解析】设OM tOC =,t ∈[0,1],则()6,3OM t t =, 即M (6t,3t ).()26,53MA OA OM t t =-=--,()36,13MB OB OM t t =-=--.若MA ⊥MB ,则()()()()263653130MA MB t t t t ⋅=--+--=.即45t 2-48t +11=0,13t =或1115t =.∴存在点M ,M 点的坐标为(2,1)或2211,55⎛⎫⎪⎝⎭.21.【答案】1417,,2⎛⎛⎫--- ⎪ ⎪⎝⎭⎝⎭. 【解析】由向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,得()()1212121227027t t t t +⋅+<+⋅+e e e e e e e e ,即(2t e 1+7e 2)·(e 1+t e 2)<0.整理得:()222112222770t t t ++⋅+<e e e e .(*)∵|e 1|=2,|e 2|=1,〈e 1,e 2〉=60°.∴e 1·e 2=2×1×cos 60°=1, ∴(*)式化简得:2t 2+15t +7<0.解得:172t -<<-.当向量2t e 1+7e 2与e 1+t e 2夹角为180°时,设2t e 1+7e 2=λ(e 1+t e 2) (λ<0). 对比系数得270t t λλλ=⎧⎪=⎨⎪<⎩,∴2t λ⎧=⎪⎨=⎪⎩,∴所求实数t 的取值范围是1417,,2⎛⎛⎫--- ⎪ ⎪⎝⎭⎝⎭. 22.【答案】见解析. 【解析】证明 如右图所示, ∵()()1122OD OA OB =+=+a b ,∴()2133OG OD ==+a b . ∴()111333PG OG OP m m ⎛⎫=-=+-=-+ ⎪⎝⎭a b a a b .PQ OQ OP n m =-=-b a . 又P 、G 、Q 三点共线,所以存在一个实数λ,使得PG PQ λ=.∴1133m n m λλ⎛⎫-+=- ⎪⎝⎭a b b a ,∴11033m m n λλ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭a +b . ∵a 与b 不共线,∴103103m m n λλ⎧-+=⎪⎪⎨⎪-=⎪⎩①②,由①②消去λ得:113m n +=.。
高中数学 3.1.3二倍角的正弦、余弦和正切公式(练)新人教A版必修4-新人教A版高中必修4数学试题

3. 1.3 二倍角的正弦、余弦和正切公式(练)一、选择题1.已知函数f(x)=(1+cos2x)sin2x ,x ∈R ,则f(x)是( )A .最小正周期为π的奇函数B .最小正周期为π2的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数[答案] D[解析] f(x)=(1+cos2x)sin2x =2cos2xsin2x=12sin22x =1-cos4x 4,故选D.2.sin10°+sin50°sin35°·sin55°的值为( )A.14B.12C .2D .4[答案] C[解析] 原式=sin(30°-20°)+sin(30°+20°)sin35°·cos35°=2sin30°·cos20°12sin70°=cos20°12sin70°=2.3.(2010·某某某某调研)在△ABC 中,3sinA +4cosB =6,4sinB +3cosA =1,则C 等于() A .30°B .150°C .30°或150°D .60°或120°[答案] A[解析] 两式平方后相加得sin(A +B)=12,∴A +B =30°或150°,又∵3sinA =6-4cosB>2,∴sinA>23>12,∴A>30°,∴A +B =150°,此时C =30°.4.(2010·某某某某一中)函数y =sin ⎝⎛⎭⎫π3-2x +sin2x 的最小正周期是( )A.π2B .πC .2πD .4π[答案] B[解析] ∵y =32cos2x -12sin2x +sin2x =sin ⎝⎛⎭⎫2x +π3,∴周期T =π. 5.(2010·某某一中)已知a =(sin α,1-4cos2α),b =(1,3sin α-2),α∈⎝⎛⎭⎫0,π2,若a ∥b ,则tan ⎝⎛⎭⎫α-π4=( ) A.17B .