集成运算放大器和电子电路中的负反馈知识点总结
第电工电子技术(第二版)八章

上一页 下一页 返回
8. 2 放大电路中的负反馈
出现又在交流通路中出现,则是既有直流反馈又有交流反馈。 3.反馈电路的类型 根据反馈信号在输出端的取样和在输入端的连接方式,放大电路可 以组成四种不同类型的负反馈:电压串联负反馈、电压并联负反馈、 电流串联负反馈和电流并联负反馈。判断方法如下: (1)电压反馈和电流反馈 判断是电压反馈还是电流反馈是按照反馈信号在放大器输出端的取 样方式来分类的。若反馈信号取自输出电压,即反馈信号与输出电压 成比例,称为电压反馈;若反馈信号取自输出电流,即反馈信号与输 出电流成比例,称为电流反馈。常采用负载电阻 短路法进行判断,
第8章 集成运算放大器及其应用
本章知识点 先导案例 8. 1 集成运算放大器简介 8. 2 放大电路中的负反馈 8. 3 集成运算放大器的应用 8. 4 用集成运放构成振荡电路 8. 5 使用运算放大器应注意的几个问题
本章知识点
[1]了解集成运放的基本组成及主要参数的意义。 [2]理解运算放大器的电压传输特性,掌握其基本分析方法。 [3]掌握用集成运放组成的比例、加减、微分和积分运算电路的工作 原 理。 [4]理解电压比较器的工作原理和应用。 [5]能判别电子电路中的直流反馈和交流反馈、正反馈和负反馈以及 负 反馈的四种类型。 [6]理解负反馈对放大电路工作性能的影响。 [7]掌握正弦波振荡电路自激振荡的条件。 [8]了解RC振荡电路的工作原理。
上一页 下一页 返回
8. 2 放大电路中的负反馈
图8-9 (b):假定输入信号对地瞬时极性为
,则各点电压变化过程为 净输入量增强,则该电路
负反馈积分放大电路

负反馈积分放大电路摘要:一、负反馈积分放大电路的概念二、负反馈积分放大电路的特点三、负反馈积分放大电路的应用四、负反馈积分放大电路的注意事项正文:负反馈积分放大电路是一种将输入信号积分并输出,同时通过负反馈机制对电路增益进行调整的电路。
它广泛应用于各种电子设备中,如音频放大器、通信放大器等。
一、负反馈积分放大电路的概念负反馈积分放大电路是一种模拟电子电路,它利用负反馈机制对电路增益进行调整,从而使输出信号更稳定。
它主要由输入电阻、运算放大器、积分器、反馈电阻等组成。
二、负反馈积分放大电路的特点1.稳定性好:由于采用了负反馈机制,电路的增益稳定,输出信号波动小。
2.线性度好:电路的线性度较高,能够满足大多数应用场景的需求。
3.噪声抑制能力强:负反馈积分放大电路能够有效地抑制噪声,提高输出信号的质量。
4.输入阻抗高:电路的输入阻抗较高,对输入信号的影响较小。
三、负反馈积分放大电路的应用1.音频放大器:负反馈积分放大电路常用于音频放大器中,对音频信号进行放大,从而提高音频信号的响度。
2.通信放大器:在通信系统中,负反馈积分放大电路用于放大微弱信号,从而延长传输距离。
3.传感器信号处理:在各种传感器信号处理电路中,负反馈积分放大电路用于对传感器信号进行放大、积分处理,提高传感器的灵敏度。
四、负反馈积分放大电路的注意事项1.电路设计时,应选择合适的运算放大器和反馈电阻,以保证电路的稳定性和线性度。
2.在使用过程中,要注意电路的输入和输出阻抗,避免因阻抗不匹配导致的信号损失或反射。
3.为了提高电路的稳定性,可以采用多重反馈结构或添加稳定器等方法。
综上所述,负反馈积分放大电路具有稳定性好、线性度好、噪声抑制能力强等优点,广泛应用于音频放大器、通信放大器等电子设备中。
(完整版)集成运放部分总结

