无源三相PWM逆变器控制电路设计
三相PWM逆变器的设计

湖南文理学院课程设计报告课程名称:专业综合课程设计专业班级:自动化10102班学生姓名:指导教师:完成时间:2013年6 月15 日报告成绩:摘要本次课程设计题目要求为三相PWM逆变器的设计。
设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。
本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个环节的设计,比如触发电路、控制电路、主电路等,其中部分电路的绘制采用Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。
关键词:三相PWM 逆变电路Matlab 仿真AbstractThe curriculum design subject requirements for the design of the three-phase PWM inverter. Design process from the principle of analysis, selection of components, to scheme and the Mat-lab simulation, etc., to consolidate the theoretical knowledge, basic meet the design requirements.This article will be carried out in accordance with the design of process analysis, and the corresponding principles, including the theoretical foundation of the inverter circuit and introduction, using Matlab simulation software, etc., in addition, will also clearly introduces the design of every link, such as trigger circuit, control circuit, main circuit, etc., some of the drawing of the circuit using Proteus software, finally combined with Matlab Simulink, established a three-phase fully-controlled bridge voltage source type inverter circuit simulation model, and then through the software to get the ideal results.Keywords: Matlab simulation, three-phase ,PWM, inverter circuit前言随着控制技术的发展和对设备性能要求的不断提高,许多行业的用电设备不再直接接入交流电网,而是通过电力电子功率变换得到电能,它们的幅值、频率、稳定度及变化形式因用电设备的不同而不尽相同。
无源三相PWM逆变器控制电路设计

无源三相PWM逆变器控制电路设计无源三相PWM逆变器的基本原理是通过将直流电源经过逆变器电路转换为交流电源。
逆变器电路通常由三相桥式整流器和逆变器两部分组成。
其中,桥式整流器将直流电源转换为三相交流电压,逆变器部分则通过PWM技术控制输出电压的大小和频率。
在PWM控制中,通过改变逆变器的开关状态和开关频率来控制输出电压的大小和频率。
通常采用三边交换桥输出电路结构,输出电压由六个IGBT(绝缘栅双极型晶体管)和和六个反并联二极管组成。
控制电路的设计可以分为信号获取和信号处理两个部分。