-17 C.27D .-27[答案] B[解析] ∵a ∥b ,∴1-4cos2α=sin α(3sin α-2),∴5sin2α+2sin α-3=0,∴sin α=35或sin α=-1,∵α∈⎝⎛⎭⎫0,π2,∴sin α=35, ∴tan α=34,∴tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=-17. 6.(2010·某某中学)已知向量a =(sin75°,-cos75°),b =(-cos15°,sin15°),则|a -b|的值为( )A .0B .1C. 2D .2[答案] D[解析] ∵|a -b|2=(sin75°+cos15°)2+(-cos75°-sin15°)2=2+2sin75°cos15°+2cos75°sin15°=2+2sin90°=4,∴|a -b|=2.7.(2010·某某某某调研)已知sin β=35(π2<β<π),且sin(α+β)=cos α,则tan(α+β)=( )A .1B .2C .-2 D.825[答案] C[解析] ∵sin β=35,π2<β<π,∴cos β=-45,∴sin(α+β)=cos α=cos[(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β=-45cos(α+β)+35sin(α+β),∴25sin(α+β)=-45cos(α+β),∴tan(α+β)=-2.8.(2010·某某调研)若将函数y =cosx -3sinx 的图象向左平移m(m>0)个单位后,所得图象关于y 轴对称,则实数m 的最小值为( )A.π6B.π3C.2π3D.5π6[答案] C[解析] y =cosx -3sinx =2cos ⎝⎛⎭⎫x +π3向左移m 个单位得到函数y =2cos ⎝⎛⎭⎫x +m +π3为偶函数, ∴m +π3=kπ(k ∈Z),∴m =kπ-π3,∵k ∈Z ,且k>0,∴m 的最小值为2π3.9.若tan θ=13,则cos2θ+12sin2θ的值为( )A .-65B .-45C.45D.65[答案] D[解析] cos2θ+12sin2θ=cos2θ+sin θcos θsin2θ+cos2θ=1+tan θtan2θ+1=65. 10.(2010·某某南开中学)已知2tan α·si n α=3,-π2<α<0,则cos ⎝⎛⎭⎫α-π6的值是( )A .0 B.32C .1D.12[答案] A[解析] ∵2tan αsin α=3,∴2sin2αcos α=3,即2(1-cos2α)cos α=3, ∴2cos2α+3cos α-2=0,∵|cos α|≤1,∴cos α=12,∵-π2<α<0,∴sin α=-32,∴cos ⎝⎛⎭⎫α-π6 =cos αcos π6+sin αsin π6=12×32-32×12=0.二、填空题11.已知sin ⎝⎛⎭⎫π6-α=14,则sin ⎝⎛⎭⎫π6+2α=______. [答案] 78[解析] sin ⎝⎛⎭⎫π6+2α=cos ⎝⎛⎭⎫π2-π6-2α =cos ⎝⎛⎭⎫π3-2α=1-2sin2⎝⎛⎭⎫π6-α=78. 12.(2010·全国卷Ⅰ理,14)已知α为第三象限角,cos2α=-35,则tan(π4+2α)=____________.[答案] -17[解析] 因为α是第三象限角,∴2kπ+π<α<2kπ+3π2,(k ∈Z),∴4kπ+2π<2α<4kπ+3π,∴sin2α>0,又cos2α=-35,∴sin2α=45,∴tan2α=sin2αcos2α=-43,所以tan ⎝⎛⎭⎫π4+2α=tan π4+tan2α1-tan π4tan2α=1-431+43=-17. 13.求值:3tan12°-3(4cos212°-2)sin12°=________. [答案] -4 3[解析] 3tan12°-3(4cos212°-2)sin12°=3⎝⎛⎭⎪⎫sin12°-3cos12°cos12°2(2cos212°-1)·sin12° =23(12sin12°-32cos12°)2cos24°·sin12°·cos12° =23(sin12°·cos60°-cos12°·sin60°)sin24°·cos24° =23sin(12°-60°)12sin48°=43(-sin48°)sin48°=-4 3. 