第六章 集成运算放大电路一. 基本要求1. 了解集成运放电路的结构和主要参数,理解集成运放电路的电压传输特性。
2. 掌握反馈类型及组态的判断方法,了解负反馈对放大电路工作性能的影响;3. 熟悉“虚短”、“虚断”的概念,并掌握运放电路线性应用的分析方法;4. 了解运算放大电路的非线性应用;5. 了解正弦波振荡器自激振荡的条件及桥式RC 振荡器的工作原理。
二.主要内容集成运算放大电路是一种具有高放大倍数、高输入阻抗、低输出电阻的直接耦合放大电路。
在线性应用时,要加深度的负反馈电路才能工作。
在非线性应用时,输出仅两种状态。
1. 理想运放电路线性应用的分析依据:(1)-+≈u u “虚短”概念; (2)0≈≈-+i i “虚断”概念。
2.放大电路中的反馈(1) 电压反馈和电流反馈的判断:将输出端负载短路,反馈信号不存在时是电压反馈;反馈信号仍存在的是电流反馈。
如图6-1,(a )电压反馈,(b )电流反馈。
图6-1(2)串联反馈和并联反馈的判断:反馈信号与输入信号串联,并以电压的形式与输入信号比较,是电压反馈;反馈信号与输入信号并联,并以电流的形式与输入信号比较,是电流反馈。
其等效电路如图6-2所示。
a)图6-2 串联反馈与并联反馈的等效电路(3)正、负反馈的判断:“瞬时极性法”可判断正、负反馈。
从输入端开始假设瞬时极性(“+”或“-”),逐极判断各个相关点的极性,从而得到输出信号的极性和反馈信号的极性。
若反馈信号使净输入信号减小是负反馈;若反馈信号使净输入信号增加是正反馈。
(4)运放电路的四种负反馈组态:如图6-3所示。
另外,要会判定分立元件电路的反馈组态形式。
图6-3(c ) 电压并联负反馈 图6-3(d ) 电流并联负反馈 (5)负反馈电路对放大电路的影响负反馈使放大电路的电压放大倍数降低,但使放大电路的工作性能得到了提高和稳定。
负反馈可改善非线形失真,展宽通频带等。
a . 输出电压与输出电流得到稳定电压负反馈具有稳定输出电压的作用;电流负反馈具有稳定输出电流的b)u u d f + + __a) 图6-3(a ) 电压串联负反馈图6-3(b ) 电流串联负反馈u o+_ o R2u 0u i作用。
放大电路中的负反馈

ube= ui – uf 反馈到发射极为串联反馈
判断电压、电流反馈
共发射极电路
RL
+ uo
iE
io RL
–
从集电极引出 为电压反馈 从发射极引出 为电流反馈
判断反馈类型的口诀
共发射极电路
集出为压,射出为流
基入为并,射入为串
共集电极电路为典型的电压串联负反馈
例3:判断图示电路中的负反馈类型 RB1 C1
rof (1 A0 F )ro
电流负反馈具有稳定输出电流的作用, 即有恒流输出特性,故输出电阻提高
-
RL
分立元件的放大电路反馈类型的判别 例 1: +UCC RB1 C1 RS + ui RB2
RC
C2 +
净输入信号:
ube = ui - uf ui 与 uf 串联,以电 压形式比较 —串联反馈
+ uS – –
+ + ube – + RL uo RE u f – ie –
反馈电压uf 削弱了净输入电压 —负反馈 uf = ie RE ic RC uf 正比于输出电流—电流反馈
之差时,是负反馈;否则是正反馈
例1: 试判别下图放大电路中从运算放大器A2输出端引至 A1输入端的是何种类型的反馈电路 串联电压负反馈
+ ui –
- – +u + A1 o1 R –u + f
-
– + + A2
uo