信号获取部分包括测量输入电流、电压信号以及逆变器输出电流等参数的传感器电路;信号处理部分包括功率电流控制、PWM信号产生等电路。
在无源三相PWM逆变器的控制电路设计中,首先需要进行电路参数的选择和计算。
电路参数包括逆变器电路元件的选型和电压、电流换算公式的推导等。
其次,需要设计适合的信号获取电路,以获取输入输出电流、电压的实时测量值。
常用的测量电路包括霍尔元件、电流互感器等。
然后,对得到的电流、电压信号进行滤波和放大处理,以适应控制系统的要求。
在信号处理部分,需要设计适合的控制算法,来实现对逆变器的控制。
常用的控制算法有电流控制和PWM生成控制。
电流控制包括PI控制、PID控制等,以控制逆变器输出电流的大小。
PWM生成控制则通过改变逆变器的开关状态和频率,来控制输出电压的大小和频率。
常见的PWM控制算法有SPWM(正弦PWM)、SCPWM(三角PWM)等。
此外,还需要进行保护电路的设计,以保证逆变器的安全运行。
常见的保护电路包括过电流保护、过压保护、过温保护等,以防止逆变器的故障和损坏。
综上所述,无源三相PWM逆变器控制电路的设计需要考虑到电路参数的选择和计算、信号获取电路的设计、信号处理和控制算法的选择和设计,以及保护电路的设计等方面。
通过合理的设计,可以实现对逆变器输出电流和电压的精确控制,提高逆变器的工作效率和稳定性。
三相PWM逆变电源控制系统PID参数设计

三相PWM逆变电源控制系统PID参数设计摘要:针对PWM电源控制系统中PID参数难以确定这一实际问题,提出了根据系统极点配置设计PID参数的方法。
给出了整个系统的结构,分析了采用极点配置方法设计PID控制回路的过程,保证了控制系统具有理想的动态品质。
通过对控制系统仿真验证了该方法的有效性。
关键词: PWM逆变电源;极点配置;PID参数PID控制是最早发展起来的控制策略之一,具有算法简单、易于实现、鲁棒性好且可靠性高等优点,是一种最通用的控制方法,在各种电源控制系统中得到了很好的应用。
对于PID 参数的确定,一般有经验的技术人员会根据以往的调试经验,直接设置控制系统的PID参数,最终通过不断调试来满足要求。
没有经验的多数人选择用仿真的方法预先试出一个较为合适的PID参数,然后在此基础上不断调试。
这两种方法都缺少一定的理论依据,工作量比较大,并且在系统参数变化的情况下,所选的PID参数对系统性能的影响无从得知。
虽然复杂的、非线性系统的数学模型难以确定,但是在前人所做工作的基础上,经过一定的分析和简化,最终可表示成传递函数的形式。
本文将PID控制应用于PWM电源系统中,该系统的传递函数可由零点、极点和增益因子完全确定。
零点和极点的含义是,当复频率取值在零点或极点上时,传递函数取零值或趋向无穷大。
因此,零极点必然和频率响应密切相关。
故通过零极点协调配置的方法,可以达到所期望的响应。
1 PWM逆变电源主电路结构及数学模型图1所示为三相PWM逆变器主电路原理图[1],Vdc为直流侧电源,C2、C3两个电容为负载提供地线,Rs为IGBT开关的等效电阻,R1和L为输出滤波电感的等效电阻和电感量,C为滤波电容,ik0表示负载电流。
图1粗线所示的一相回路中,采用的PID调节产生一相的调制波,再与三角载波比较产生PWM信号。
由于三相的控制方式与此相同,因此只对一相电路分析。
主电路中功率开关管工作于“开”和“关”两种状态,桥臂中点输出电压Vdc是以Vdc/2为幅值的脉冲电压,Vk(k=a,b,c)是不连续的。
三相PWM逆变电路

S1 D1 S3 D3 S5 D5
Ud/2 io uo
负载 W
U
V S6 D6 S2
W D2
Ud/2
S4
D4
负载 U
负载 V
O
分析假定如前,另外假定负载为星形连接,三相 输出点分别为U 、V、W,负载连接中点为O,三 相对称,以直流电位中点为电压参考点 选取星型负载接法的理由
id
S1 D1 S3 D3 S5 D5
t t t t t t t t t
