最新九上反比例函数提高题及常考题型和压轴题(含解析)
中考数学压轴题之反比例函数(中考题型整理,突破提升)及详细答案.doc

中考数学压轴题之反比例函数(中考题型整理 ,突破提升 )及详细答案一、反比例函数1.如图,点 A 在函数 y=(x>0)图象上,过点 A 作 x 轴和 y 轴的平行线分别交函数y= 图象于点B,C,直线 BC 与坐标轴的交点为D, E.(1)当点 C 的横坐标为 1 时,求点 B 的坐标;(2)试问:当点 A 在函数 y= ( x> 0)图象上运动时,△ ABC 的面积是否发生变化?若不变,请求出△ ABC 的面积,若变化,请说明理由.(3)试说明:当点 A 在函数 y=(x>0)图象上运动时,线段BD 与 CE的长始终相等.【答案】(1)解:∵点 C 在 y=的图象上,且 C 点横坐标为1,∴C(1 ,1),∵AC∥y 轴, AB∥ x 轴,∴A 点横坐标为1,∵A 点在函数 y=(x>0)图象上,∴A(1, 4),∴B 点纵坐标为4,∵点 B 在 y=的图象上,∴B 点坐标为(,4);(2)解:设A( a,),则C(a,),B(,),∴AB=a﹣= a, AC=﹣=,∴S△ABC= AB?AC=× × =,即△ ABC的面积不发生变化,其面积为;(3)解:如图,设AB 的延长线交y 轴于点 G, AC 的延长线交x 轴于点 F,∵AB∥ x 轴,∴△ ABC∽ △ EFC,∴= ,即= ,∴E F= a,由( 2)可知 BG=a,∴B G=EF,∵AE∥ y 轴,∴∠ BDG=∠ FCE,在△ DBG和△ CFE中∴△ DBG≌ △ CEF( AAS),∴B D=EF.【解析】【分析】( 1)由条件可先求得 A 点坐标,从而可求得 B 点纵坐标,再代入y= 可求得 B 点坐标;( 2)可设出 A 点坐标,从而可表示出C、 B 的坐标,则可表示出A B 和AC 的长,可求得△ ABC的面积;( 3)可证明△ ABC∽ △ EFC,利用( 2)中, AB 和 AC 的长可表示出 EF,可得到 BG=EF,从而可证明△ DBG≌ △ CFE,可得到 DB=CF.2.已知反比例函数y=的图象经过点A(﹣,1).(1)试确定此反比例函数的解析式;(2)点 O 是坐标原点,将线段OA 绕 O 点顺时针旋转30°得到线段 OB.判断点 B 是否在此反比例函数的图象上,并说明理由;(3)已知点P(m,m+6)也在此反比例函数的图象上(其中m< 0),过P 点作 x 轴的垂线,交x 轴于点 M .若线段PM 上存在一点Q,使得△ OQM 的面积是,设Q点的纵坐标为 n,求 n2﹣ 2n+9 的值.【答案】(1)解:由题意得1=,解得k=﹣,∴反比例函数的解析式为y=﹣(2)解:过点 A 作 x 轴的垂线交x 轴于点 C.在 Rt△ AOC中, OC=,AC=1,∴OA==2,∠ AOC=30 ,°∵将线段 OA 绕 O 点顺时针旋转30 °得到线段OB,∴∠ AOB=30 ,°OB=OA=2,∴∠ BOC=60 .°过点 B 作 x 轴的垂线交x 轴于点 D.在 Rt△ BOD 中, BD=OB?sin∠ BOD=,OD=OB=1,∴B 点坐标为(﹣ 1 ,),将 x=﹣ 1 代入 y=﹣中,得y=,∴点 B(﹣ 1,)在反比例函数y=﹣的图象上(3)解:由y=﹣得xy=﹣,∵点 P( m,m+6)在反比例函数∴m(m+6) =﹣,∴m2+2m+1=0,y=﹣的图象上,其中m< 0,∵PQ⊥ x 轴,∴ Q 点的坐标为( m, n).∵△ OQM 的面积是,∴OM?QM= ,∵m< 0,∴ mn=﹣ 1,∴m2n2 +2mn2 +n2=0,∴n 2﹣ 2 n=﹣1,∴n 2﹣ 2 n+9=8.【解析】【分析】( 1)由于反比例函数y= 的图象经过点 A(﹣, 1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点 A 的坐标,可求出OA 的长度,∠AOC 的大小,然后根据旋转的性质得出∠AOB=30 ,°OB=OA,再求出点B 的坐标,进而判断点 B 是否在此反比例函数的图象上;(3)把点 P( m,m+6)代入反比例函数的解析式,得到关于m 的一元二次方程;根据题意,可得Q 点的坐标为( m, n ),再由△OQM 的面积是,根据三角形的面积公式及式变形,把mn 的值代入,即可求出n2﹣2m< 0,得出n+9 的值.mn 的值,最后将所求的代数3 .如图,在平面直角坐标系xOy 中,一次函数y=kx+b( k≠0)的图象与反比例函数的图象交于二四象限内的 A、B 两点,与 x 轴交于 C 点,点 B 的坐标为( 6 ,n ),线段 OA=5 , E 为 x 轴负半轴上一点,且 sin∠ AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△ AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x 的取值范围.【答案】(1)解:作 AD⊥ x 轴于 D,如图,在 Rt△ OAD 中,∵ sin∠ AOD==,∴AD= OA=4,∴OD==3,∴A(﹣ 3, 4),把 A(﹣ 3, 4)代入 y=得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B( 6,n )代入 y=﹣得6n=﹣12,解得n=﹣2,把 A(﹣ 3, 4)、 B(6,﹣ 2)分别代入y=kx+b 得,解得,所以一次函数解析式为y=﹣x+2(2)解:当 y=0 时,﹣x+2=0,解得 x=3,则 C(3, 0),所以 S△AOC× 4× 3=6= (3)解:当 x<﹣ 3 或 0< x< 6 时,一次函数的值大于反比例函数的值【解析】【分析】(1)作 AD⊥ x 轴于 D,如图,先利用解直角三角形确定A(﹣ 3 ,4),再把 A 点坐标代入y= 可求得 m=﹣ 12,则可得到反比例函数解析式;接着把B( 6, n)代入反比例函数解析式求出n,然后把 A 和 B 点坐标分别代入 y=kx+b 得到关于 a、 b 的方程组,再解方程组求出 a 和 b 的值,从而可确定一次函数解析式;( 2 )先确定 C 点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.4.如图,直线y=2x+6 与反比例函数y=(k>0)的图象交于点A( 1, m),与 x 轴交于点 B,平行于x 轴的直线y=n( 0< n< 6)交反比例函数的图象于点M,交 AB 于点 N,连接 BM.(1)求 m 的值和反比例函数的表达式;(2)观察图象,直接写出当x> 0 时不等式2x+6﹣<0的解集;(3)直线 y=n 沿 y 轴方向平移,当 n 为何值时,△ BMN 的面积最大?最大值是多少?【答案】(1)解:∵直线 y=2x+6 经过点 A(1 ,m),∴m=2 × 1+6=8,∴A(1, 8),∵反比例函数经过点A(1, 8),∴k=8,∴反比例函数的解析式为y=.(2)解:不等式2x+6﹣<0的解集为0< x<1.(3)解:由题意,点M , N 的坐标为M(,n),N(,n),∵0< n< 6,∴< 0,∴ ﹣>0△BMN M×(﹣)× n=﹣2+ ,∴S= |MN| × |y|= ( n﹣ 3)∴n=3 时,△ BMN 的面积最大,最大值为.【解析】【分析】( 1)求出点 A 的坐标,利用待定系数法即可解决问题;(2)由图象直接求得;(3)构建二次函数,利用二次函数的最值即可解决问题.5.如图,反比例函数的图象与一次函数y=kx+5(k 为常数,且k≠0)的图象交于 A (﹣ 2, b), B 两点.(1)求一次函数的表达式;(2)若将直线 AB 向下平移 m( m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求 m 的值.【答案】(1)解:把 A(﹣ 2, b)代入,得 b=﹣=4,所以 A 点坐标为(﹣2, 4),把A(﹣ 2, 4)代入 y=kx+5,得﹣ 2k+5=4,解得 k= ,所以一次函数解析式为 y= x+5;(2)解:将直线AB 向下平移m( m>0)个单位长度得直线解析式为y=x+5﹣ m,根据题意方程组只有一组解,消去 y 得﹣=x+5﹣ m,整理得x2﹣( m﹣ 5) x+8=0,△=( m﹣5)2﹣ 4××8=0,解得 m=9 或 m=1,即 m 的值为 1 或 9.