解: 先在图中标出各点的瞬时极性及反馈信号; 因反馈电路直接从运算放大器A2的输出端引出,所以 是电压反馈 因输入信号和反馈信号分别加在反相输入端和同相输 入端上,所以是串联反馈 因输入信号和反馈信号极性相同,所以是负反馈
集成运算放大器反相积分电路操作总结

一、概述集成运算放大器(Operational Amplifier,简称Op-Amp)是现代电子电路中常用的一种集成电路元件,其在反相积分电路中有着重要的应用。
反相积分电路是一种基本的模拟电路,通过将输入信号进行积分操作,可以得到输出信号的积分值。
在实际电路设计中,正确操作集成运算放大器反相积分电路对于保证电路性能和稳定性至关重要。
本文将对集成运算放大器反相积分电路的操作进行总结。
二、集成运算放大器反相积分电路结构及原理1. 反相积分电路的结构反相积分电路的基本结构由集成运算放大器和电容构成。
输入信号通过电阻R1连接至集成运算放大器的反向输入端,同时通过电容C1连接至集成运算放大器的输出端,构成了一个负反馈的反相积分电路。
集成运算放大器的正向输入端接地。
2. 反相积分电路的原理当输入信号为一个连续可微的函数时,反相积分电路可以将输入信号进行积分操作,并输出积分值。
通过对输入信号进行积分,可以实现信号的积分变换,常用于滤波、波形整形等应用。
三、集成运算放大器反相积分电路操作1. 选择合适的集成运算放大器在设计反相积分电路时,需要选择适合的集成运算放大器。
常见的集成运算放大器有741、LM358等,不同的集成运算放大器具有不同的性能参数,如增益带宽积、输入偏置电流等,需要根据具体的应用需求选择合适的集成运算放大器。
2. 确定反相输入端的接地方式集成运算放大器的反相输入端需要通过电阻与输入信号相连接,同时需要接地,以提供稳定的工作环境。
在实际操作中,需要注意反相输入端的连接方式,保证电路的稳定性和准确性。
3. 选择合适的电阻和电容在反相积分电路中,电阻和电容的选择对于电路的性能有着重要的影响。
通过选择合适的电阻和电容数值,可以调节反相积分电路的积分时间常数,从而实现对输出波形的控制。
4. 分析电路的频率特性在设计反相积分电路时,需要对电路的频率特性进行分析。
集成运算放大器和电容构成的反相积分电路在不同的频率下有着不同的工作特性,需要通过频率特性分析,对电路进行优化。
运算放大器与负反馈

(4)如果需要提高放大电路的输入电阻,应该引入串联负反馈; 如果需要减小放大电路的输入电阻,应该引入并联负反馈。
3.3 理想运算放大器
3.3.1 理想运算放大器的电路模型
这就是同号器或称电压跟随器,电路如图3.4.4所示。
ቤተ መጻሕፍቲ ባይዱ
3.4 运算放大器的线性应用
3.4.3 差动输入运算
差动运算放大电路在测量和控制系统中应用很广泛,它的两个输入 端都有信号输入,其运算电路如图3.4.5所示。由于引入深度负反馈, 运放电路为线性应用电路,故可应用叠加原理进行分析。
当uI1单独作用于集成运放时,电路是一个反相基本电路,故uO1为
第3章 运算放大器与负反馈
前言
集成运算放大器(integrated operational amplifier) 是一种高增益的多级直接耦合放大器,是模拟集成电路中最 主要的一类器件。由于早期它主要用于模拟量的某些数学运 算,故称为运算放大器。随着近代集成电路技术的发展,目 前集成运算放大器的性能已达到了相当理想的程度,如电压 放大倍数可达108,输入电阻达几百兆欧,输出电阻小到几欧, 共模抑制比高达160 dB。几乎不存在失调和漂移,其性能十 分稳定可靠,且使用方便、价格低廉,从而使它的应用超出 了模拟运算的范围,在信号处理、信号测量、波形转换及自 动控制等领域都得到了广泛应用。集成运算放大器是电子线 路中重要的元器件,集成运算放大器的运用是电子技术最重 要的基础部分。
