电动汽车用动力电池管理系统电池管理单元规范
纯电动汽车电池管理系统组成及工作模式

纯电动汽车电池管理系统组成及工作模式一、动力蓄电池管理系统简介由于动力电池能量和端电压的限制,电动汽车需要采用多块电池进行串、并联组合,但是由于动力电池特性的非线性和时变性,以及复杂的使用条件和苛刻的使用环境,在电动汽车使用过程中,要使动力电池工作在合理的电压、电流、温度范围内,电动汽车上动力电池的使用都需要进行有效管理,对于镍氢电池和锉离子电池,有效的管理尤其需要,如果管理不善,不仅可能会显著缩短动力电池的使用寿命,还可能引起着火等严重安全事故,因此,动力电池管理系统成为电动汽车的必备装置。
二、动力电池管理系统的主要功能如图4-15所示,常见动力电池管理系统的功能主要包括数据采集、数据显示、状态估计、热管理、数据通讯、安全管理、能量管理(包括动力电池电量均衡功能)和故障诊断,其中前6项为动力电池管理系统的基本功能。
三、动力电池管理系统的组成及工作模式图4-17所示为两种典型的动力电池管理系统方案。
如图4-18所示,高压接触器包括B+接触器、B-接触器、预充接触器、直流转换器(用于向低压电池及车载低压设备供电)接触器及车载充电器接触器。
动力电池管理系统可工作于下电模式、准备模式、放电模式、充电模式和故障处理模式等5种工作模式下。
公众号动力电池BMS①下电模式。
②准备模式。
③放电模式。
④充电模式。
⑤故障模式。
四、动力电池组的均衡充电管理和热管理1、动力电池组均衡充电管理动力电池组均衡充电具有以下3种方式:①充电结束后实现单体电池间的自动均衡,工作原理如图4-19所示。
②充电过程中实现单体电池间的自动均衡,主要有3种方案,如图4-20所示。
③采用辅助管理装置,对单个电池的电流进行调整。
如图4-21所示。
2. 动力电池组的热管理①气体冷却法。
图4-22所示为几种典型的气体冷却方式。
②液体冷却法。
图4-23所示为一种典型的液体冷却系统的构成。
③相变材料冷却法。
④热管冷却法。
⑤带加热的热管理系统。
5、 动力电池系统技术规范

密级:项目内部动力电池系统技术规范项目代号:文件编号:EVPT-VD1.27编写:时间:校核:时间:批准:时间:天津易鼎丰动力科技有限公司1. 文件范围本文件规范了XX公司XX车型所用XX动力电池必须满足的技术性能要求。
2. 术语定义和及产品执行标准2.2. 术语定义2.1.1 电动汽车(electric vehicle, EV):指以车载能源为动力,由电动机驱动的汽车;2.1.2 电芯(cell):一个单一的电化学电池最小的功能单元;2.1.3 模组(module):指由多个电芯的并联组装集合体,是一个单一的机电单元;2.1.4 电池组(battery pack):由一个或多个模组连接组成的单一机械总成;2.1.5 电池管理系统(battery management system, BMS):指任何通过监控充电电池的状态、计算二次数据并报告该等数据、保护该等充电电池、设置报警信号、与设备中的其他子系统进行电子通信、控制充电电池内部的环境或平衡该等充电电池或环境等方式来管理该等充电电池的电子设备,包括软件、硬件和运算法则;2.1.6 动力电池系统(battery system):动力电池系统是指由动力电池组、电池箱体、电池管理系统、电器元件及高低压连接器等组成的总成部件,功能为接收和储存由车载充电机、发电机、制动能量回收装置或外置充电装置提供的高压直流电,并且为电驱动系统及电辅助系统提供高压直流电;2.1.7 整车控制器(vehicle controller unit):检测控制电动汽车系统电路的控制器;2.1.8 高电压(High Voltage, HV):特指电动汽车200VDC以上高压系统;2.1.9 低电压(Low Voltage, LV):指任何信号或功率型能量低于50VDC,本文中特指整车12VDC电源系统;2.1.10 荷电状态(state-of-charge, SOC):电池放电后剩余容量与全荷电容量的百分比;2.1.11 寿命初始(Beginning Of Life, BOL):指动力电池系统刚交付使用的状态;2.1.12 寿命终止(End Of Life, EOL):动力电池系统能量降低到初始能量的80%,或者实时峰值功率低于初始峰值功率的85%时,视为寿命终止;2.1.13 电磁兼容性(Electro-Magnetic Compatibility, EMC):在同一电子环境中,两种或多种电子设备能互不干扰进行正常工作的能力;2.1.14 高低压互锁(High Voltage Inter-Lock, HVIL):特指低压断电时,通过低压信号控制能够同时将高压回路切断;2.1.15 CAN(Controller Area Network):控制器局域网;2.1.16 DFMEA(Failure Mode and Effects Analysis):设计故障模式及失效分析;2.1.17 MTBF(Mean Time Between Failure):平均无故障时间;2.1.18 额定容量:在25℃±2℃下,以1I1(A)电流恒电流充电至动力电池系统总电压或最高单体电压达到规定电压值,以恒定电压充电至电流小于0.05C(A)时停止充电,休眠10分钟后,以1I1(A)电流放电达到规定的终止电压时停止放电,整个测试过程放出的容量为额定容量,单位为Ah;2.1.19 额定能量:在25℃±2℃下,以1I1(A)电流恒电流充电至动力电池系统总电压达到或最高单体电压达到规定电压值,以恒定电压充电至电流小于0.05CA时停止充电,休眠10分钟后,以1I1(A)电流放电达到规定的终止电压时停止放电,整个测试过程放出的能量为额定能量,(Wh),此值可由电压-容量曲线的覆盖面积积分得到;2.1.20 可用能量:在25±2℃、-5±2℃两种温度条件下,按照《动力电池可用能量测试规范》分别做NEDC测试,动力电池系统在放电率允许的范围内实际放出的电量的平均值。
电动汽车电池管理系统BMS介绍讲解