【解析】【分析】( 1)先利用反比例函数解析式求出b=4,得到然后把 A 点坐标代入y=kx+5 中求出 k,从而得到一次函数解析式;A 点坐标为(-2,4),(2)由于将直线 AB 向下平移 m( m> 0)个单位长度得直线解析式为与反比例函数有且只有一个公共点,可组成方程组,且只有一组解,然后消去x 的一元二次方程,再根据判别式 =0 得到关于 m 的方程,最后解方程求出y=m,又y 得到关于的值 .6.如图,一次函数的图象与反比例函数的图象交于第一象限C, D 两点,坐标轴交于A、 B 两点,连结OC,OD( O 是坐标原点).(1)利用图中条件,求反比例函数的解析式和m 的值;(2)求△ DOC 的面积 .(3)双曲线上是否存在一点 P,使得△ POC 和△ POD 的面积相等?若存在,给出证明并求出点 P 的坐标;若不存在,说明理由 .【答案】(1)解:将C(1, 4)代入反比例函数解析式可得:k=4,则反比例函数解析式为:,将 D(4, m)代入反比例函数解析式可得:m=1(2)解:根据点 C 和点 D 的坐标得出一次函数的解析式为: y=- x+5 则点A 的坐标为 (0, 5),点B 的坐标为 (5, 0)∴S△DOC=5 × 5÷2-5× 1÷2-5× 1÷ 2=7.5(3)解:双曲线上存在点 P(2,2),使得 S△ POC=S△ POD,理由如下:∵C 点坐标为: (1,4),D 点坐标为: (4,1),∴OD=OC=,∴当点 P 在∠ COD 的平分线上时,∠ COP=∠ POD,又OP=OP,∴△ POC≌ △ POD,∴S△POC=S△POD.∵C 点坐标为: (1,4),D 点坐标为: (4,1),可得∠ COB=∠ DOA,又∵ 这个点是∠ COD 的平分线与双曲线的y= 交点,∴∠ BOP=∠ POA,∴P 点横纵坐标坐标相等,即xy=4, x2=4,∴x= ±2,∵x>0,∴x=2, y=2,故 P 点坐标为 (2,2),使得△ POC和△ POD的面积相等利用点 CD 关于直线 y=x 对称 ,P(2,2)或 P(-2,-2).答:存在, P(2, 2)或 P(-2, -2)【解析】【分析】( 1)观察图像,根据点 C 的坐标可求出函数解析式及m 的值。
中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题反比例函数综合(八大题型+解题方法)1.求交点坐标联立反比例函数与一次函数图象的解析式进行求解,特别地,反比例函数与正比例函数图象的两个交点关于原点对称.2.结合图象比较函数值的大小如图,一次函数y=k1x+b与反比例函数图象交于A,B 两点,过点A,B分别作y 轴的平行线,连同y 轴,将平面分为I,Ⅱ,Ⅲ,IV 四部分,在I,Ⅲ区域内,y₁<y₂,自变量的取值范围为x<x B或0<x<x A;在Ⅱ,IV区域内,y1>y₂,自变量的取值范围为x B<x<0或x>x A.3.反比例函数系数k的几何意义及常用面积模型目录:题型1:反比例函数与几何的解答证明 题型2:存在性问题题型3:反比例函数的代数综合 题型4:动态问题、新定义综合 题型5:定值问题 题型6:取值范围问题 题型7:最值问题题型8:情景探究题(含以实际生活为背景题)题型1:反比例函数与几何的解答证明1.(2024·湖南株洲·一模)如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴上,OC 在y 轴上,4OA =,2OC =(不与B ,C 重合),反比例函数()0,0k y k x x=>>的图像经过点D ,且与AB 交于点E ,连接OD ,OE ,DE .(1)若点D 的横坐标为1. ①求k 的值;②点P 在x 轴上,当ODE 的面积等于ODP 的面积时,试求点P 的坐标; (2)延长ED 交y 轴于点F ,连接AC ,判断四边形AEFC 的形状 【答案】(1)①2;②15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭(2)四边形AEFC 是平行四边形,理由见解析【分析】(1)①根据矩形的性质得到90BCO B AOC ∠=∠=∠=︒,得()1,2D ,把()1,2D 代入()0,0ky k x x=>>即可得到结论;②由D ,E 都在反比例函数ky x =的图像上,得到1COD AOE S S ==△△,根据三角形的面积公式得到1111315241243222224ODE S =⨯−⨯⨯−⨯⨯−⨯⨯=△,设(),0P x ,根据三角形的面积公式列方程即可得到结论;(2)连接AC ,根据题意得到,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫ ⎪⎝⎭,设EF 的函数解析式为y ax b =+,解方程得到84k OF +=,求得24kCF OF AE =−==,根据平行四边形的判定定理即可得到结论.【解析】(1)解:①∵四边形ABCO 是矩形,4OA =, ∴90BCO B AOC ∠=∠=∠=︒,4BC OA ==, ∵2OC =,点D 的横坐标为1, ∴()1,2D ,2AB OC ==,∵反比例函数()0,0ky k x x =>>的图像经过点D ,∴122k =⨯=, ∴k 的值为2; ②∵()1,2D ,∴1CD =,∵D ,E 都在反比例函数2y x =的图像上,∴1COD AOE S S ==△△,∴111422AOE S OA AE AE==⋅=⨯△,∴12AE =,∴13222BE AB AE =−=−=, ∴1111315241243222224ODES =⨯−⨯⨯−⨯⨯−⨯⨯=△,∵点P 在x 轴上,ODE 的面积等于ODP 的面积, 设(),0P x ,∴115224ODP S x =⨯⨯=△, 解得:154x =或154x =−,∴点P 的坐标为15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭;(2)四边形AEFC AEFC 是平行四边形. 理由:连接AC ,∵4OA =,2OC =,D ,E 都在反比例函数()0,0ky k x x =>>的图像上,∴,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫⎪⎝⎭,设EF 的函数解析式为:y ax b =+,∴2244k a b k a b ⎧⨯+=⎪⎪⎨⎪+=⎪⎩,解得:1284a kb ⎧=−⎪⎪⎨+⎪=⎪⎩, ∴EF 的函数解析式为:1824k y x +=−+, 当0x =时,得:84ky +=,∴84k OF +=, ∴24kCF OF AE =−==,又∵CF AE ∥,∴四边形AEFC 是平行四边形.【点睛】本题是反比例函数与几何的综合,考查待定系数法确定解析式,反比例函数图像上的点的坐标的特征,矩形的性质,平行四边形的判定,三角形的面积等知识点.掌握反比例函数图像上的点的坐标的特征,矩形的性质是解题的关键.题型2:存在性问题2.(2024·四川成都·二模)如图①,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,4sin 5AOB ∠=,反比例函数(0)ky k x =>在第一象限内的图象经过点A ,与BC 交于点F .(1)若10OA =,求反比例函数解析式;(2)若点F 为BC 的中点,且AOF 的面积12S =,求OA 的长和点C 的坐标;(3)在(2)中的条件下,过点F 作EF OB ∥,交OA 于点E (如图②),点P 为直线EF 上的一个动点,连接PA ,PO .是否存在这样的点P ,使以P 、O 、A 为顶点的三角形是直角三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由. 