iI≈iF 及
u-≈u+=0(虚地) 由图3.4.1可得
所以闭环电压放大倍数为
3.4 运算放大器的线性应用
集成运算放大器中的反馈

差模输入电压
uId
u1
u1
uO uOd
0
或 u1 u1
相当于两输入端短路,但又不
是真正的短路,故称为“虚短”。
如图所示。
16
虚断:净输入端电流等于零
即 ii 0
理想运放的差模输入电阻 Rid ∞,
流经运放两输入端的电流
i1
i1
i1
u1 u1 Rid
电压并联、电流串联、电流并联,不同组态的负反馈对放 大器输入、输出电阻的影响也不一样。
反馈放大器的一般形式
06
di
er zhang jie
ห้องสมุดไป่ตู้
第二章 节
2.1 图形符号及引脚功能
图形符号如下图所示
表示运放
表示开环增益极 高
09
引脚功能
2.1 图形符号及引脚功能
在实际应用中,集成运放除了输入和输出端,还有电源端, 有些运放还有调零和相位补偿端。实物及引脚排列如图所示。
当反馈量取自输出电压时称为电压反馈,取自输 出电流时称为电流反馈;
反馈放大器的一般形式
06
3.3 负反馈放大器的四种组态
根据反馈网络与放大器输入端连接方式不同,可分为 串联和并联反馈,当反馈量与输入量以电压方式相叠加时 称为串联反馈,以电流方式相叠加时称为并联反馈。
这样,交流负反馈放大器有四种组态,即电压串联、
09
di san zhang jie
第三章 节
3.1 集成运放的组成
集成运放由4部 分组成,即输入 级、中间级、输 出级以及偏置电 路。
11
3.2 各部分的作用
输入级
新概念学习:零点漂移
第4章 放大电路中的负反馈

第4章 放大电路中的负反馈
图4-4 交流反馈和直流反馈 (a) 交流反馈;(b) 直流反馈; (c) 交、 直流反馈
第4章 放大电路中的负反馈
3.电压反馈和电流反馈 由于基本放大电路和反馈网络均是四端双口, 因
此基本放大电路 A 与反馈网络 F 的端口连接方式就
有串联和并联的区别。
基本放大电路 A 与反馈网络 F 在反馈放大电路
路。 假设输入信号瞬时极性为⊕, 则V1的集电极电位
, V2
, 因为电阻不改变信号的极
性, 所以通过Rf送回原输入端反馈信号的瞬时极性为
。 根据图中标出的各点瞬时极性, 反馈信号回到V1
的基极, 与原输入信号在同一点并且极性相反, 因此,
净输入信号减小, 为负反馈。
第4章 放大电路中的负反馈
图4-9 电流并联负反馈
阻Rf上的电流就是反馈电流, 方向按照瞬时极性从⊕ 。
第4章 放大电路中的负反馈
图4-10 电压并联负反馈
第4章 放大电路中的负反馈
4) 电流串联负反馈 图4-11为分压式偏置共发射极放大电路。 反馈元 件为Re1 、 Re2和Ce, 由于旁路电容的存在, Re1 和Re2 构成直流反馈, 交流反馈仅由Re1构成。 由瞬时极性看 出, 净输入信号减小, 为负反馈。
输入端的连接方式, 叫做比较方式, 根据比较方式的 不同, 分为串联反馈和并联反馈, 如图4-6所示。
第4章 放大电路中的负反馈
图4-6 串联反馈和并联反馈(比较方式) (a) 串联反馈; (b) 并联反馈
第4章 放大电路中的负反馈
4.1.3 负反馈的四种基本类型与判别方法 因为不同的反馈类型对放大电路性能的影响大不
第4章 放大电路中的负反馈
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 一.集成运放电路的基本组成