三、解答题14.(2010·理,15)已知函数f(x)=2cos2x +sin2x -4cosx.(1)求f(π3)的值;(2)求f(x)的最大值和最小值.[解析] 本题考查了三角函数的化简求值及二次函数在区间上的最值.(1)可直接求解,(2)化简后转化为关于cosx 的二次函数,求值即可.(1)f(π3)=2cos 2π3+sin2π3-4cos π3=-1+34-2=-94.(2)f(x)=2(2cos2x -1)+(1-cos2x)-4cosx=3cos2x -4cosx -1=3(cosx -23)2-73,x ∈R因为cosx ∈[-1,1],所以当cosx =-1时,f(x)取最大值6;当cosx =23时,f(x)取最小值-73.15.已知0<α<π4,0<β<π4,且3sin β=sin(2α+β),4tan α2=1-tan2α2,求α+β的值.[解析] 由3sin β=sin(2α+β)得3sin[(α+β-α)]=sin[(α+β)+α] ∴tan(α+β)=2tan α①由4tan α2=1-tan2α2得tan α=2tan α21-tan2α2=12②由①②得tan(α+β)=1,又∵0<α<π4,0<β<π4,∴0<α+β<π2,∴α+β=π4. 16.(2010·苏北四市模考)在平面直角坐标系xOy 中,点P ⎝⎛⎭⎫12,cos2θ在角α的终边上,点Q(sin2θ,-1)在角β的终边上,且OP →·OQ →=-12. (1)求cos2θ的值; (2)求sin(α+β)的值.[解析] (1)因为OP →·OQ →=-12,所以12sin2θ-cos2θ=-12,即12(1-cos2θ)-cos2θ=-12,所以cos2θ=23,所以cos2θ=2cos2θ-1=13.(2)因为cos2θ=23,所以sin2θ=13,所以点P ⎝⎛⎭⎫12,23,点Q ⎝⎛⎭⎫13,-1, 又点P ⎝⎛⎭⎫12,23在角α的终边上, 所以sin α=45,cos α=35.同理sin β=-31010,cos β=1010,所以sin(α+β)=sin αcos β+cos αsin β=45×1010+35×⎝ ⎛⎭⎪⎫-31010=-1010. 17.(2009~2010·某某嵊泗中学高一期末)已知定义在区间⎣⎡⎦⎤-π,2π3上的函数y =f(x)的图象关于直线x =-π6对称,当x ∈⎣⎡⎦⎤-π6,2π3时,函数f(x)=Asin(ωx +φ)(A>0,ω>0,-π2<φ<π2)的图象如图所示.(1)求函数y =f(x)在⎣⎡⎦⎤-π,2π3上的表达式; (2)求方程f(x)=22的解.[解析] (1)当x ∈⎣⎡⎦⎤-π6,2π3时,由图象知,A =1,T 4=2π3-π6=π2,∴T =2π,∴ω=1.又f(x)=sin(x +φ)过点⎝⎛⎭⎫2π3,0,则 2π3+φ=kπ,k ∈Z ,∵-π2<φ<π2,∴φ=π3,∴f(x)=sin ⎝⎛⎭⎫x +π3当-π≤x<-π6时,-π6≤-x -π3≤2π3, ∴f ⎝⎛⎭⎫-x -π3=sin ⎝⎛⎭⎫-x -π3+π3=-sinx 而函数y =f(x)的图象关于直线x =-π6对称,则f(x)=f ⎝⎛⎭⎫-x -π3 ∴f(x)=-sinx ,-π≤x<-π6,∴f(x)=⎩⎨⎧ sin ⎝⎛⎭⎫x +π3 x ∈⎣⎡⎦⎤-π6,2π3-sinx x ∈⎣⎡⎭⎫-π,-π6.(2)当-π6≤x≤2π3时,π6≤x +π3≤π,∵f(x)=sin ⎝⎛⎭⎫x +π3=22, ∴x +π3=π4或3π4,∴x =-π12或5π12,当-π≤x<-π6时,∵f(x)=-sinx =22, ∴sinx =-22,x =-π4或-3π4,∴x =-π4,-3π4,-π12,或5π12即为所求.。
高中人教A版数学必修4(课时习题与单元测试卷):习题课(三) 含解析