负载 U
负载 V
iU i D1
S1 D1 S2 D2 S3 D3 S4 D4 S5 D5 S6 D6
iV
O
id
uU uV
Ud
ug4 ug5 ug6
ug1 t ug2 t ug3t
uU1
t t t t t t t
id
S1 D1 S3 D3 S5 D5
uUV
Ud
Ud/2 io uo
工作模式分析:
任一时刻都有且只有三个主开关导通,分别是两 个上管一个下管,或者一个上管两个下管 各工作状态的出现与电路控制方式和负载特性有 关,第四状态见于其它逆变模式
Ud/2 Ud/2 Ud/2 Ud/2
Ud/2
O
Ud/2
O
Ud/2
O
Ud/2
O
三个主 开关 载流 ,电流 从直 流母线 流向 逆变 器
Ud
ug4 ug5 ug6
ug1 t ug2 t ug3t
uU1
t t t t t t t
uUV
Ud
uUO uUO1 iW
uUV1
1/3Ud 1/3Ud
2/3Ud
uO i S1
阐述三相电流型逆变器的PWM控制方法

阐述三相电流型逆变器的PWM控制方法前言:就当前的现状来看,关于三相电流型逆变器PWM控制方法的文献研究甚少,因而基于此,为了提升PWM变频电路整体运行效率,要求当代专家学者应注重深化对此项课题的研究,并全面掌控到PWM变频电路运行特点,且将PWM控制技术应用于电力系统中,形成稳定的运行目标。
以下就是对三相电流逆变器PWM控制方法的详细阐述,望其能为当代电力行业系统控制模式的进一步创新与发展提供有利的文字参考。
一、PWM变频电路运行特点分析就当前的现状来看,PWM变频电路运行特点主要体现在以下几个方面:第一,从电压型PWM交-直-交变频角度来看,其电路特点主要体现在输出电压呈现出与正弦波形较为接近的特点,因而在此基础上,相关技术人员在对变频电路进行操控的过程中必须强化与其运行特点的有效结合。
另外,强调对二极管的应用也是PWM变频电路呈现出的主要特点之一;第二,基于电流型PWM交-直-交变频特点研究中可以看出,其在运行过程中逐渐呈现出高阻抗的运行特性,同时也由此形成了矩形波样式的运行模式,因而为实现对PWM控制技术的应用,必须注重结合其电路特点。
二、PWM控制技术发展现状变压变频设备的应用在一定程度上缓解了传统电力系统运行过程中凸显出的问题,因而其应用现状逐渐引起了人们的关注,但是就当前的现状来看,其在应用的过程中仍然存在着某些不足之处,即未实现变頻装置的合理化设置,继而对其的推广行为受到了一定的阻碍。
随着现代化科学技术的不断发展,变频装置在应用的过程中得到了逐步完善,且逐渐将现代化通信技术应用于装置运行中,带动了装置整体运行水平的提升。
此外,随着变频装置的不断完善,PWM技术开始被广泛应用于电气公司实际生产中,且以正弦波脉宽调制方式、磁通SPWM 等途径提升了电压的整体利用效率,并就此减少了电路功效的损害。
同时在使用的过程中也逐渐凸显出噪声较小等优势,因而在此背景下,相关技术人员在系统操控过程中应强化对PWM控制技术的应用。
PWM逆变电路及其控制方法

PWM逆变电路及其控制方法PWM(Pulse Width Modulation)逆变电路是一种通过改变电压或电流波形的占空比来实现电能转换的技术。
它广泛应用于各种电源逆变器、交流电机驱动器、太阳能逆变器、UPS(不间断电源系统)等领域。
本文将介绍PWM逆变电路的基本原理、常见的控制方法以及应用实例。
PWM逆变电路的基本原理是通过将直流电压转换为交流电压,使得输出波形的频率和幅值可以根据需求进行调节。
其核心部件是逆变器,通常由开关元件(如功率开关管)和输出变压器组成。
逆变器通过快速开关开关闭合,产生一系列电压脉冲,然后经过输出变压器将直流电压转换为交流电压。
