模块三_纯电动汽车故障诊断与分析
新能源汽车常见故障诊断与维修技术分析

车辆工程技术117维修驾驶新能源汽车常见故障诊断与维修技术分析白朋涛(河北省石家庄市高级技工学校,石家庄 050000)摘 要:新能源汽车,更符合社会发展趋势。
但新能源汽车刚刚面世,还存在一些技术上并不成熟的地方,还会经常发生一些故障。
因此,对常见故障进行分析诊断,及时维修,是非常重要的课题。
关键词:新能源;故障诊断;汽车维修 新能源汽车较之于传统车型,更符合时代发展潮流。
新能源汽车的动力驱动系统具有极高的使用价值和环保价值。
对于新能源汽车的故障分析和维修技术的研究,能够降低故障发生率,减少售后成本,进而能够更好地保障新能源汽车迅速发展。
1 新能源汽车的常见故障 (1)电池故障。
目前的新能源汽车主要是靠天然气和电能驱动的,电能汽车作为最环保、最节能的车型,深受广大汽车用户的喜爱。
纯电动汽车的动力系统与传统车型的动力系统完全不同,主要还是靠电池提供动力。
用来驱动电动汽车的电池系统是由一个个小的锂电池组构成的,而单个锂电池组在释放动能的过程中,可能会与其他锂电池组性能不能完全达到一致,这样就会产生放电或者是电力供应不足的问题,这样的问题看似不大,但是却严重缩短了电池组的整体使用寿命,同时也会导致电池组发生故障,无法给电动汽车提供充沛的动力。
(2)电机故障。
电机故障特指电动机驱动系统发生的故障。
如果说电池是动力来源,那么电动机驱动系统就是把电池中的电能转化为动能的核心,一旦电机系统发生故障,新能源汽车将无法驾驶。
电机系统在具体的运转过程中不是独立工作的,而是电机系统与电路系统、电磁系统还有机械系统相互配合,共同来驱动汽车。
如果电机系统出现故障,那么最有可能出现问题的原因,不是单纯的电机系统故障,而是多系统配合度不能达到理想状态。
所以,新能源汽车一旦发生电机故障,一是要对电机的工作进行诊断,看是否可能只是电气故障;二是要检查相关系统,一般着重检查驱动系统的轴承及其相关部件,看是否存在机械故障。
(3)继电器故障。
纯电动汽车充电故障诊断与分析

纯电动汽车充电故障诊断与分析纯电动汽车充电故障的常见类型可以分为硬件故障和软件故障两大类。
硬件故障包括充电器故障、电池故障、连接线路故障等;软件故障包括通信故障、控制程序故障、充电桩识别故障等。
在诊断故障之前,我们首先需要了解纯电动汽车的充电系统工作原理。
纯电动汽车充电系统由充电桩、充电线、电池管理系统(BMS)和车辆控制系统组成。
充电桩负责向电池充电,充电线将电能传输到电池上,BMS负责监控和管理电池的工作状态,车辆控制系统控制车辆的整体运行。
故障的诊断和分析主要通过故障码和仪表板上的警告灯来实现。
当发生充电故障时,BMS会记录对应的故障码,并通过车辆仪表板上的警示灯告知驾驶员。
驾驶员可以使用OBD 故障诊断工具读取故障码,了解故障的具体原因。
充电器故障是最常见的硬件故障之一。
通过检查充电桩的工作状态和仪表板上的故障码,可以判断充电器是否损坏。
如果充电器工作正常,但充电速度变慢,可能是电池本身的问题。
此时需要检查电池的充电状态和BMS是否正常工作。
连接线路故障也会导致充电失败。
在充电过程中,如果连接线路受损或接触不良,可能会导致电能传输不畅,导致充电速度变慢或中断。
我们可以通过检查连接线路的外观和使用电压表来诊断连接线路故障。
软件故障需要通过检查控制系统和BMS的工作状态来进行诊断。
通信故障可能是由于充电桩识别不了充电车辆,或者BMS无法与充电桩进行通信。
这种情况下,我们可以尝试重启充电桩或者更新车辆控制系统软件来解决问题。
纯电动汽车充电故障的诊断和分析需要综合考虑硬件和软件两方面的原因。
通过故障码和仪表板上的警告灯可以判断故障的具体类型,然后通过逐项检查来确定具体原因,并采取相应的修复方法。