习题课(三)一、选择题1.给出下列六个命题:①两个向量相等,则它们的起点相同、终点相同;②若|a |=|b |,则a =b ;③若AB →=DC →,则四边形ABCD 是平行四边形;④平行四边形ABCD 中,一定有AB→=DC →;⑤若m =n ,n =k ,则m =k ;⑥若a ∥b ,b ∥c ,则a ∥c .其中不正确命题的个数为( )A .2B .3C .4D .5答案:C解析:两个向量起点相同、终点相同,则两个向量相等;但两个向量相等,却不一定有起点相同、终点相同,故①不正确;根据向量相等的定义,要保证两向量相等,不仅模相等,而且方向相同,而②中方向不一定相同,故不正确;③也不正确,因为A 、B 、C 、D 可能落在同一条直线上;零向量方向不确定,它与任一向量都平行,故⑥中,若b =0,则a 与c 就不一定平行了,因此⑥也不正确.2.已知|AB →|=10,|AC →|=7,则|BC →|的取值范围是( )A .[3,17]B .(3,17)C .(3,10)D .[3,10]答案:A解析:利用三角形两边之和大于第三边,两边之差小于第三边的性质及AB →与AC →共线时的情况求解.即|AB →|-|AC →|≤|BC →|≤|AC →|+|AB →|,故3≤|BC →|≤17.3.对于非零向量a ,b ,下列说法不正确的是( )A .若a =b ,则|a |=|b |B .若a ∥b ,则a =b 或a =-bC .若a ⊥b ,则a ·b =0D .a ∥b 与a ,b 共线是等价的答案:B解析:根据平面向量的概念和性质,可知a ∥b 只能保证a 与b 的方向相同或相反,但模长不确定,因此B 错误.4.设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =( )A .1B .2C .3D .5答案:A解析:将已知两式左右两边分别平方,得⎩⎪⎨⎪⎧a 2+2a ·b +b 2=10a 2-2a ·b +b 2=6,两式相减并除以4,可得a ·b =1.5.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( )A. 5B.10C .2 5D .10答案:B解析:∵a ⊥c ,∴2x -4=0,x =2,又b ∥c ,∴2y +4=0,∴y =-2,∴a +b =(x +1,1+y )=(3,-1).∴|a +b |=10.6.对于非零向量α,β,定义一种向量积:α°β=α·ββ·β.已知非零向量a ,b 的夹角θ∈⎝⎛⎭⎫π4,π2,且a °b ,b °a 都在集合⎩⎨⎧⎭⎬⎫⎪⎪n 2n ∈N 中,则a °b =( ) A.52或32 B.12或32C .1 D.12答案:D解析:a °b =a ·b b ·b =|a |·|b |cos θ|b |2=|a |cos θ|b |=n 2,n ∈N ①.同理可得b °a =b ·a a ·a =|a |·|b |cos θ|a |2=|b |cos θ|a |=m 2,m ∈N ②.再由a 与b 的夹角θ∈⎝⎛⎭⎫π4,π2,可得cos 2θ∈⎝⎛⎭⎫0,12,①②两式相乘得cos 2θ=mn 4,m ,n ∈N ,∴m =n =1,∴a °b =n 2=12,选D. 二、填空题7.若向量OA →=(1,-3),|OB →|=|OA →|,OA →·OB →=0,则|AB →|=________.答案:2 5解析:因为|AB →|2=|OB →-OA →|2=|OB →|2+|OA →|2-2OA →·OB →=10+10-0=20,所以|AB →|=20=2 5.8.已知向量a ,b 满足|a |=1,|b |=3,a +b =(3,1),则向量a +b 与向量a -b 的夹角是________.答案:2π3解析:因为|a -b |2+|a +b |2=2|a |2+2|b |2,所以|a -b |2=2|a |2+2|b |2-|a +b |2=2+6-4=4,故|a -b |=2,因此cos 〈a -b ,a +b 〉=(a -b )·(a +b )|a -b |·|a +b |=1-34=-12,故所求夹角是2π3. 9.设正三角形ABC 的面积为2,边AB ,AC 的中点分别为D ,E ,M 为线段DE 上的动点,则MB →·MC →+BC →2的最小值为________.答案:532解析:设正三角形ABC 的边长为2a ,因为正三角形ABC 的面积为2,所以a 2=233.