【答案】(1)48(0)y x x =>C(3)存在,满足条件的点P 或(或或(【分析】(1)先过点A 作AH OB ⊥,根据4sin 5AOB ∠=,10OA =,求出AH 和OH 的值,从而得出A 点坐标,再把它代入反比例函数中,求出k 的值,即可求出反比例函数的解析式; (2)先设(0)OA a a =>,过点F 作FM x ⊥轴于M ,根据4sin 5AOB ∠=,得出45AH a =,35OH a=,求出AOHS △的值,根据12AOF S =△,求出平行四边形AOBC 的面积,根据F 为BC 的中点,求出6OBF S =△,根据12BF a =,FBM AOB ∠=∠,得出12BMFS BM FM =⋅,23650FOM S a =+△,再根据点A ,F 都在k y x =的图象上,12AOHSk=,求出a ,最后根据AOBC S OB AH =⋅平行四边形,得出OB AC ==C 的坐标;(3)分别根据当90APO ∠=︒时,在OA 的两侧各有一点P ,得出1P ,2P ;当90PAO ∠=︒时,求出3P ;当90POA ∠=︒时,求出4P 即可.【解析】(1)解:过点A 作AH OB ⊥于H ,4sin 5AOB ∠=,10OA =,8AH ∴=,6OH =,A ∴点坐标为(6,8),根据题意得:86k=,可得:48k =,∴反比例函数解析式:48(0)y x x =>;(2)设(0)OA a a =>,过点F 作FM x ⊥轴于M ,过点C 作CN x ⊥轴于点N , 由平行四边形性质可证得OH BN =,4sin 5AOB ∠=,45AH a ∴=,35OH a=, 2143625525AOHS a a a ∴=⋅⋅=△,12AOF S =△,24AOBC S ∴=平行四边形,F 为BC 的中点,6OBFS∴=,12BF a=,FBM AOB ∠=∠,25FM a ∴=,310BM a =,2112332251050BMF S BM FM a a a ∴=⋅=⋅⋅=△,23650FOMOBFBMFSSSa ∴=+=+,点A ,F 都在ky x =的图象上,12AOH FOM S S k ∴==△△,∴226362550a a =+,a ∴OA ∴=AH ∴=OH =24AOBC S OB AH =⋅=平行四边形,OB AC ∴==ON OB OH ∴=+=C ∴;(3)由(2)可知A ,B 0),F .存在三种情况:当90APO ∠=︒时,在OA 的两侧各有一点P ,如图,设PF 交OA 于点J ,则J此时,AJ PJ OJ ==,P ∴,(P ',当90PAO ∠=︒时,如图,过点A 作AK OB ⊥于点K ,交PF 于点L .由AKO PLA △∽△,可得PLP ,当90POA ∠=︒时,同理可得(P .综上所述,满足条件的点P 的坐标为或(或或(.【点睛】此题考查了反比例函数的综合,用到的知识点是三角函数、平行四边形、反比例函数、三角形的面积等,解题的关键是数形结合思想的运用.3.(2024·广东湛江·一模)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC BC ⊥,AB BE ⊥,ED BD ⊥,垂足分别为C ,B ,D ,AB BE =.求证:ACB BDE ≌;【类比迁移】(2)如图2,点()3,A a −在反比例函数3y x=图象上,连接OA ,将OA 绕点O 逆时针旋转90︒到OB ,若反比例函数k y x =经过点B .求反比例函数ky x=的解析式; 【拓展延伸】(3)如图3抛物线223y x x +−与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C 点,已知点()0,1Q −,连接AQ ,抛物线上是否存在点M ,便得45MAQ ∠=︒,若存在,求出点M 的横坐标.【答案】(1)见解析;(2)3y x =−;(3)M 的坐标为39,24⎛⎫ ⎪⎝⎭或()1,4−−.【分析】(1)根据题意得出90C D ABE ︒∠=∠=∠=,A EBD ∠=∠,证明()AAS ACB BDE ≌,即可得证;(2)如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .求解()3,1A −−,1AC =,3OC =.利用ACO ODB ≌△△,可得()1,3B −;由反比例函数ky x =经过点()1,3B −,可得3k =−,可得答案;(3)如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y⊥轴于点E .证明AQO QDE ≌,可得AO QE =,OQ DE =,可得()1,2D ,求解1322AM y x =+:,令2132322x x x +=+−, 可得M 的坐标为39,24⎛⎫ ⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,可得M 的坐标是()1,4−−.【解析】证明:(1)如图,∵AC BC ⊥,AB BE ⊥,ED BD ⊥, ∴90C D ABE ︒∠=∠=∠=,∴90,90ABC A ABC EBD ∠+∠=︒∠+∠=︒, ∴A EBD ∠=∠, 又∵AB BE =, ∴()AAS ACB BDE ≌.(2)①如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .将()3,A a −代入3y x =得:1a =−,∴()3,1A −−,1AC =,3OC =.同(1)可得ACO ODB ≌△△, ∴1OD AC ==,3BD OC ==, ∴()1,3B −,∵反比例函数ky x =经过点()1,3B −,∴3k =−, ∴3y x =−;(3)存在;如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y ⊥轴于点E .∵45MAQ ∠=︒,QD AQ ⊥, ∴45MAQ ADQ ∠=∠=︒, ∴AQ QD =,∵DE y ⊥轴,QD AQ ⊥,∴90AQO EQD EQD QDE ∠+∠=∠+∠=︒,90AOQ QED ∠=∠=︒, ∴AQO QDE ∠=∠, ∵AQ QD =, ∴AQO QDE ≌, ∴AO QE =,OQ DE =,令2230y x x =+−=,得13x =−,21x =,∴3AO QE ==,又()0,1Q −,∴1OQ DE ==, ∴()1,2D ,设AM 为y kx b =+,则230k b k b +=⎧⎨−+=⎩,,解得:1232k b ⎧=⎪⎪⎨⎪=⎪⎩,∴1322AM y x =+: 令2132322x x x +=+−,得132x =,23x =−(舍去), 当32x =时,233923224y ⎛⎫=+⨯−= ⎪⎝⎭, ∴39,24M ⎛⎫⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,得11x =−,23x =−(舍去)∴当=1x −时,()()212134y =−+⨯−−=−,∴()1,4M −−.综上:M 的坐标为39,24⎛⎫⎪⎝⎭或()1,4−−.【点睛】本题考查的是全等三角形的判定与性质,反比例函数的应用,二次函数的性质,一元二次方程的解法,熟练的利用类比的方法解题是关键.题型3:反比例函数的代数综合4.(2024·湖南长沙·一模)若一次函数y mx n =+与反比例函数ky x=同时经过点(),P x y 则称二次函数2y mx nx k +=-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数()122=+++y n x m 与反比例函数2024y x=存在“共享函数”()()2102024y m t x m t x ++−=-,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−,见解析 (2)2(3)2429y x x =+−或(29155y x x −−−=【分析】(1)判断21y x =−与3y x =是否有交点,计算即可;(2)根据定义,12210n m tm m t +=+⎧⎨+=−⎩,得到39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,结合8t n m <<,构造不等式组解答即可. (3)根据定义,得“共享函数”为()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=结合6m x m ≤≤+,“共享函数”的最小值为3,分类计算即可.本题考查了新定义,解方程组,解不等式组,抛物线的增减性,熟练掌握定义,抛物线的增减性是解题的关键.