只有正确诊断和分析充电故障,才能保证纯电动汽车的正常充电和安全使用。
纯电动汽车充电故障诊断与分析

纯电动汽车充电故障诊断与分析【摘要】纯电动汽车充电故障是影响充电效率和安全性的重要问题。
本文通过对充电故障的常见表现、诊断步骤、原因分析、故障排除方法和预防措施的分析,为读者提供了全面的故障处理指南。
常见表现包括充电速度慢、充电器无法启动等;诊断步骤主要包括检查充电器、线路和电池等;常见原因分析涉及电源故障、连接故障等;故障排除方法包括更换充电器、检修线路等;预防措施则包括定期检查电池和线路、避免过度充电等。
通过对充电故障的诊断与分析,可以有效提高纯电动汽车的充电效率和安全性,为用户提供更好的充电体验。
【关键词】纯电动汽车,充电故障,诊断,分析,表现,步骤,原因分析,排除方法,预防措施,效率,安全性1. 引言1.1 纯电动汽车充电故障诊断与分析随着电动汽车的普及和发展,充电设施的需求也日益增加。
由于各种原因,充电故障时有发生,给车主带来不便和困扰。
对纯电动汽车充电故障的诊断与分析显得尤为重要。
充电故障可能出现的表现有很多种,例如无法启动充电、充电速度缓慢、充电时断断续续等。
这些表现不仅影响了充电效率,也可能给车辆和车主带来安全隐患。
了解充电故障的常见表现是诊断和排除故障的重要第一步。
在诊断充电故障时,需要按照一定的步骤进行。
首先是检查充电设备和电源是否正常,然后逐步排查车辆内部电路和充电接口是否出现故障。
通过系统化的诊断步骤,可以有效地找出故障的原因并进行修复。
充电故障的常见原因可能包括充电设备故障、电池故障、充电线路故障等。
针对不同的原因,需要采取不同的故障排除方法。
只有找准了故障的根源,才能真正解决充电故障问题。
为了预防纯电动汽车充电故障的发生,可以采取一些措施,如定期检查充电设备和电池状态、避免使用劣质充电设备、注意充电环境的安全等。
通过这些预防措施,可以降低充电故障发生的概率。
纯电动汽车充电故障的诊断与分析对于提高充电效率和安全性具有重要意义。
只有及时发现问题、准确排查故障、采取有效措施,才能确保电动汽车的充电正常进行,为用户提供便捷、安全的用车体验。
任务3 纯电动汽车电机及驱动系统故障诊断与排除(有答案)

任务3 纯电动汽车电机及驱动系统故障诊断与排除一、选择题1.新能源汽车接触器的电源电压值为( A )。
A.9-16VB.5V左右C.24左右D.220V左右2.一般漏电信号被拉低,整车会报( B )。
A.严重漏电B.一般漏电C.正常D.漏电传感器故障3.严重漏电信号被拉低,整车会报( D )。
A.严重漏电B.一般漏电C.正常D.漏电传感器故障4.严重漏电和一般漏电信号同时被拉低,整车会报( A )。
A.严重漏电B.一般漏电C.正常D.漏电传感器故障5.漏电传感器不工作,会出现故障现象( D )。
A.严重漏电B.一般漏电C.正常D.与漏电传感器失去通讯6.以下不能检查出高压互锁断路故障点的是( D )。
A.检查高压插接件是否松脱B.测量高压互锁检测线路通断C.检查带有高压互锁针脚的低压插接件D.检查高压互锁电源保险7.拔下高压插接件,整车正常上电、行驶,可能原因是( D )。
A.高压插接件损坏B.高压互锁电源保险损坏C.高压互锁未搭铁D.高压互锁检测模块损坏8.通过电池管理器的数据流,我们不能得到的信息是( D )。
A.SOCB.电池包总电压C.单体电池电压D.电机相电流9.整车不能上电成功,仪表充电指示灯点亮,可能原因是( A )。
信号线搭铁B.CP搭铁断路D.CP断路10.充电桩电源未连接,不会造成( C )。
A.整车无法充电B.充电桩显示屏不亮C.仪表充电指示灯不亮D.无法刷卡充电信号线断路,插枪不会造成( B )。