● 准确估算SOC,电池性能可充分使用,降低对动力电池性能的要求
● 4)提高经济性。
● 选择较低容量的动力蓄电池组可以降低整车制造成本 ● 由于提高了系统的可靠性,后期维护成本降低
SOC估计常用的算法
● (1)开路电压法 ● 随着放电电池容量的增加,电池的开路电压降低。可以根据一定的充放电倍率时电池组的开路电
电池管理系统的功能
● 数据采集、电池状态计算、能量管理、安全管理、热管理、均衡控制、通信功能和人机接口
单体电压采集方法
● (1)继电器阵列法
● 组成:端电压传感器、继电器阵列、A/D转换芯片、光耦、多路模拟开关 ● 应用特点:所需要测量的电池单体电压较高而且对精度要求也高的场合使用
单体电压采集方法
练方法的影响很大。
SOC估计常用的算法
● (5)卡尔曼滤波法 ● 核心思想:对动力系统的状态做出最小方差意义上的最优估算。 ● 适用于各种电池,不仅给出了SOC的估计值,还给出了SOC的估计误差。 ● 缺点:要求电池SOC估计精度越高,电池模型越复杂,涉及大量矩阵运算,工程上难以实现 ● 该方法对于温度、自放电率以及放电倍率对容量的影响考虑的不够全面。
能量耗散型均衡管理
● 恒定分流电阻均衡充电电路
● 每个电池单体上都始终并联一个分流电阻。 ● 可靠性高,分流电阻的值大,通过固定分流来减小由于自放电导致的单体电池差异 ● 无论电池充电还是放电过程,分流电阻始终消耗功率,能量损失大 ● 一般在能够及时补充能量的场合适用
能量耗散型均衡管理
● 开关控制分流电阻均衡充电电路
被动加热与散热-外部空气流通 被动加热与散热-内部空气流通
主动加热与散热-外部和内部空气流通
电动汽车动力电池系统国标

4
判定标准:计算容量在企业所规定额定 判定标准:(1)计算容量在企业所规 常温放电容量
值的 100%~110%之间
定额定值的 100%~110%之间
(2)所有样品的计算容量极差(最大 和最小容量差)不得超过 5%(一致性 要求)
常温下以 C/3 充满电,在-20℃温度下 存储 20 小时,以 3/C 放电至截止电压,
电动汽车动力电池系统国标
国标针对动力电池系统,建立了常规性能和功能要求——容量、能量、功率、 效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、 高低温性能等,建立了安全防护要求——操作安全、故障防护、人员触电防护、 滥用防护、环境适应性、事故防护、用户手册和特殊说明等,范围覆盖了电芯、 模组、动力电池包、动力电池系统这 4 个层级,产品类型包括混合动力、插电式 /增程式混合动力、纯电动乘用车和商用车,已基本上了构成了一个完整的体系。
尺寸和质量
用量具检测电池的尺寸和质量,应符合 用量具检测电池的尺寸和质量,应符合
企业提供的产品技术条件
企业提供的产品技术条件
检测方法:C/3 充电至截止电压,C/3 1C 充电至截止电压,1C 放电至截止电
放电至截止电压,计算放电容量
压,计算放电容量
如果计算值低于规定值,可重复 5 次 重复 5 次测试,取平均值数据
默认试验条件
相对湿度:25%~85%
相对湿度:15%~90%
气压:86kPa~106kPa
气压:86kPa~106kPa
1. GB/T 31484-2015 解读
GB/T 31484-2015 主要考核动力电池单体、模组和系统的循环寿命指标,涵 盖了乘用车和商用车两个不同的市场,以及功率型和能量型两种不同应用类型的 动力电池。对于电池单体和模组而言,大多数电池厂家的产品均可达到规定的要 求,对于动力电池系统而言,系统设计和集成能力较弱的 pack 企业,将面临较 大的挑战。相关检测内容如下表所示:
纯电动汽车电池管理系统BMS标定规范