【解析】(1)21y x =−与3y x =存在“共享函数”,理由如下:根据题意,得213y x y x =−⎧⎪⎨=⎪⎩,解得322x y ⎧=⎪⎨⎪=⎩,13x y =−⎧⎨=−⎩,故函数同时经过3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−, 故21y x =−与3y x =存在“共享函数”.(2)∵一次函数()122=+++y n x m 与反比例函数2024y x =存在“共享函数”()()2102024y m t x m t x ++−=-,∴12210n m tm m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, ∵8t n m <<, ∴82489869n n m n n +⎧=⎪⎪⎨+⎪⎪⎩<>,解得24n 6<<, ∴327n +9<<, ∴339n +1<<,∴13m <<, ∵m 是整数, ∴2m =.(3)根据定义,得一次函数y x m =+和反比例函数213m y x +=的“共享函数”为 ()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=,∵()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=.∴抛物线开口向上,对称轴为直线2mx =−,函数有最小值25134m −−,且点与对称轴的距离越大,函数值越大,∵6m x m ≤≤+,当62mx m =−+≥时,即4m ≤−时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭>, ∴6x m =+时,函数取得最小值,且为2225613182324m m y m m m ⎛⎫=++−−=++ ⎪⎝⎭,又函数有最小值3,∴218233m m ++=,解得99m m =−=−故9m =− ∴“共享函数”为(29155y x x −−−=当2m x m =−≤时,即0m ≥时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭<, ∴x m =时,函数取得最小值,且为2225131324m m y m m ⎛⎫=+−−=− ⎪⎝⎭,又函数有最小值3,∴2133m −=,解得4,4m m ==−(舍去); 故4m =,∴“共享函数”为2429y x x =+−; 当62mm m −+<<时,即40m −<<时,∴2mx =−时,函数取得最小值,且为25134m y =−−,又函数有最小值3,∴251334m −−=, 方程无解,综上所述,一次函数y x m =+和反比例函数213m y x += 的“共享函数”为2429y x x =+−或(29155y x x −−−=5.(2024·江苏南京·模拟预测)若一次函数y mx n =+与反比例函数ky x=同时经过点(,)P x y 则称二次函数2y mx nx k =+−为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由; (2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x=存在“共享函数” 2()(10)2024y m t x m t x =++−−,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)点P 的坐标为:3(2,2)或(1,3)−−;(2)2m =(3)222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【分析】(1)联立21y x =−与3y x =并整理得:2230x x −−=,即可求解;(2)由题意得12210n m t m m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,而8t n m <<,故624n <<,则9327n <+<,故13m <<,m 是整数,故2m =;(3)①当162m m +≤−时,即4m ≤−,6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,即可求解;②当162m m m <−<+,即40m −<<,函数在12x m=−处取得最小值,即22211()13322m m m −−−−=,即可求解;③当0m ≥时,函数在x m =处,取得最小值,即可求解. 【解析】(1)解:(1)21y x =−与3y x =存在“共享函数”,理由如下:联立21y x =−与3y x =并整理得:2230x x −−=,解得:32x =或1−, 故点P 的坐标为:3(2,2)或(1,3)−−;(2)解:一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数”2()(10)2024y m t x m t x =++−−,依据“共享函数”的定义得: 12210n m tm m t +=+⎧⎨+=−⎩,解得:39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, 8t n m <<,∴8698249n n n n +⎧<⎪⎪⎨+⎪<⎪⎩, 解得:624n <<;9327n ∴<+<, 13m ∴<<,m 是整数,2m ∴=;(3)解:由y x m =+和反比例函数213m y x +=得:“共享函数”的解析式为22(13)y x mx m =+−+, 函数的对称轴为:12x m=−; ①当162m m+≤−时,即4m ≤−, 6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,解得9m =−9−②当162m m m <−<+,即40m −<<, 函数在12x m =−处取得最小值,即22211()13322m m m −−−−=,无解;③当0m ≥时,函数在x m =处,取得最小值,即222133m m m +−−=,解得:4m =±(舍去4)−,综上,9m =−4,故“共享函数”的解析式为222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【点睛】本题是一道二次函数的综合题,主要考查了一次函数与反比例函数的性质,一次函数与反比例函数图象上点的坐标的特征,二次函数的性质,一元一次不等式组的解法,一元二次方程的解法.本题是阅读型题目,理解题干中的定义并熟练应用是解题的关键.6.(2024·湖南长沙·模拟预测)我们规定:若二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)与x 轴的两个交点的横坐标1x ,2x 满足122x x =−,则称该二次函数为“强基函数”,其中点()1,0x ,()2,0x 称为该“强基函数”的一对“基点”.(1)判断:下列函数中,为“强基函数”的是______(仅填序号).①228y x x =−−;②21y x x =++.(2)已知二次函数()2221y x t x t t =−+++为“强基函数”,求:当12x −≤≤时,函数22391y x tx t =+++的最大值.(3)已知直线1y x =−+与x 轴交于点C ,与双曲线()20y x x=−<交于点A ,点B 的坐标为()3,0−.若点()1,0x ,()2,0x 是某“强基函数”的一对“基点”,()12,P x x 位于ACB △内部.①求1x 的取值范围;②若1x 为整数,是否存在满足条件的“强基函数”2y x bx c =++?若存在,请求出该“强基函数”的解析式;若不存在,请说明理由. 【答案】(1)① (2)当23t =−时函数最大值为8或当13t =−时函数最大值为4;(3)①1x 的取值范围是:120x −<<或110x −<<;②21122y x x =+−【分析】(1)根据抛物线与x 轴的交点情况的判定方法分别判定①与②与x 轴的交点情况,再求解交点坐标,结合新定义,从而可得答案; (2)由()22210y x t x t t =−+++=时,可得1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,根据新定义可得23t =−或13t =−,再分情况求解函数的最大值即可;(3))①先得到点A 、B 、C 的坐标,然后分122x x =−或212x x =−两种情况,列出关于1x 的不等式组,然后解不等式组即可;②根据1x 为整数,先求出1x 的值,然后根据二次函数的交点式直接得到二次函数的解析式即可.