A.整车无法充电B.整车无法上电成功C.仪表充电指示灯不亮D.无法刷卡充电12.CP信号线断路,插枪不会造成( C )。
A.整车无法充电B.整车无法上电成功C.仪表充电指示灯不亮D.无法刷卡充电13.整车驱动电路不会经过的高压元器件是( D )。
A.主接触器B.预充接触器C.预充电容D.OBC14.交流充电电路不会经过的高压元器件是( C )。
A.交流充电口B.OBCC.MCUD.PDU15.控制主接触器吸合的整车模块一般是( A )。
机工社新能源汽车维护与故障诊断(配实训工单)教学课件3-3

高压漏电的故障诊断与排除步骤如下。 对于吉利帝豪纯电动汽车,由于漏电传感器内置于动力电池,其绝缘监控采样点在动 力电池正极和负极输出高压回路上,位于主正和主负继电器输出高压回路之前,可以监控 高压继电器闭合前和闭合后的整车高压回路绝缘状况,所以对于高压电路与车身存在漏电 故障,可以分为以下两种情况。
帝豪纯电动汽车整车控制器 VCU 互锁故障的故障码
纯电动汽车整车动力控制系统故障诊断与排除
2)故障检测
以 VCU 互锁故障为例,具体检测步骤如下。
① 操作起动开关使电源模式切换至 OFF 状态,断开低压蓄电池。 ② 等待 5min 后断开维修开关。(无维修开关车型,断开动力电池输出母线插接器) ③ 检查互锁回路相关部件插接器是否松动。如果松动没有安装到位,则重新安装到位。 ④ 断开 VCU 插接器,使用万用表电阻档在 VCU 高压互锁信号输出和输入端子处测量互锁回路是否正常导通。如不 正常,则进一步分段检测查找确定线路的开路位置,检修更换相关线束或高压部件。 ⑤ 使用万用表电阻档测量互锁回路线路是否对车身搭铁短路。如线路对车身搭铁短路, 则进一步分段检测查找确定线路对车身搭铁短路故障点,检修并更换相关的线束或高压部件。 ⑥ 接上 VCU 插接器,接上低压蓄电池,点火开关转至 ON 位,使用万用表电压档测量 互锁信号电压是否正常(正常平均电压约为 5V)或使用示波器测量互锁信号波形。如果所测的互锁信号异常,则 进一步检查互锁线路是否对电源或其他信号线路短路。 ⑦ 通过以上检测,如果确定高压互锁回路正常(无断路、短路),则更换 VCU。
VCU 高压互锁监控功能以 VCU 为监控模块,VCU 通过“HVIL OUT”端子输出高压互锁信号(脉冲信 号),PTC 加热器、电动压缩机和电机控制器形成的互锁回路传输互锁信号,最后回到 VCU 的“HVIL IN” 端子,VCU 通过“HVIL IN”端子监控到正常的互锁信号以判断 VCU 高压互锁回路正常,如果回路中任何相 关的插接器(高压或低压)或电机控制器开盖检测装置没有正确安装到位,则将导致互锁回路开路,报 VCU 互锁故障,控制 BMS 断电,从而起到高压保护作用。
新能源汽车驱动电机系统检测与维修电子课件模块三驱动电机控制器的检测与维修

课题 驱动电机控制器的检测与维修
二、驱动电机控制器的工作原理
1. 驱动电机系统的控制策略 驱动电机控制器采用三相两电平电压源型逆变器,整车控制器(VCU)发出指令,通过 CAN 线传输到驱动电机控制器主板,驱动电机控制器主板经过逻辑换算和确定旋转变压器的 转子位置,再发信号驱动IGBT 模块,IGBT 模块输出三相交流电使电机旋转。驱动电机控制 器主板对所有的输入信号进行处理,并将驱动电机控制器运行状态的信息反馈给整车控制 器。驱动电机控制器内含故障诊断电路。当诊断出异常时,它将会激活一个错误代码,同时 存储该故障码和数据或发送给整车控制器。驱动电机系统原理图如图3-1-10 所示。
课题 驱动电机控制器的检测与维修