PWM逆变电路的控制方法有多种,常见的包括:固定频率脉宽调制(Fixed Frequency Pulse Width Modulation,FFPWM)、固定频率电压脉宽调制(Constant Frequency Voltage Pulse Width Modulation,CFVPWM)、固定频率电流脉宽调制(Constant Frequency Current Pulse Width Modulation,CFCPWM)以及多重脉冲脉宽调制(Multiple Pulse Width Modulation,MPWM)等。
固定频率脉宽调制是PWM逆变电路中最简单的控制方法之一,其特点是输出频率和开关频率固定,可以通过调节脉宽来实现输出波形的幅值控制。
固定频率电压脉宽调制在固定频率脉宽调制的基础上增加了电压控制环节,通过反馈控制使输出电压达到设定值。
固定频率电流脉宽调制则在固定频率脉宽调制的基础上增加了电流控制环节,通过反馈控制使输出电流达到设定值。
多重脉冲脉宽调制是在固定频率脉宽调制的基础上引入多个脉冲周期,通过交错控制来改善输出波形的谐波含量。
1.电力电子逆变器:将直流电能转换为交流电能。
通过控制PWM逆变电路的开关元件,可以实现交流电压的频率和幅值的调节,广泛应用于电力系统、电动机驱动器及电力调速系统等。
三相桥式pwm逆变电路工作原理

三相桥式pwm逆变电路工作原理三相桥式PWM逆变电路,听起来有点高深对吧?它就像一个乐队,乐器齐全,各种音色交织,奏出美妙的旋律。
想象一下,你在家里放着你最爱的音乐,电流也在努力地给你带来快乐。
咱们先从最基础的说起,逆变器其实就是把直流电转换成交流电的魔法师,直流电就像一条死水,静止不动,而交流电则像活泼的小鱼,在水中欢快地游来游去。
咱们说的三相,就是把这种电流分成三条腿,每条腿负责一部分。
这样一来,整个电路的效率就高了,真是有智慧的安排。
想象一下,三个人一起搬家,比一个人轻松多了,大家分工合作,不累。
这种方式特别适合大型设备,比如电动机,动力十足,噪音小,真是好得不得了。
PWM嘛,就是脉宽调制,听起来很复杂,但其实是把电流的开关打开和关闭来控制电量的多少。
就像调音量,轻轻一转,声音就大了,小了,真是简单明了。
通过改变开关的时间,咱们就能调节输出的电压和频率,真是聪明的办法。
电流的调节,就像我们调节心情,想高兴就高兴,想放松就放松。
再来聊聊桥式,想象一下,一个小桥把三条腿连接在一起,这样一来,电流就能在桥上自由流动。
桥的设计简直妙不可言,三个开关,搭配得天衣无缝,让电流在不同的相位之间跳跃,轻松自如。
就像舞者在舞台上翩翩起舞,各种姿态,各种风格,真是让人看得眼花缭乱。
工作原理是什么呢?其实就是通过不断切换这些开关,形成一个个短小的脉冲,把直流电转变为交流电。
咱们的逆变器就像个精明的厨师,火候掌握得恰到好处,煮出美味的菜肴。
每个开关的开和关,就像是调料的放入,恰到好处,才不会腥,也不会太咸。
太厉害了,简直是逆变界的顶流!你可能会问,这种电路有什么优点呢?嘿,优点可多了,它高效,能量损耗少,真是一举多得。
控制简单,调节方便,像开车一样,轻松自如。
还有就是它的可靠性强,稳定性高,咱们用电的时候可不希望来个“突然失联”。
这种逆变器还可以应用在很多地方,像电动汽车、风能发电,甚至是家里的太阳能板,真是各显神通。
三相PWM逆变器输出LC滤波器设计方法

三相PWM逆变器输出LC滤波器设计方法一、本文概述随着可再生能源和电力电子技术的快速发展,三相PWM(脉宽调制)逆变器在电力系统中得到了广泛应用。
为了改善逆变器的输出波形质量,降低谐波对电网的污染,LC滤波器被广泛应用于逆变器的输出端。
本文旨在探讨三相PWM逆变器输出LC滤波器的设计方法,分析滤波器的主要参数对滤波效果的影响,为工程师提供一套实用的滤波器设计流程和指导原则。
本文将首先介绍三相PWM逆变器的基本工作原理和LC滤波器的功能特点,然后详细阐述LC滤波器的设计步骤,包括电感、电容参数的选取,滤波器截止频率的计算等。
接着,本文将通过仿真和实验验证所设计的LC滤波器的性能,分析滤波效果与滤波器参数之间的关系。
本文将总结滤波器设计的关键因素,并给出一些实用建议,以帮助工程师在实际应用中更好地设计和优化LC滤波器。