纯电动车电池包项目电池管理系统标定规范目录1、电池管理标定系统的定义、参数及类型 (3)1.1定义 (3)1.2、标定的参数 (3)1.3、电池管理标定系统的类型 (3)2、电池管理标定系统 (3)2.1、电池管理系统组成 (3)2.2、电池管理标定系统的功能 (3)2.3、电池管理标定系统的总体结构设计 (4)2.4、电池管理标定系统的软件设计 (4)3、参数配置与标定方案 (4)3.1、系统参数配置 (4)3.1.1、参数配置内容 (4)3.1.2、参数配置方式 (5)3.1.3、参数配置系统拓扑图 (5)3.2、系统参数标定 (5)3.2.1、参数标定内容 (5)3.2.2、参数标定方式 (5)3.2.3、参数标定系统拓扑图 (6)3.3、系统测试 (6)3.3.1、系统测试内容 (6)3.3.2、系统测试方式 (7)3.3.3、系统测试拓扑图 (8)1、电池管理标定系统的定义、参数及类型1.1定义电池管理系统是一个很复杂的控制系统,为了使电池管理系统在最优条件下工作并且能与汽车上其他系统协调工作,并达到最佳的综合性能,必须对电池控制器的控制参数进行相应的修改和优化,使电池控制系统按照最优的控制参数运行,这个过程称为标定。
1.2、标定的参数电池管理系统最主要的功能是有效控制电池的充电和放电,防止电池过度充电或过度放电,所以需要标定的参数有电压、电流、充放电功率、温度和各种故障阈值等。
1.3、电池管理标定系统的类型(1)离线标定由于编程过程中电池充放电控制模块无法获得实时的参数,必须在充电或者放电停止后才能进行更改数据的操作,该标定方式为离线标定。
(2)在线标定在线标定变量可同时以数值或图形等多种形式显示,实时监测的变量以曲线形式显示,标定平台修改的标定参数可通过CAN协议在标定系统通信模块中实时传递至任一ECU中,通过ECU的控制程序控制执行器,执行结果可通过监测曲线实时反应。
2、电池管理标定系统2.1、电池管理系统组成电池管理标定系统主要包括以下几个部分:(1)动力电池;(2)电池管理系统;(3)电池管理系统标定系统的硬件:其组成结构主要包括标定用的PC机、USBCAN通信;(4)电池管理系统标定系统的软件:包括CCP协议的驱动程序,电池管理系统支持CCP 协议的应用程序及支持CCP协议应用的标定平台软件;2.2、电池管理标定系统的功能标定系统需要具备以下的基本功能:(1)数据的采集,能够完成电池管理系统测试和控制的信号的实时采集,从而完成动力电池的工作状态的监控。
电车三电设计标准

电动汽车的“三电”系统指的是电驱系统、电池系统和电控系统,这是电动汽车的核心技术。
对于电车三电设计标准,每个部分都有其特定的设计原则和标准:
1.电驱系统:
•电驱系统主要由电动机、传动机构和变换器组成。
电动机负责将电能转换为机械能,为车辆行驶提供驱动力。
传动机构(如减速器)则用于满足低速大扭矩的需求,保证车辆的平稳运行。
变换器(如逆变器和DCDC变换器)则负责控制电动机的电流和电压。
•电动机的设计需要满足宽调速范围、快速响应、轻量化、高效率、能量回收、高可靠性与安全性等要求。
目前常用的电动机类型有永磁同步电动机和三相异步电动机。
2.电池系统:
•电池系统为电动车辆提供能量,是电动汽车区别于传统燃油汽车的关键部件。
动力电池的性能直接关乎到续航里程和行车的安全性。
•动力电池由多个电池单体、电池管理控制单元(BMU)、电池高压分配单元等组成。
设计时需要考虑电池的容量、功率、内阻、充电终止电压和放电终止电压等参数。
•锂离子电池是目前综合性能最优的一种电池,广泛应用于电动汽车中。
3.电控系统:
•电控系统负责控制和管理电驱系统和电池系统的工作,是电动汽车的“大脑”。
•电控系统的设计需要满足车辆的各种行驶工况和驾驶需求,如启动、加速、减速、制动等。
同时还需要考虑能量管理、故障诊断和处理等功能。
总的来说,电车三电设计标准需要满足车辆的动力性、经济性、安全性、舒适性和可靠性等要求。
具体的设计标准可能会因不同的车型和应用场景而有所差异。
在实际设计中,还需要考虑成本、制造工艺和维修便利性等因素。
动力电池及管理系统(BMS)设计技术规范