(1)Ⅰ代驱动电机控制器 Ⅰ代驱动电机控制器的显著特点是金属壳体上需要设计水道,水流与IGBT 不进行任何接 触,IGBT 散发出的热量需要通过其下部的金属底板,依靠传导方式传递给壳体外侧的冷却水 进行散热。为减少传导热阻,通常需要在IGBT 金属底板上涂抹导热硅脂后再与主壳体贴合。 图3-1-6 所示为Ⅰ代驱动电机控制器总布置,图3-1-7 所示为主壳体水道造型,图3-1-8 所 示为Ⅰ代驱动电机控制器高压线束接口。
课题 驱动电机控制器的检测与维修
(2)R 挡行驶 当驾驶员挂R 挡时,驾驶员请求信号发给VCU,再通过CAN 发送给MCU,此时MCU 结 合当前转子位置(旋转变压器)信息,通过改变IGBT 模块改变W、V、U 通电顺序,进而控 制驱动电机反转。
课题 驱动电机控制器的检测与维修
4. 驱动电机系统的发电模式 当车辆在滑行或制动时,整车控制器 检测到满足启动能量回收的条件时,发出 能量回收指令,IGBT 模块输出为0,电机 停止工作,驱动车轮通过传动系统使电机 转子旋转,此时电机就成了发电机,输出 三相正弦交流电,通过IGBT 模块转换成 直 流 电 向 动 力 蓄 电 池 充 电 , 如 图 3-1-12 所示。
纯电动汽车的常见故障及诊断技术分析

纯电动汽车的常见故障及诊断技术分析摘要:近些年来,我国经济水平和科技水平不断提高,纯电动汽车技术正在不断完善和发展。
随着我国政策引导,以及环境保护相关法律法规的不断完善,纯电动汽车已成为人们日常出行的主要交通工具之一。
但是纯电动汽车在使用过程中会出现诸多的故障,影响人们的使用,甚至会带来安全隐患。
目前,汽车故障诊断技术的应用和探索大部分都是针对传统的燃油汽车而进行的,很少有专门针对纯电动汽车的故障诊断措施。
我国纯电动汽车的故障诊断技术和水平仍然处于不断发展的阶段,因此,对于纯电动汽车故障的研究需要不断深入和完善。
本文针对纯电动汽车的常见故障及诊断技术进行深入分析和探索,供读者参考。
关键词:纯电动汽车;常见故障;诊断技术;分析纯电动汽车指的是汽车通过蓄电池所提供的电能来让电动机工作,再由电动机驱动汽车。
虽然纯电动汽车已有100多年的发展历史了,但是在其发展过程中,一直受到诸多因素的限制,包括环境和市场方面。
出现这一情况最主要的因素就是各种类型的蓄电池成本都较高,而且存在续航里程较短和充电时间较长等明显缺点。
除此之外,我国纯电动汽车的故障诊断和维修技术未形成完善的体系,不仅是在问题查找方面存在困难,同时在故障处理方面也存在一定的难题。
我国的纯电动驱动系统处于不断发展的阶段,所以需要对纯电动汽车的故障诊断思路进行分析和探讨。
一、纯电动汽车系统的构造由于近些年来我国经济发展迅速,各个城市当中汽车的数量大幅度增加,从而对我国的自然环境和生态环境造成了严重的污染和破坏[1]。
因此,纯电动汽车逐渐走入到大众的视野当中。
为了确保安全性,在纯电动汽车设计和制造过程中都需要严格按照行业标准执行。
电动汽车的控制系统也是整个汽车的指挥中心,通过控制系统能够对车内的每个部位进行统筹规划和运行,这也是控制整个电动汽车系统的中心枢纽。
纯电动汽车是通过多个子系统组合而成的,其中包括强电压组织、低压电气组织和高电流的动力组织,这些零件当中的任何一个出现故障都会使整个汽车不能稳定行驶,尤其是电动汽车当中的供电系统,如果发生漏电的情况会直接给驾驶人员带来严重的生命威胁。
江淮纯电动汽车行驶系统三种典型故障诊断与排除

江淮纯电动汽车行驶系统三种典型故障诊断与排除一、无法行驶故障排除(1)故障现象。
一辆江淮*****AiEV纯电动汽车iEV5,行驶里程3400km,客户反馈组合仪表故障灯常亮,动力中断,车辆无法进入可行驶状态。
(2)故障排除。
插接整车诊断口,将控制器上电,读取上位机监测数据,存在DTC178,指示CAN通信故障。
检查PCU低压控制接插件内CAN-H.CAN-L两针脚,确定整车CAN终端电阻的阻值为60Ω,但无法确定PCU内部CAN终端电阻有无故障。