设MD =x (0≤x ≤a ),则ME =a -x ,MB →·MC →+BC →2=(MD →+DB →)·(ME →+EC →)+BC →2=MD →·ME →+MD →·EC →+DB →·ME →+DB →·EC →+BC →2=-x (a -x )+xa cos120°+(a -x )a cos120°+a 2cos60°+4a 2=x 2-ax +4a 2,当x =a 2时,MB →·MC →+BC →2取得最小值⎝⎛⎭⎫a 22-a ×a 2+4a 2=154a 2=532. 三、解答题10.已知|a |=4,|b |=8,a 与b 的夹角是120°.(1)求a ·b 及|a +b |的值;(2)当k 为何值时,(a +2b )⊥(k a -b )?解:(1)a ·b =|a ||b |cos120°=-16,|a +b |=(a +b )2=a 2+b 2+2a ·b=4 3.(2)由题意,知(a +2b )·(k a -b )=k a 2+(2k -1)a ·b -2b 2=0,即16k -16(2k -1)-2×64=0,解得k =-7.11.如图,在△OAB 中,P 为线段AB 上一点,且OP →=xOA →+yOB →.(1)若AP →=PB →,求x ,y 的值;(2)若AP →=3PB →,|OA →|=4,|OB →|=2,且OA →与OB →的夹角为60°,求OP →·AB →的值.解:(1)若AP →=PB →,则OP →=12OA →+12OB →, 故x =y =12. (2)若AP →=3PB →,则OP →=14OA →+34OB →, OP →·AB →=⎝⎛⎭⎫14OA →+34OB →·(OB →-OA →)=-14OA →2-12OA →·OB →+34OB →2 =-14×42-12×4×2×cos60°+34×22 =-3. 能力提升12.已知A (1,0),B (5,-2),C (8,4),D (4,6),那么四边形ABCD 为( )A .正方形B .菱形C .梯形D .矩形答案:D解析:AB →=(4,-2),BC →=(3,6).AB →·BC →=4×3+(-2)×6=0,故AB →⊥BC →.又DC →=(4,-2),故 AB →=DC →.又|AB →|=20=2 5,|BC →|=45=3 5,故|AB →|≠|BC →|,所以,四边形ABCD 为矩形.13.在平面直角坐标系中,已知三点A (4,0),B (t,2),C (6,t ),t ∈R ,O 为坐标原点.(1)若△ABC 是直角三角形,求t 的值;(2)若四边形ABCD 是平行四边形,求|OD →|的最小值.解:(1)由题意得AB →=(t -4,2),AC →=(2,t ),BC →=(6-t ,t -2),若∠A =90°,则AB →·AC →=0,即2(t -4)+2t =0,∴t =2;若∠B =90°,则AB →·BC →=0,即(t -4)(6-t )+2(t -2)=0,∴t =6±22;若∠C =90°,则AC →·BC →=0,即2(6-t )+t (t -2)=0,无解,∴满足条件的t 的值为2或6±2 2.(2)若四边形ABCD 是平行四边形,则AD →=BC →,设点D 的坐标为(x ,y ),即(x -4,y )=(6-t ,t -2),∴⎩⎪⎨⎪⎧x =10-t y =t -2,即D (10-t ,t -2),∴|OD →|=(10-t )2+(t -2)2 =2t 2-24t +104,∴当t =6时,|OD →|取得最小值4 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两个部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.与-463°终边相同的角可以表示为(k∈Z )( ) A .k ·360°+463° B .k ·360°+103° C .k ·360°+257°D .k ·360°-257°答案 C2.