通过本文的阅读,读者可以全面了解三相PWM逆变器输出LC滤波器的设计原理和方法,掌握滤波器参数的选择和优化技巧,为提升逆变器输出波形质量和电网稳定性提供有力支持。
二、三相PWM逆变器基础知识三相PWM(脉冲宽度调制)逆变器是一种电力电子设备,用于将直流(DC)电源转换为三相交流(AC)电源。
它是许多现代电力系统中不可或缺的一部分,特别是在可再生能源领域,如太阳能和风能系统中。
了解三相PWM逆变器的基础知识是设计其输出LC滤波器的前提。
三相PWM逆变器的基本结构包括三个独立的半桥逆变器,每个半桥逆变器都连接到一个交流相线上。
每个半桥由两个开关设备(通常是绝缘栅双极晶体管IGBT或功率MOSFET)组成,它们以互补的方式工作,以产生所需的输出电压波形。
PWM控制是逆变器的核心。
它涉及快速切换开关设备,以便在平均意义上产生所需的输出电压。
通过调整每个开关设备的占空比(即它在任何给定时间内处于“开”状态的时间比例),可以精确地控制输出电压的大小和形状。
三相PWM逆变器的一个关键特性是它能够产生近似正弦波的输出电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无源三相PWM逆变器控制电路设计一、课程设计的目的通过电力电子计术的课程设计达到以下几个目的:1、培养学生文献检索的能力,特别就是如何利用Internet检索需要的文献资料。
2、培养学生综合分析问题、发现问题与解决问题的能力。
3、培养学生运用知识的能力与工程设计的能力。
4、培养学生运用仿真工具的能力与方法。
5、提高学生课程设计报告撰写水平。
二、课程设计的要求1注意事项控制框图设计装置(或电路)的主要技术数据主要技术数据输入交流电源:三相380V, f=50Hz交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流:电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH2.在整个设计中要注意培养灵活运用所学的电力电子技术知识与创造性的思维方式以及创造能力3.在整个设计中要注意培养独立分析与独立解决问题的能力4.课题设计的主要内容就是主电路的确定,主电路的分析说明,主电路元器件的计算与选型,以及控制电路设计。
报告最后给出所设计的主电路与控制电路标准电路图。
5.课程设计用纸与格式统一三设计内容:整流电路的设计与参数选择滤波电容参数选择三相逆变主电路的设计与参数选择IGBT电流、电压额定的选择三相SPWM驱动电路的设计画出完整的主电路原理图与控制电路原理图根据要求,整流电路采用二极管整流桥电容滤波电路, 其电路图如图2、1所示:图2、1 考虑电感时电容滤波的三相桥式整流电路及其波形a)电路原理图 b)轻载时的交流侧电流波形c)重载时的交流侧电流波形1、 其工作原理如下所示:该电路中,当某一对二级管导通时,输入直流电压等于交流侧线电压中最大的一个,该线电压既向电容供电,也向负载供电。
当没有二级管导通时,由电容向负载放电,u d 按指数规律下降。
设二极管在局限电路电压过零点δ角处开始导通,并以二极管VD 6与VD 1开始同时导通的时刻为时间零点,则线电压为u ab =6U 2sin(ωt+δ)a)c)R 462i i而相电压为u a =2U 2sin(ωt+δ-6π) 在ωt=0时,二极管VD 6与VD 1开始同时导通,直流侧电压等于u ab ;下一次同时导通的一对管子就是VD 1与VD 2,直流侧电压等于u ab 。
这两段导通过程之间的交替有两种情况,一种就是在VD 1与VD 2同时导通之前VD 6与VD 1就是关断的,交流侧向直流侧的充电电源i d 就是断续的;另一种就是VD 1一直导通,交替时由VD 6导通换相至VD 2导通,i d 就是连续的。
介于二者之间的情况就是,VD 1与VD 6同时导通的阶段与VD 1与VD 2同时导通的阶段在 ωt+δ=32π出恰好连接起来,i d 恰好连续。