所以,根据电动汽车维修规程,首先断开电池维修开关,维修开关位于动力电池总成中间表面位置,打开中央通道末端地毯盖板下方的维修开关盖板,操作维修开关。
切断整车高压,再拔掉正负母线接头,拆下电动机控制器PCU的接线盒盖,然后拆下三相线,拔掉低压插接件,移除DC7DC搭铁,再用水管卡钳拆下进出水管,最后拆卸PCU控制器4个固定螺栓,这样完全拆卸电机控制器PCU,进行车下检查。
进一步对PCU内部进行检查,发现DC/DC损坏。
更换PCU控制器后重新装车试车,故障排除。
(3)故障总结。
江淮纯电动汽车iEV5整车采用CAN通信,其CAN通信拓展。
驱动电机控制器PCU内部集成DC/DC模块,其功能是将电池的高压电转换成低压电,提供整车低压系统供电。
二、无法提速故障排除(1)故障现象。
一辆*****AiEV江淮纯电动汽车iEV5,行驶里程约*****km,车主电话报修反映组合仪表上存在提示语“限功率模式”,车辆最高车速限制在40 km/h,无法正常提速。
(2)故障排除。
根据故障现象,判断该车进入跛行模式。
查阅维修手册,得知电机故障灯点亮、提示“限功率模式”时,可能故障点为:IGBT过温,电池单体温度过高。
利用上位机监控检测诊断软件发现车辆IGBT温度高于85℃,显示故障码为P301E。
首先检查前舱的冷却水箱内冷却液液位,正常。
再进一步检查PCU控制器本身内部水道有无堵塞不畅,拔出PCU上的冷却液进水管和出水管,利用风枪对着吹风,观察另一端的出风情况,也正常。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、 动力电池与电源管理系统常见故障原因与分析
3. 线路或连接件故障
三、 动力电池与电源管理系统常见故障原因与分析
3. 线路或连接件故障
续上表
1 纯电动汽车故障诊断概述 2 驱动系统故障原因分析 3 动力电池与电源管理系统常见故障原因与分析 4 电机与控制系统常见故障原因与分析 5 整车控制系统常见故障原因与分析 6 充电系统常见故障原因与分析 7 纯电动汽车典型故障诊断与分析 8 技能实训 9 模块小结
四、 电机与控制系统常见故障原电机与控制系统常见故障原因与分析
驱动电机常见故障现象、原因及处理方法
续上表
四、 电机与控制系统常见故障原因与分析
驱动电机常见故障现象、原因及处理方法
续上表
四、 电机与控制系统常见故障原因与分析
驱动电机常见故障现象、原因及处理方法
五、 整车控制系统常见故障原因与分析
(1)整车控制器故障:整车控制器常见故障主要集中在 CAN 线上。如北汽的高速 CAN1、高速 CAN2、本地 CAN1、本地 CAN2 和 LIN 总线通信故障。有的纯电动车的 CAN 线分为高压CAN-L、高压 CAN-H、低压 CAN-L、低压 CAN-H 和 LIN 总线;
学习目标
1. 能够描述纯电动汽车检测与故障诊断作业的安全注意事项; 2. 知道纯电动汽车组成与整车故障诊断基本方法; 3. 能够叙述动力电池与管理系统的常见故障原因与诊断思路; 4. 能够叙述驱动电机与控制系统的常见故障原因与诊断思路; 5. 能够叙述整车控制系统和充电系统的常见故障原因与诊断思路; 6. 学会纯电动汽车故障分析和检测能力; 7. 学会纯电动汽车典型故障诊断与排除方法。
(6)制动系统:EPS 系统故障、电动真空泵故障;
(7)电路故障:熔断丝、继电器或线路短路等导致的故障。
1 纯电动汽车故障诊断概述 2 驱动系统故障原因分析 3 动力电池与电源管理系统常见故障原因与分析 4 电机与控制系统常见故障原因与分析 5 整车控制系统常见故障原因与分析 6 充电系统常见故障原因与分析 7 纯电动汽车典型故障诊断与分析 8 技能实训 9 模块小结