【解析】(1)解:①∵228y x x =−−; ∴()()2Δ2418432360=−−⨯⨯−=+=>,∴抛物线与x 轴有两个交点,∵228=0x x −−,∴14x =,22x =−,∴122x x =−,∴228y x x =−−是“强基函数” ②∵21y x x =++, ∴214111430∆=−⨯⨯=−=−<,∴抛物线与x 轴没有交点,∴21y x x =++不是“强基函数” 故答案为:①; (2)∵二次函数()2221y x t x t t=−+++为“强基函数”,∴()()22Δ21410t t t ⎡⎤=−+−+=>⎣⎦,∵()22210y x t x t t =−+++=时, ∴1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,∴()21t t =−+或12t t +=−,解得:23t =−或13t =−,当23t =−时,函数为225y x x =−+,如图,∵12x −≤≤,此时当=1x −时,函数最大值为1258y =++=; 当13t =−时,函数为22y x x =−+,如图,∵12x −≤≤,此时当=1x −或2x =时,函数最大值为1124y =++=;(3)①联立()201y x x y x ⎧=−<⎪⎨⎪=−+⎩,解得:12x y =−⎧⎨=⎩, ∴点A 的坐标为:()1,2−,把0y =代入 1y x =−+得:10x −+=, 解得:1x =,∴点C 的坐标为()1,0, 设直线AB 为1y kx b =+,∴11302k b k b −+=⎧⎨−+=⎩,解得:113k b =⎧⎨=⎩,∴直线AB 的解析式为:3y x =+, ∵点()1,0x ,()2,0x 是某“强基函数”的一对“基点”, ()12,P x x 位于ACB △内部.当122x x =−时, ∴111,2P x x ⎛⎫− ⎪⎝⎭, ∴点P 在直线2xy =−上,∵点111,2P x x ⎛⎫− ⎪⎝⎭位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111103212x x x x x ⎧⎪<⎪⎪−+⎨⎪⎪−−+⎪⎩<<, 解得:120x −<<;当212x x =−时,∵P 点坐标为()11,2x x −,∴点P 在直线2y x =−上,∵点P 位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111102321x x x x x <⎧⎪−<+⎨⎪−<−+⎩,解得:110x −<<;综上分析可知,1x 的取值范围是:120x −<<或110x −<<;②存在;理由如下:∵1x 为整数,∴当120x −<<时,11x =−,∴此时212x =,此时,“强基函数”的一对“基点”为()1,0−,1,02⎛⎫ ⎪⎝⎭, ∴“强基函数”为()21111222y x x x x ⎛⎫=+−=+− ⎪⎝⎭; 当110x −<<时,则没有符合条件的整数1x 的值,不存在符合条件的“强基函数”; 综上,“强基函数”为21122y x x =+−. 【点睛】本题考查的是一次函数,反比例函数,二次函数的综合应用,新定义的含义,本题难度大,灵活应用各知识点,理解新定义的含义是解题的关键.题型4:动态问题、新定义综合7.(2024·山东济南·一模)如图1,直线14y ax =+经过点()2,0A ,交反比例函数2k y x=的图象于点()1,B m −,点P 为第二象限内反比例函数图象上的一个动点.(1)求反比例函数2y 的表达式;(2)过点P 作PC x ∥轴交直线AB 于点C ,连接AP ,BP ,若ACP △的面积是BPC △面积的2倍,请求出点P 坐标;(3)平面上任意一点(),Q x y ,沿射线BA Q ',点Q '怡好在反比例函数2k y x=的图象上;①请写出Q 点纵坐标y 关于Q 点横坐标x 的函数关系式3y =______;②定义}{()()min ,a a b a b b a b ⎧≤⎪=⎨>⎪⎩,则函数{}13min ,Y y y =的最大值为______. 【答案】(1)26y x =−(2)点P 坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭ (3)①3621y x =−++;②8【分析】本题考查了反比例函数与一次函数的交点问题,坐标与图形,解题的关键是运用分类讨论的思想.(1)先根据点()2,0A 求出1y 的解析式,然后求出点B 的坐标,最后将点B 的坐标代入2y 中,求出k ,即可求解;(2)分两种情况讨论:当点P 在AB 下方时,当点P 在AB 上方时,结合“若ACP △的面积是BPC △面积的2倍”,求出点C 的坐标,将点C 的纵坐标代入反比例函数解析式,即可求解;(3)①根据题意可得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',则()1,2Q x y +'−,将其代入26y x =−中,即可求解;②分为:当{}131min ,Y y y y ==时,13y y ≤;当{}133min ,Y y y y ==时,13y y >;分别解不等式即可求解.【解析】(1)解:直线14y ax =+经过点()2,0A ,,∴240x +=, 解得:2a =−,∴124y x =−+,点()1,B m −在直线124y x =−+上,∴()2146m =−⨯−+=,∴()1,6B −,∴166k =−⨯=−, ∴26y x =−;(2)①当点P 在AB 下方时,2ACP BPC S S =,∴:2:1AC BC =,过点C 作CH x ⊥轴于点H ,过点B 作BR x ⊥轴于点R ,∴23AC CH AB BR ==, ∴23C B y y =,()1,6B −,∴4C y =,把4C y =代入26y x =−中, 得:32C x =−, ∴3,42P ⎛⎫− ⎪⎝⎭; ②当点P 在AB 上方时,2ACP BPC S S =,∴:1:1AB BC =,∴B 为AC 的中点,()2,0A ,()1,6B −,∴()4,12C −,把12y =代入26y x =−中,得:12x =−, ∴1,122P ⎛⎫− ⎪⎝⎭,综上所述,点P 的坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭;(3)① 由(),Q x y ,沿射线BA Q ', 得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',∴()1,2Q x y +'−,点()1,2Q x y +'−恰好在反比例函数26y x =−的图象上, ∴621y x −=−+, ∴3621y x =−++;②a .当{}131min ,Y y y y ==时,13y y ≤, 即62421x x −+≤−++, 当1x >−时,()()()2141621x x x x −+++≤−++,解得:2x ≥或2x ≤−(舍去),∴2x =时,函数{}131min ,Y y y y ==有最大值,最大值为2240−⨯+=;当1x <−时,()()()2141621x x x x −+++≥−++,解得:21x −≤<−,∴2x =−时,函数{}131min ,Y y y y ==有最大值,最大值为()2248−⨯−+=;b .当{}133min ,Y y y y ==时,13y y >, 即62421x x −+>−++,当1x >−时,()()()2141621x x x x −+++>−++,解得:2x >或<2x −(舍去), ∴362021y >−+=+,即0Y >;当1x <−时,()()()2141621x x x x −+++<−++,解得:2<<1x −−,∴328y <<,即28Y <<;综上所述,函数{}13min ,Y y y =的最大值为8,故答案为:8.8.(2024·四川成都·一模)如图,矩形OABC 交反比例函数k y x=于点D ,已知点()0,4A ,点()2,0C −,2ACD S =△.