由 “电压下降速度相等”的原则,可以确定临界条件。
假设在wt +d =2p /3的时刻“速度相等”恰好发生,则有可得 wRC =这就就是临界条件。
wRC > 与 wRC < 分别使电流i d 断续与连续的条件。
对一个确定的装置来讲,通常只有R 就是可32=+t )]-32(-t [RC 1m 32=+t m t)(32sin E )()]+t sin([E πθωθπωωπθωωπωθωd e d t d d ⎭⎬⎫⎩⎨⎧=-333变的,它的大小反映了负载的轻重。
因此可以说,在轻载时直流侧获得的充电电流就是断续的,重载时就是连续的,分界点就就是R=wC。
考虑实际电路中存在的交流侧电感以及为抑制冲击电流而串联的电感时的工作情况:电流波形的前沿平缓了许多,有利于电路的正常工作。
随着负载的加重,电流波形与电阻负载时的交流侧电流波形逐渐接近。
2. 由电容滤波电路的原理分析可知,该电路的特点如下所示:(1)二极管的导电角θ<π,流过二极管的瞬时电流很大电流的有效值与平均值的关系与波形有关,在平均值相同的情况下,波形越尖,有效值越大。
在纯电阻负载时,变压器副边电流的有效值I2 = 1、11I L,而有电容滤波时(2)负载平均电压V L升高,纹波(交流成分)减小,且R越大,电容放电速度越慢,则负载电压中的纹波成分越小,负载平均电压越高。
为了得到平滑的负载电压,一般取≥(3~5)式中T为电源交流电压的周期。
(3)负载直流电压随负载电流增加而减小。
V L随I L的变化关系称为输出特性或外特性,如图1所示。
C值一定,当,即空载时当C=0,即无电容时在整流电路的内阻不太大(几欧)与放电时间常数满足式≥(3~5) 的关系时,电容滤波电路的负载电压V L V2的关系约为V L=(1、1~1、2)V2总之,电容滤波电路简单,负载直流电压V L较高,纹波也较小,它的缺点就是输出特性较差,故适用于负载电压较高,负载变动不大的场合。
2、3 二极管的选择在选择整流二极管时,主要考虑两个参数,即最大整流电流与反向击穿电压。
在桥式整流电路中,二极管D1、D3与D2、D4就是两两轮流导通的,所以流经每个二极管的平均电流为在选择整流管时应保证其最大整流电流I F > I D。
二极管在截止时管子两端承受的最大反向电压可以从桥式整流电路的工作原理中得出。
在v2正半周时,D1、D3导通,D2、D4截止。
此时D2、D4所承受的最大反向电压均为v2的最大值,即同理,在v2的负半周,D1、D3也承受到同样大小的反向电压。
所以,在选择整流管时应取其反向击穿电压V BR > V RM。
根据要求,逆变电路采用三相桥式电压型逆变电路,其电路图如图3、1所示:图3、11、1其工作原理如下:(1) 该电路就是采用双极性控制方式。
U,V,W三相的PWM控制通常公用一个三角载波u c,三相的调制信号u rU,u Rv与u rW依次相差120°。
U,V与W各相功率开关器件的控制规律相同,现以U 相为例来说明。
当u rU大于u c时,给上桥臂V1导通信号,给下桥臂V4以关断信号,则U相相对于直流电源假象中点N’的输出电压u Un’=U d/2。
当u rU小于u c时,给V4一导通信号,给V1上桥臂关断信号时,则u UN=2d U。
V1与V4的驱动信号始终就是互补的。
当给V1(V4)以导通信号,也可能就是二极管VD1(VD4)续流导通这要由阻感负载中电流方向来决定。
这就是因为阻感负载中电流的方向来决定的。
V相及W相的控制方式都相同。
电路波形如图所示。
可以得出,的PWM波形都只有两种电平,当臂1臂6导通时u UV=U d,当臂3与臂4导通时u UV=-U d,当臂1与臂3或臂4与臂6导通时u UV=0。
因此,逆变器的输出线电压PWM 波由 U d与0三种电平构成。
而且负载相电压PWM波由(±2/3)Ud、(±1/3)Ud与0共5种电平组成,其波形图如图3、2所示。