电池及管理系统设计技术规范编制:校对:审核:批准:有限公司2015年9月目录前言 (3)一、锂离子电池选型 (4)1、范围 (4)2、规范性引用文件 (4)3、术语和定义 (4)4、符号 (4)5、动力蓄电池循环寿命要求 (5)6、动力蓄电池安全要求 (5)7、动力蓄电池电性能要求 (6)8、电池组匹配 (8)9、电池组使用其他注意事项 (9)二、电池管理系统选型 (10)1、术语定义 (10)2、要求 (10)3、试验方法 (12)4、标志 (13)前言综述电动车的的电池就好比汽车油箱里的汽油。
它是由小块单元电池通过串并联方式级联后,通过BMS的管理,将电能传递到高压配电盒,然后分配给驱动电机和各个高压模块(DC/DC、空调压缩机、PTC等)。
电池管理系统(BMS)采用的是一个主控制器(BMU)和多个下一级电池采集模块(LECU)组成模块化动力电池管理系统,是一种具有有效节省电池电能、提高车辆安全性、实现充放电均衡和降低运行成本功能的电池管理系统模式。
高压控制系统的预充电及正负极高压继电器均由BMS控制,设置了充电控制继电器,增加高压充电时的安全性。
动力电池容量和正极材料的选择电池容量的确定,是根据车型电机的功率、运行时的额定电压、电流。
选择出电池包的电压、串并联的形式。
由电机额定的电压可以选择出需要串联电池的个数,由电机运行时的额定电流可以选择出需要并联电池的个数。
具体计算如下:由整车设计的匹配参数,确定好电机的功率和扭矩后,就可以计算出,动力电池包的串并联电池的数目,串联电池的电压U等于电机额定电压,就可推算出串联的电池个数N串=U/3.7(对于三元锂电的锂电池),对于最少并联的电池个数N并=电机运行工况的平均电流/单元电池的容量*续航里程/工况的平均时速。
电池的选择,则要考虑电池正极材料的类型,总的原则是12米以上的客车主要以磷酸铁锂电池为主,6米小型客车和乘用车的主要是三元锂电池为主。
电动汽车用电池管理系统功能安全要求及试验方法

电动汽车用电池管理系统功能安全要求及试验方法随着电动汽车的快速发展,电池管理系统的功能安全显得尤为重要。
本文旨在提出电动汽车用电池管理系统的功能安全要求及试验方法,以确保电动汽车的安全性和可靠性。
首先,电动汽车的电池管理系统应具备以下功能安全要求:1. 安全性能要求电池管理系统应具备完善的故障诊断和保护机制,能够在出现故障时快速、准确地诊断和处理问题,确保电池系统的安全性能。
2. 可靠性要求电池管理系统应具备高可靠性,能够在各种复杂环境下稳定运行,并保证电池寿命的长久使用。
3. 兼容性要求电池管理系统应兼容不同型号、不同厂家的电池,并能在不同的车型中实现良好的兼容性。
4. 数据安全要求电池管理系统应具备保护用户数据的能力,防止数据泄露或丢失,确保用户数据的安全性。
其次,针对以上要求,我们提出以下试验方法:1. 安全性能试验通过对电池系统进行各种故障测试,如短路、过流、过压等,检测电池管理系统的故障诊断和保护机制是否能够快速、准确地识别和解决问题。
2. 可靠性试验通过长时间的高温、低温、高湿等环境测试,检测电池管理系统是否能够在不同复杂环境下稳定运行,并保证电池寿命的长久使用。
3. 兼容性试验通过对不同型号、不同厂家的电池进行测试,检测电池管理系统是否能够在不同的车型中实现良好的兼容性。
4. 数据安全试验通过随机破解、数据泄露等测试,检测电池管理系统是否具备保护用户数据的能力,防止数据泄露或丢失,确保用户数据的安全性。
综上,电动汽车用电池管理系统的功能安全是电动汽车安全性和可靠性的重要保障。
通过对电池管理系统的功能安全要求和试验方法的探讨,可以为电动汽车的安全发展提供有力的保障。