锂离子电池的极耳、极片上的活性物质、接线柱、外部连线和焊点可能会折断或脱落,造成单体电 池内部短路或者外部短路故障。
三、 动力电池与电源管理系统常见故障原因与分析
2. 动力电池管理系统故障 动力电池管理系统对于保障电池组的安全及使用寿命,最大限度发挥电池系统效能
具有重要作用, 动力电池管理系统通常对单体电池电压、总电压、总电流和温度等进行 实时监控采样,并将实时参数反馈给整车控制器。
建议课时
1.时间要求:建议 6~8 课时。
1 纯电动汽车故障诊断概述 2 驱动系统故障原因分析 3 动力电池与电源管理系统常见故障原因与分析 4 电机与控制系统常见故障原因与分析 5 整车控制系统常见故障原因与分析 6 充电系统常见故障原因与分析 7 纯电动汽车典型故障诊断与分析 8 技能实训 9 模块小结
一、 纯电动汽车故障诊断概述
纯电动汽车的故障诊断基本方法
(一) 诊断纯电动汽车故障的基本方法
一、 纯电动汽车故障诊断概述
(二) 纯电动汽车常见故障现象与原因
(1)动力电池和电池管理系统:动力电池系统故障、动力电池管理系统故障、动力电池电 路故障和充电系统故障、动力电池组冷却系统泄漏故障、电子水泵故障等;
(2)电机与电机管理系统:駆动电动机故障、驱动电机控制系统故障、驱动电机冷却系统 故障;
(3)整车管理系统:CAN 通信故障、整车控制器故障、整车控制线路故障;
(4)低压电源系统:低压唤醒故障、DC-DC 故障、低压电路故障等;
(5)空调系统:空调控制策略逻辑错误、PTC 故障、电动压缩机及其他器件故障等;
(2)控制信号故障:挡位控制器信号故障、P 挡电机故障、P 挡电机控制器故障、加速踏板位置传 感器故障、制动踏板位置传感器故障、漏电传感器或绝缘监测误报等;
(3)整车控制系统电源故障:DC-DC 转换器故障、高低压线束断路或接插件损坏、高压互锁故障 等。
1 纯电动汽车故障诊断概述 2 驱动系统故障原因分析 3 动力电池与电源管理系统常见故障原因与分析 4 电机与控制系统常见故障原因与分析 5 整车控制系统常见故障原因与分析 6 充电系统常见故障原因与分析 7 纯电动汽车典型故障诊断与分析 8 技能实训 9 模块小结
三、 动力电池与电源管理系统常见故障原因与分析
1. 单体电池故障
1)电池性能下降,但能正常使用,无须更换; 故障变现为单体电池 SOC 偏低和单体电池 SOC 偏高。
2)电池性能衰退严重,应立即更换; 故障表现为单体电池容量不足和单体电池内阻偏大。
3)影响行车安全的其他故障; 其他故障表现为单体电池内部短路,单体电池外部短路,单体电池极性反向等以及在强振动下
续上表
四、 电机与控制系统常见故障原因与分析
驱动电机常见故障现象、原因及处理方法
续上表
四、 电机与控制系统常见故障原因与分析
驱动电机控制器常见故障及处理方法
四、 电机与控制系统常见故障原因与分析
驱动系统故障
四、 电机与控制系统常见故障原因与分析
驱动系统故障
续上图
1 纯电动汽车故障诊断概述 2 驱动系统故障原因分析 3 动力电池与电源管理系统常见故障原因与分析 4 电机与控制系统常见故障原因与分析 5 整车控制系统常见故障原因与分析 6 充电系统常见故障原因与分析 7 纯电动汽车典型故障诊断与分析 8 技能实训 9 模块小结
二、 驱动系统故障原因分析
1. 驱动电机故障
二、 驱动系统故障原因分析
2. 电机控制器故障
1 纯电动汽车故障诊断概述 2 驱动系统故障原因分析 3 动力电池与电源管理系统常见故障原因与分析 4 电机与控制系统常见故障原因与分析 5 整车控制系统常见故障原因与分析 6 充电系统常见故障原因与分析 7 纯电动汽车典型故障诊断与分析 8 技能实训 9 模块小结