下列关系式中,不正确的是( ) A .sin585°<0 B .tan(-675°)>0 C .cos(-690°)<0D .sin1 010°<0答案 C解析 585°=360°+225°是第三象限角,则sin585°<0;-675°=-720°+45°,是第一象限角,∴tan(-675°)>0;1 010°=1 080°-70°,是第四象限角,∴sin1 010°<0;而-690°=-720°+30°是第一象限角,∴cos(-690°)>0. 3.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( ) A.AB →=OC → B.AB →∥DE → C .|AD →|=|BE →|D.AD →=FC →答案 D4.log 2sin 512π+log2cos 512π的值是( ) A .4 B .1 C .-4D .-1答案 C5.函数y =2sin(3x +φ)(|φ|<π2)的一条对称轴为x =π12,则φ=( )A.π6B.π3C.π4D .-π4答案 C解析 由y =sinx 的对称轴为x =k π+π2(k∈Z ),所以3×π12+φ=k π+π2(k∈Z ),得φ=k π+π4(k∈Z ).又|φ|<π2,所以k =0,φ=π4,故应选C.6.已知D 是△ABC 的边BC 上一点,且BD =13BC ,设AB →=a ,AC →=b ,AD →等于( )A.12(a -b ) B.13(b -a ) C.13(2a +b )D.13(2b -a ) 答案 C解析 AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →=23a +13b ,故选C.7.已知|a |=2,|b |=1,a 与b 的夹角为π3,那么|a -4b |等于( )A .2B .2 3C .6D .12答案 B8.函数y =Asin (ωx+φ)(ω>0,|φ|<π2,x ∈R )的部分图像如图所示,则函数表达式为( )A .y =-4sin ⎝ ⎛⎭⎪⎫π8x -π4B .y =4sin ⎝⎛⎭⎪⎫π8x -π4C .y =4sin ⎝ ⎛⎭⎪⎫π8x +π4D .y =-4sin ⎝ ⎛⎭⎪⎫π8x +π4答案 D9.设函数f(x)=⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫x +π3(x∈R ),则f(x)=( )A .在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数B .在区间⎣⎢⎡⎦⎥⎤-π,-π2上是减函数C .在区间⎣⎢⎡⎦⎥⎤π8,π4上是增函数D .在区间⎣⎢⎡⎦⎥⎤π3,5π6上是减函数答案 A10.函数y =sinx -cosx 的图像可以看成是由函数y =sinx +cosx 的图像平移得到的.下列所述平移方法正确的是( ) A .向左平移π2个单位B .向右平移π4个单位C .向右平移π2个单位D .向左平移π4个单位答案 C解析 令y =sinx +cosx =2sin(x +π4)=f(x),则y =sinx -cosx =2sin(x -π4)=2sin[(x -π2)+π4]=f(x -π2). 11.设向量a =(cos25°,sin25°),b =(sin20°,cos20°),若t 是实数,且c =a +t b ,则|c |的最小值为( ) A. 2 B .1 C.22D.12答案 C解析 c =a +t b =(cos25°,sin25°)+(tsin20°,tcos20°) =(cos25°+tsin20°,sin25°+tcos20°),∴|c |=(cos25°+tsin20°)2+(sin25°+tcos20°)2 =1+t2+2tsin45°=t2+2t +1=(t +22)2+12, ∴当t =-22时,|c |最小,最小值为22. 12.设△ABC 的三个内角为A ,B ,C ,向量m =(3sinA ,sinB),n =(cosB ,3cosA),若m ·n =1+cos(A +B),则C 的值为( )A.π6 B.π3 C.2π3D.5π6答案 C解析 ∵m ·n =3sinAcosB +3cosAsinB =3sin(A +B)=1+cos(A +B),∴3sin(A +B)-cos(A +B)=3sinC +cosC =2sin(π6+C)=1.