图3、2(2) U相的控制规律当u rU>u c时,给V1导通信号,给V4关断信号,u UN’=U d/2当u rU<u c时,给V4导通信号,给V1关断信号,u UN’=-U d/2当给V1(V4)加导通信号时,可能就是V1(V4)导通,也可能就是VD1(VD4)导通2.IGBT的选择参数的选择一条原则就是适当留有余地,这样才能确保长期、可靠、安全地运行。
工作电压≤50%-60%,结温≤70-80%在这条件下器件就是最安全的。
制约因素如下:(1) 在关断或过载条件下,IC要处于安全工作区,即小于2倍的额定电流值;IGBT峰值电流就是根据200%的过载与120%的电流脉动率下来制定的;结温一定<150℃以下,指在任何情况下,包括过载时。
(2 ) 开通电压15V±10%的正栅极电压,可产生完全饱与,而且开关损耗最小,当<12V时通态损耗加大,>20V时难以实现过流及短路保护。
(3) 关断偏压-5到-15V目的就是出现噪声仍可有效关断,并可减小关断损耗最佳值约为-10V。
(4) IGBT不适用线性工作,只有极快开关工作时栅极才可加较低3—11V电压(5) 饱与压降直接关系到通态损耗及结温大小,希望越小越好,但价格就要大。
所以根据IJBT的制约因素,主电路的电流电压值及设计要求,采用的IJBT管就是GTl53101。
第四章 PWM逆变电路的工作原理PWM控制方式就就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等而宽度不等的脉冲。
按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变逆变输出频率。
1.PWM控制的基本原理PWM控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状与幅值) 理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
冲量指窄脉冲的面积。
这里所说的效果基本相同,就是指环节的输出响应波形基本相同PWM波形可等效的各种波形,例如:直流斩波电路可以等效直流波形;PWM波可以等效正弦波形;还可以等效成其她所需波形,如等效所需非正弦交流波形等,其基本原理与SPWM控制相同,也基于等效面积原理。
用一系列等幅不等宽的脉冲来代替一个正弦半波的方法:⑴正弦半波N等分,可瞧成N个彼此相连的脉冲序列,宽度相等,但幅值不等;⑵用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等。
这样就可得到PWM 波形。
由上方法可知各脉冲的幅值相等,而宽度按正弦规律变化。
对于正弦波的负半周,也可用同样的方法得到PWM波形。
像这种脉冲的宽度按正弦规律变化而与正弦波等效的PWM波形,也称SPWM波形。
要改变等效输出正弦波幅值时,只要按照同一比例系数改变上述各脉冲的宽度即可。
2.控制方法调制信号ur 为正弦波,载波uc在ur的正半周为正极性的三角波,在ur 的负半周为负极性的三角波。
在ur与uc的交点时刻控制IGBT的通断。
在ur的半个周期内三角波载波只在正极性或负极性一种极性范围内变化,所得到的PWM波形也只在单个极性范围变化的控制方式称为单极性PWM控制方式。
与单极性PWM控制方式相对应的就是双极性控制方式。
采用双极性方式时,在ur的半个周期内,三角波载波不再就是单极性的,而就是有正有负,所得的PWM形也就是有正有负。
在ur的一个周期内,输出的PWM波只有±Ud两种电平,而不像单极性控制时还有零电平。
仍然在调制信号u r 与载波信号u c 的交点时刻控制各开关的通断。
在u r 的正负半周,对各开关器件的控制规律相同。
第五章 三相正弦交流电源发生器本设计需要三相正弦交流电源发生器,根据设计要求,确定其电路图如图5、1所示,在图5、1中,用双联电位器同时改变R 7与R 12,就可以改变正弦参考信号的频率,从而实现了变频功能。