(1)求k 的值;(2)若过点D 的直线分别交x 轴,y 轴于R ,Q 两点,2DRDQ =,求该直线的解析式; (3)若四边形有一个内角为60︒,且有一条对角线平分一个内角,则称这个四边形为“角分四边形”.已知点P在y 轴负半轴上运动,点Q 在x 轴正半轴上运动,若四边形ACPQ 为“角分四边形”,求点P 与点Q 的坐标.【答案】(1)4k =−;(2)26y x =+或22y x =−+;(3)(()020P ,,Q ,−或 ()()04320P ,,−或()()040P ,,Q −【分析】(1)利用面积及矩形的性质,用待定系数法即可求解;(2)分两种情况讨论求解:R 在x 轴正半轴上和在负半轴上两种情况分别求解即可;(3)分三种情况:当AO 平分CAQ ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60AQP ∠=︒时,分别结合图形求解. 【解析】(1)解:2ACD S =△, 即122AD OA ⨯⨯=, ()0,4A ,1422AD ∴⨯=,1AD ∴=,()1,4D ∴−, 41k∴=−,4k ∴=−;(2)①如图,当2DR DQ =时,13DQ RQ =,AD OR ,13DQ AD RQ OR ∴==,1AD =,3OR ∴=,()3,0R ∴−,设直线RQ 为11y k x b =+, 把()3,0R −,()1,4D −代入11y k x b =+,得1111304k b k b −+=⎧⎨−+=⎩,解得1126k b =⎧⎨=⎩,直线RQ 为26y x =+,②如图,当2DR DQ =时,1DQ RQ =,AD OR ,1DQ AD RQ OR ∴==,1AD =,1OR ∴=,()1,0R ∴,设直线RQ 为22y k x b =+,把()1,0R ,()1,4D −代入22y k x b =+,得222204k b k b +=⎧⎨−+=⎩,解得2222k b =−⎧⎨=⎩,直线RQ 为22y x =−+,综上所述,直线RQ 的表达式为26y x =+或22y x =−+;(3)解:①当AO 平分CAQ ∠,60CPQ ∠=︒时,CAO QAO AO AOAOC AOQ ∠=∠⎧⎪=⎨⎪∠=⎩,()ASA AOC AOQ ∴≌, CO QO ∴=即AP 垂直平分CQ ,()2,0Q ∴,60CPQ ∠=︒,30CPO ∴∠=︒,tan30OC OP ∴===︒,(0,P ∴−,②当CO 平分ACP ∠,60CPQ ∠=︒时,同理ACO PCO ≌,得4OA OP ==,()0,4P ∴−,PC == 作CM PQ ⊥于M ,60CPQ ∠=︒,1cos602PM PC ∴=⨯︒==sin60CM PC =⨯︒== 90POQ CMQ ,PQO PQO ∠=∠=︒∠=∠,CMQ POQ ∴∽,MQ CM OQ OP ∴=,即MQ OQ =,)2222OQ OP PQ MQ +==② ,联立①,②,解得32OQ =或32OQ =(舍),()32,0Q ∴,③当CO 平分ACP ∠,60AQP ∠=︒时,同理 ACO PCO ≌,得4OA OP ==,AC CP = 同理ACQ PCQ ≌,得AQ PQ =∴APQ 是等边三角形()0,4P ∴−,8AP AQ PQ ,===OQ =, ()Q ∴,综上所述,P 、Q 的坐标为(()0,,2,0P Q −或 ()()0,4,32,0P Q −或()()0,4,P Q −.【点睛】此题是反比例函数综合题,主要考查了待定系数法,解直角三角形,求一次函数解析式,相似三角形的性质和判定,正确作出辅助线,解方程组,灵活运用待定系数法求函数解析式是解本题的关键. 题型5:定值问题9.(2024·山东济南·模拟预测)如图①,已知点()1,0A −,()0,2B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT 的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)()0,6或()0,2或()0,6− (3)12MN HT =,其值不发生改变,证明见解析【分析】(1)根据中点坐标公式可得,1D x =,设()1,D t ,由平行四边形对角线中点坐标相同可知()2,2C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:∵()1,0A −,E 为AD 中点且点E 在y 轴上,1D x ∴=, 设()1,D t ,()C m n ,,∵四边形ABCD 是平行四边形,∴AC BD 、的中点坐标相同, ∴101222022m t n +−⎧=⎪⎪⎨−+⎪=⎪⎩, ∴22m n t ==−,()22C t ∴−,,∵C 、D 都在反比例函数4y x =的图象上,()22k t t ∴==−,4t ∴=, 4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,①当AB 为边时:如图1,若ABPQ 为平行四边形,则1002240422p q p −++⎧=⎪⎪⎨−⎪−=⎪⎩,解得16p q =⎧⎨=⎩,此时()11,4P ,()10,6Q ;如图2,若ABQP 为平行四边形,则1002242022p q p −++⎧=⎪⎪⎨−+⎪+=⎪⎩,解得16p q =−⎧⎨=−⎩,此时()21,4P −−,()20,6Q −;②如图3,当AB 为对角线时,则010*******p q p +−+⎧=⎪⎪⎨+⎪−=⎪⎩解得12p q =−⎧⎨=⎩,()31,4P ∴−−,()30,2Q ;综上所述,满足题意的Q 的坐标为()0,6或()0,2或()0,6−;(3)解:12MN HT =,其值不发生改变,证明如下: 如图4,连NH 、NT 、NF ,∵M 是HT 的中点,MN HT ⊥,∴MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,45ABF ABH ∴∠=∠=︒,在BFN 与BHN △中,BF BH NBF NBH BN BN =⎧⎪∠=∠⎨⎪=⎩,()SAS BFN BHN ∴≌,NF NH NT ∴==,BFN BHN ∠=∠,∵90BFA BHA ==︒∠∠,NTF NFT AHN ∴∠=∠=∠,∵180ATN NTF ∠+∠=︒,∴180ATN AHN ∠+∠=︒,∴3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.10.(2024·山东济南·二模)如图①,已知点(1,0)A −,(0,2)B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)1(0,6)Q ,2(0,6)Q −,3(0,2)Q(3)结论:MN HT 的值不发生改变,12MN HT =证明见解析【分析】(1)设(1,)D t ,由DC AB ∥,可知(2,2)C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设(0,)Q y ,4(,)P x x ,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:(1,0)A −,(0,2)B −,E 为AD 中点, 1D x ∴=,设(1,)D t ,又DC AB ∥,(2,2)C t ∴−,24t t ∴=−,4t ∴=,4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设(0,)Q y ,4(,)P x x , ①当AB 为边时:如图1,若ABPQ 为平行四边形,则102x −+=,解得1x =,此时1(1,4)P ,1(0,6)Q ;如图2,若ABQP 为平行四边形,则122x −=, 解得=1x −,此时2(1,4)P −−,2(0,6)Q −;②如图3,当AB 为对角线时,AP BQ =,且AP BQ ∥; ∴122x −=,解得=1x −,3(1,4)P ∴−−,3(0,2)Q ;故1(1,4)P ,1(0,6)Q ;2(1,4)P −−,2(0,6)Q −;3(1,4)P −−,3(0,2)Q ;(3) 解:结论:MNHT 的值不发生改变,理由:如图4,连NH 、NT 、NF ,MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,ABF ABH ∴∠=∠,在BFN 与BHN △中,BF BH ABF ABH BN BN =⎧⎪∠=∠⎨⎪=⎩,()BFN BHN SAS ∴≌,NF NH NT ∴==, NTF NFT AHN ∴∠=∠=∠,四边形ATNH 中,180ATN NTF ∠+∠=︒,而NTF NFT AHN ∠=∠=∠,所以,180ATN AHN ∠+∠=︒,所以,四边形ATNH 内角和为360︒,所以3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.