∴sin(π6+C)=12,∴π6+C =56π或π6+C =π6(舍去),∴C =23π.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中横线上) 13.已知向量m =(3sinx ,cosx),p =(23,1),若m ∥p ,则sinx ·cosx =________. 答案25解析 ∵m ∥p ,∴3sinx =23cosx ,tanx =2,∴sin ·cosx =sinx·cosx sin2x +cos2x =tanx1+tan2x=25. 14.在边长为2的正三角形ABC 中,AB →·BC →+BC →·CA →+CA →·AB →=________. 答案 -315.已知向量a ,b 的夹角为45°,且|a |=4,(12a +b )·(2a -3b )=12,则|b |=________;b 在a 方向上的投影等于________. 答案2 116.下面有六个命题:①函数y =sin 4x -cos 4x 的最小正周期是π;②终边在y 轴上的角的集合是⎩⎨⎧⎭⎬⎫α|α=kπ2,k∈Z ;③在同一坐标系中,函数y =sinx 的图像和函数y =x 的图像有三个公共点; ④把函数y =3sin ⎝⎛⎭⎪⎫2x +π3的图像向右平移π6得到y =3sin2x 的图像;⑤函数y =sin ⎝⎛⎭⎪⎫x -π2在[0,π]上是单调递减的; ⑥函数y =tan ⎝ ⎛⎭⎪⎫2x +π3的图像关于点⎝ ⎛⎭⎪⎫-π6,0成中心对称图形. 其中真命题的序号是__________. 答案 ①④⑥三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知函数f(x)=2sin(π-x)cosx. (1)求f(x)的最小正周期;(2)求f(x)在区间[-π6,π2]上的最大值和最小值.解析 (1)因为f(x)=2sin(π-x)cosx =2sinxcosx =sin2x ,所以函数f(x)的最小正周期为π.(2)由-π6≤x ≤π2,得-π3≤2x ≤π.所以-32≤sin2x ≤1.即f(x)的最大值为1,最小值为-32. 18.(12分)已知向量m =(cos θ,sin θ),n =(2-sin θ,cos θ),θ∈(π,2π),且|m +n |=825,求cos(θ2+π8)的值.解析 方法一 m +n =(cos θ-sin θ+2,cos θ+sin θ), |m +n |=(cosθ-sinθ+2)2+(cosθ+sinθ)2 =4+22(cosθ-sinθ)=4+4cos (θ+π4)=21+cos (θ+π4),由已知|m +n |=825,得cos (θ+π4)=725.又cos (θ+π4)=2cos 2(θ2+π8)-1,∴cos 2(θ2+π8)=1625.∵π<θ<2π,∴5π8<θ2+π8<9π8.∴cos(θ2+π8)<0.∴cos(θ2+π8)=-45.方法二 |m +n |2=(m +n )2=m 2+2m ·n +n 2=|m |2+|n |2+2m ·n=(cos2θ+sin2θ)2+[(2-sinθ)2+cos2θ]2+2[cos θ(2-sin θ)+sin θcos θ]=4+22(cos θ-sin θ) =4[1+cos (θ+π4)]=8cos 2(θ2+π8).由已知|m +n |=825,得|cos(θ2+π8)|=45.又π<θ<2π,∴5π8<θ2+π8<9π8.∴cos(θ2+π8)<0.∴cos(θ2+π8)=-45.19.(12分)已知函数f(x)=12cos 2x +32sinxcosx +1,x ∈R .(1)求函数f(x)的最小正周期;(2)求函数f(x)在⎣⎢⎡⎦⎥⎤π12,π4上的最大值和最小值,并求函数取得最大值和最小值时的自变量x 的值.解析 f(x)=12cos 2x +32sinxcosx +1=14cos2x +34sin2x +54=12sin(2x +π6)+54,(1)f(x)的最小正周期T =2π2=π.(2)∵x∈⎣⎢⎡⎦⎥⎤π12,π4,∴2x +π6∈⎣⎢⎡⎦⎥⎤π3,2π3.∴当2x +π6=π2,即x =π6时,f(x)max =12+54=74.