1. 输入级----采用差放电路,以减小零漂。
2. 中间级----多采用共射(或共源)放大电路,以提高放大倍数。
3. 输出级----多采用互补对称电路以提高带负载能力。
4. 偏置电路----多采用电流源电路,为各级提供合适的静态电流。
理想集成运放
的参数及分析方法
1. 理想集成运放的参数特征 *开环电压放大倍数Aod *差模输入电阻Rd *输出电阻FO -0; *共模抑制比KCM-X;
2. 理想集成运放的分析方法 1) 运放工作在线性区: *电路特征一一引入负反馈
*电路特点一一“虚短”和“虚断”
“虚短”
“虚断”---
2)运放工作在非线性区
*电路特征一一开环或引入正反馈 *电路特点—— 输出电压的两种饱和状态:
当 U +>U -时,U o =+d m
当 u +vu -时,U o =- U Om 两输入端的输入电流为零:
i +=i - =0
1.反相比例运算电路
R 二 R // R
Ca )基本形式
4心
站 I
Ca )
基本形式
/+=/-=0
分析依据
“虚断”和“虚短”
.基本运算电路
T r>
DO
2.同相比例运算电路
2二
R // R
3.反相求和运算电路
4二R // R // R // R
A <30
£fD
反相求和运算电路
i
// R // R R=R // R
” R.R\ R. R.
同相求和运算电路
4.
同相求和运算电路
..
W T I)
兔
尺3
二.积分和微分运算电路
1.积分运算
1 .,
胡O ='弓7^」旳心
KC
基本积分运篦电跆
C*
Mo
5.加减运算电路
R // R // Rf =R3// R // R5
2.微分运算
“0=-皿兽
Cn )基卑微分电足各
<1
电子电路中的负反馈
一、概念
反馈是指将输出信号的一部分或全部通过一定的方式回送到输入端。
反馈有正反馈(应用于振荡电路)和负反馈(应用于放大电路)之分。
反馈有直流反馈,其作用:稳定静态工作点。
有交流反馈,其作用:改善放大器性能。
包括: 扩展通频带;
③减小非线性失真;④改善输入输
出电路。
4、 反馈放大电路的基本关系式:
A f =A /( 1+AF ),其(1+AF )称反馈深度,当(1+AF ) 远远大于是1
时为深度负反馈,其 A f =1/ F ,即负反馈后的放大倍数大大下降,且仅由 反馈网络参数就可求放大倍数,而与运放器内部参数无关。
5、 负反馈有四种类型:电压串联负反馈:电压反馈可减小输出电阻,从而稳定输出电压。
电压并联负反馈;
电流串联负反馈; 电流并联负反馈。
电阻。
6、对集成运算放大器反馈类型的经验判断方法是:
当反馈元件(或网络)搭回到反相输入端为负反馈;搭回到同相输入端为正反馈。
当反馈元件(或网络)搭回到输入端为并联反馈,搭回到输入端的另一端为串联反馈。
当反馈元件(或网络)搭在输出端为电压反馈,否则为电流反馈。
而一般的判断方法:若反馈信号使净输入减少, 为负反馈,反之为正反馈。
(用瞬时极性
判断)
若满足Ui=Uid+Uf 为串联反馈,满足 若反馈信号正比输出电压,
为电流反馈。
如(ftl
Qi
如(B )图,由瞬
时极性判得电路有两级的电流并联负反馈。
联,但不是搭在输出端,所以是电流反馈,即 1、 2、
①提高电压放大倍数的稳定度;②
O
电流反馈可增大输出电阻,从而稳定输出电流。
串联反馈可增大输入电阻。
并联反馈可减小输入
li=lid+lf 为并联反馈。
为电压反馈,反馈信号正比输出电流,
■+
D D
D
反馈元件为
Rf (因Rf 搭在输入端,所以是
并。