【点睛】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.题型6:取值范围问题11.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =−−∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =−,②41y x =−,③23y x =−+,④31y x =−−中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号) (2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =−+是函数2)304(2y x x x =−++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.【答案】(1)①④;(2)25y x =−+;(3)7t ≤−或9t ≥.【分析】(1)根据定义,结合图象,可判断出直线为3y x =−或31y x =−−与双曲线6(0)y x x =<及正方形ABCD最多有一个公共点,即可求解;(2)先作出以原点O 为圆心且经过EDF 的顶点D 的圆,再过点D 作O 的切线,求出该直线的解析式即可;(3)先由抛物线与直线组成方程组,则该方程组有唯一一组解,再考虑直线与正方形有唯一公共点的情形,数形结合,分类讨论,求出t【解析】(1)解:如图,从图可知,2y x =−与双曲线6(0)y x x =<和正方形OABC 只有一个公共点,31y x =−−与双曲线6(0)y x x =<和正方形OABC 没有公共点,41y x =−、23y x =−+不在双曲线6(0)y x x =<及正方形ABCD 之间, 根据“楚河汉界线”定义可知,直线2y x =−,31y x =−−是双曲线6(0)y x x =<与正方形OABC 的“楚河汉界线”, 故答案为:①④;(2)解:如图,连接OD ,以O 为圆心,OD 长为半径作O ,作DG x ⊥轴于点G ,过点D 作O 的切线DM ,则MD OD ⊥,∵MD OD ⊥,DG x ⊥轴, ∴90ODM OGD ∠=∠=︒, ∴90MOD OMD ∠+∠=︒, ∵90MOD DOG ∠+∠=︒, ∴OMD DOG ∠=∠, ∴tan tan OMD DOG ∠=∠, ∵()2,1D ,∴1DG =,2OG =,∴1tan tan 2DG OMD DOG OG ∠=∠==,OG ==∵tan ODOMD DM ∠=,∴12=,∴1122MN DM ∴==⨯=∴5OM =,∴()0,5M ,设直线MD 的解析式为y mx n =+,把()0,5M 、()2,1D 代入得,521n m n =⎧⎨+=⎩,解得25m n =−⎧⎨=⎩,∴25y x =−+,∴EDF 与O 的“楚河汉界线”为25y x =−+; (3)解:由2223y x b y x x =−+⎧⎨=−++⎩得,2430x x b −+−=, ∵直线与抛物线有唯一公共点, ∴0=,∴164120b −+=,解得7b =, ∴此时的“楚河汉界线”为27y x =−+,当正方形1111D C B A 在直线27y x =−+上方时,如图,∵点()2,M t 是此正方形的中心,∴顶点()10,2A t −,∵顶点()10,2A t −不能在直线27y x =−+下方,得27t −≥,解得9t ≥;当正方形1111D C B A 在直线27y x =−下方时,如图,对于抛物线223y x x =−++,当0x =时,3y =;当4x =时,5y =−; ∴直线23y x =−+恰好经过点()0,3和点()4,5−;对于直线23y x =−+,当4x =时,5y =−,由()12,2C t +不能在直线23y x =−+上方,得25t ≤−+, 解得7t ≤−;综上所述,7t ≤−或9t ≥.【点睛】此题考查了一次函数、正方形的性质、三角函数、一次函数的应用、二元二次方程组,一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.题型7:最值问题12.(2024·辽宁·一模)【发现问题】随着时代的发展,在现代城市设计中,有许多街道是设计的相互垂直或平行的,因此往往不能沿直线行走到目的地,只能按直角拐弯的方式行走.我们可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间的“折线距离”:()1212,d A B x x y y =−+−.【提出问题】(1)①已知点()4,1A ,则(),d O A =______;②函数()2630y x x =+−≤≤的图象如图1,B 是图象上一点,若(),5d O B =,则点B 的坐标为______; (2)函数()30y x x=>的图象如图2,该函数图象上是否存在点C ,使(),2d O C =?若存在,求出其坐标;若不存在,请说明理由; 【拓展运用】(3)已知函数()21460y x x x =−+≥和函数()2231y x x =+≥−的图象如图3,D 是函数1y 图象上的一点,E是函数2y 图象上的一点,当(),d O D 和(),d O E 分别取到最小值的时候,请求出(),d D E 的值.【答案】(1)①5;②()14,(2)不存在,理由见解析(3)()15,4d D E =【分析】本题在新定义下考查了一次方程和分式方程的解法,二次函数的最值,关键是紧靠定义来构造方程和函数.(1)①代入定义中的公式求; ②设出函数()2630y x x =+−≤≤的图象上点B 的坐标,通过(),5d O B =建立方程,解方程;(2)设出函数()30y x x =>的图象上点C 的坐标,通过(),2d O C =建立方程,看方程解的情况;(3)设出函数()21460y x x x =−+≥的图象上点D 的坐标,将()d O D ,表示成函数,利用二次函数的性质求函数最值,可求得点D 的坐标;设出函数()2231y x x =+≥−的图象上点E 的坐标,利用一次函数的性质,可求得点E 的坐标;再按定义求得(),d D E 的值即可.【解析】 解:(1)①∵点()4,1A ,点()00O ,,∴()40105d O A =−+−=,;故答案为:5; ②设点()26B x x +,,∵(),5d O B =, ∴265x x ++=,∵30x −≤≤, ∴265x x −++=, ∴=1x −, ∴点()14B ,.故答案为:()14,; (2)不存在,理由如下:设点3C m m ⎛⎫ ⎪⎝⎭,, ∵(),2d O C =,∴32m m +=,∵0m >, ∴32m m +=,∴2230m m −+=,∵80∆=−<,∴此方程没有实数根, ∴不存在符合条件的点C ;(3)设点D 为()246n nn −+,,∴()246d O D n n n =+−+,,∵0n ≥,()2246220n n n −+=−+>,∴()222315463624d O D n n n n n n ⎛⎫=+−+=−+=−+⎪⎝⎭,, ∴当32n =时,()d O D ,最小,最小值为154,此时点D 坐标为3924⎛⎫ ⎪⎝⎭,. 设点E 为()23e e +,,∴()23d O Ee e =++,,当10e −≤<时,()233d O Ee e e =−++=+,,∴当1e =−时,()d O E ,最小,最小值为2;当0e ≥时,()2333d O Ee e e =++=+,,∴当0e =时,()d O E ,最小,最小值为3;∴此时点E 坐标为()11−,.∴()395515,1124244d D E =−−+−=+=.13.