当2x +π6=π3或2x +π6=2π3,即x =π12或x =π4时,f(x)min =34+54=5+34. 20.(12分)设函数f(x)=a·b ,其中向量a =(m ,cos2x),b =(1+sin2x ,1),x ∈R ,且函数y =f(x)的图像经过点(π4,2).(1)求实数m 的值;(2)求实数f(x)的最小值及此时x 值的集合. 解析 (1)f(x)=a·b =m(1+sin2x)+cos2x , 由已知f(π4)=m(1+sin π2)+cos π2=2,得m =1.(2)由(1)得f(x)=1+sin2x +cos2x =1+2sin(2x +π4),∴当sin(2x +π4)=-1时,f(x)的最小值为1- 2.由2x +π4=-π2+2k π(k∈Z ),得x 取值的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =kπ-3π8,k∈Z. 21.(12分)已知tan (α+π4)=-12(π2<α<π).(1)求tan α的值;(2)求sin2α-2cos2αsin (α-π4)的值.解析 (1)利用两角和的正切公式,转化为解tan α的方程;(2)先化简再求值. (1)由tan(α+π4)=-12,得1+tanα1-tanα=-12.解之,得tan α=-3.(2)sin2α-2cos2αsin (α-π4)=2sinαcosα-2cos2α22(sinα-cosα)=22cos α.∵π2<α<π且tan α=-3, ∴cos α=-1010.∴原式=-255. 22.(12分)已知函数f(x)=cos 2(x +π12),g(x)=1+12sin2x.(1)设x =x 0是函数y =f(x)图像的一条对称轴,求g(x 0)的值; (2)求函数h(x)=f(x)+g(x)的单调递增区间. 解析 (1)由题设知f(x)=12[1+cos(2x +π6)].因为x =x 0是函数y =f(x)图像的一条对称轴,所以2x 0+π6=k π,即2x 0=k π-π6(k∈Z ).所以g(x 0)=1+12sin2x 0=1+12sin(k π-π6).当k 为偶数时,g(x 0)=1+12sin(-π6)=1-14=34,当k 为奇数时,g(x 0)=1+12sin π6=1+14=54.(2)h(x)=f(x)+g(x)=12[1+cos(2x +π6)]+1+12sin2x =12[cos(2x +π6)+sin2x]+32=12(32cos2x +12sin2x)+32=12sin(2x +π3)+32. 当2k π-π2≤2x+π3≤2k π+π2,即k π-5π12≤x ≤k π+π12(k∈Z )时,函数h(x)=12sin(2x +π3)+32是增函数,故函数h(x)的单调递增区间是[k π-5π12,k π+π12](k∈Z ).1.已知a ,b 均为单位向量,且它们的夹角为60°,那么|a +3b |=( ) A.7 B.10 C.13D. 4答案 C解析 因为|a |=1,|b |=1,且它们的夹角为60°,故a ·b =cos60°=12,所以(a +3b )2=a 2+6a ·b +9b 2=1+3+9=13,即|a +3b |=13,故应选C. 2.计算2sin14°cos31°+sin17°等于( ) A.22B .-22 C.32D .-32答案 A解析 原式=2sin14°cos31°+sin(31°-14°) =sin31°cos14°+cos31°sin14°=sin45°=22. 3.已知向量b =(m ,sin2x),c =(cos2x ,n),x ∈R ,f(x)=b ·c ,若函数f(x)的图像经过点(0,1)和(π4,1).(1)求m 、n 的值;(2)求f(x)的最小正周期,并求f(x)在x∈[0,π4]上的最小值;解析 (1)f(x)=mcos2x +nsin2x , ∵f(0)=1,∴m =1.∵f(π4)=1,∴n =1.(2)f(x)=cos2x +sin2x =2sin(2x +π4),∴f(x)的最小正周期为π.∵x ∈[0,π4],∴π4≤2x +π4≤3π4.∴当x =0或x =π4时,f(x)的最小值为1.。