(2024·四川成都·模拟预测)如图,在平面直角坐标系中,已知直线132y x =−与反比例函数ky x=的图象交于点()8,Q t ,与y 轴交于点R ,动直线()08x m m =<<与反比例函数的图象交于点K ,与直线QR 交于点T .(1)求t 的值及反比例函数的表达式;(2)当m 为何值时,RKT △的面积最大,且最大值为多少? (3)如图2,ABCO 的顶点C 在反比例函数()0ky x x=>的图象上,点P 为反比例函数图象上一动点,过点P 作MN x ∥轴交OC 于点N ,交AB 于点M .当点P 的纵坐标为2,点C 的横坐标为1且8OA =时,求PNPM的值.【答案】(1)1t =,反比例函数的表达式为8y x =; (2)当3m =时,RKT △的面积最大,且最大值为254;(3)1517PN PM =【分析】(1)将()8,Q t 代入直线132y x =−,求出t 的值,再将点Q 的坐标代入反比例函数,求出k 的值,即可得到反比例函数解析式;(2)设8,K m m ⎛⎫ ⎪⎝⎭,1,32T m m ⎛⎫− ⎪⎝⎭,则81813322KT m m m m ⎛⎫=−−=−+ ⎪⎝⎭,进而表示出 RKT RTKQTKS SS=+△()2125344m =−−+,结合二次函数的性质,即可求出最值;(3)先求出P 、C 两点的坐标,再利用待定系数法求出直线OC 的解析式,进而得到点N 的坐标,得出PN的长,然后利用平行四边形的性质,得出PM 的长,即可求出PNPM 的值.【解析】(1)解:()8,Q t 在直线132y x =−上,18312t ∴=⨯−=,()8,1Q ∴,()8,1Q 在反比例函数ky x =上,818k ∴=⨯=,。
中考数学反比例函数提高练习题压轴题训练及答案解析

中考数学反比例函数提高练习题压轴题训练及答案解析一、反比例函数1.如图,平行于y轴的直尺(一部分)与双曲线y= (k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.(1)求k的值;(2)求经过A、C两点的直线的解析式;(3)连接OA、OC,求△OAC的面积.【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,∴A的坐标是(2,3),代入y= 得3= ,解得:k=6(2)解:OD=2+2=4,在y= 中令x=4,解得y= .则C的坐标是(4,).设AC的解析式是y=mx+n,根据题意得:,解得:,则直线AC的解析式是y=﹣ x+(3)解:直角△AOB中,OB=2,AB=3,则S△AOB= OB•AB= ×2×3=3;直角△ODC中,OD=4,CD= ,则S△OCD= OD•CD= ×4× =3.在直角梯形ABDC中,BD=2,AB=3,CD= ,则S梯形ABDC= (AB+DC)•BD= (3+ )×2= .则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+ ﹣3=【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.2.如图,反比例函数y1= 的图象与一次函数y2= x的图象交于点A、B,点B的横坐标是4,点P(1,m)在反比例函数y1= 的图象上.(1)求反比例函数的表达式;(2)观察图象回答:当x为何范围时,y1>y2;(3)求△PAB的面积.【答案】(1)解:把x=4代入y2= x,得到点B的坐标为(4,1),把点B(4,1)代入y1= ,得k=4.反比例函数的表达式为y1=(2)解:∵点A与点B关于原点对称,∴A的坐标为(﹣4,﹣1),观察图象得,当x<﹣4或0<x<4时,y1>y2(3)解:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图,∵点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.y1= 中,当x=1时,y=4,∴P(1,4).设直线AP的函数关系式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,则,解得.故直线AP的函数关系式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15.【解析】【分析】(1)把x=4代入y2= x,得到点B的坐标,再把点B的坐标代入y1=,求出k的值,即可得到反比例函数的表达式;(2)观察图象可知,反比例函数的图象在一次函数图象上方的部分对应的自变量的取值范围就是不等式y1>y2的解集;(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,由点A与点B关于原点对称,得出OA=OB,那么S△AOP=S△BOP,S△PAB=2S△AOP.求出P点坐标,利用待定系数法求出直线AP的函数关系式,得到点C的坐标,根据S△AOP=S△AOC+S△POC求出S△AOP= ,则S△PAB=2S△AOP=15.3.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.(1)若点P(2,b)是反比例函数 (n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;(2)⊙O的半径是,①求出⊙O上的所有梦之点的坐标;②已知点M(m,3),点Q是(1)中反比例函数图象上异于点P的梦之点,过点Q的直线l与y轴交于点A,∠OAQ=45°.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.【答案】(1)解:∵P(2,b)是梦之点,∴b=2∴P(2,2)将P(2,2)代入中得n=4∴反比例函数解析式是(2)解:①设⊙O上梦之点坐标是(,)∴∴=1或 =-1∴⊙O上所有梦之点坐标是(1,1)或(-1,-1)②由(1)知,异于点P的梦之点Q的坐标为(-2,-2)由已知MN∥l或MN⊥l∴直线MN为y=-x+b或y=x+b当MN为y=-x+b时,m=b-3由图可知,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,此时MN记为,其中为切点,为直线与y轴的交点∵△O 为等要直角三角形,∴O =∴O =2∴b的最小值是-2,∴m的最小值是-5当直线MN平移至与⊙O相切时,且切点在第二象限时,b取得最大值,此时MN记为,其中为切点,为直线与y轴的交点。
反比例函数大题(二大题型)—2024年中考数学压轴题专项训练(全国通用)解析版

反比例函数大题(二大题型)通用的解题思路:题型一.反比例函数与一次函数的交点问题反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.(2)判断正比例函数y =k 1x 和反比例函数y =在同一直角坐标系中的交点个数可总结为:①当k 1与k 2同号时,正比例函数y =k 1x 和反比例函数y =在同一直角坐标系中有2个交点;②当k 1与k 2异号时,正比例函数y =k 1x 和反比例函数y =在同一直角坐标系中有0个交点. 题型二.反比例函数综合题(1)应用类综合题能够从实际的问题中抽象出反比例函数这一数学模型,是解决实际问题的关键一步,培养了学生的建模能待定系数法和其他学科中的知识.(2)数形结合类综合题利用图象解决问题,从图上获取有用的信息,是解题的关键所在.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.还能利用图象直接比较函数值或是自变量的大小.将数形结合在一起,是分析解决问题的一种好方法.题型一.反比例函数与一次函数的交点问题(共25小题)1.(2024•新北区校级模拟)如图,双曲线1k y x =与直线232y x =交于A ,B 两点.点(2,)A a 和点(,3)B b −在双曲线上,点C 为x 轴正半轴上的一点.(1)求双曲线1k y x =的表达式和a ,b 的值; (2)请直接写出使得12y y >的x 的取值范围;(3)若ABC ∆的面积为12,求此时C 点的坐标.【分析】(1)把点(2,)A a 和点(,3)B b −代入232y x =,求出a 与b 的值,再将A 点坐标代入1k y x=,即可求出反比例函数解析式;(2)根据A 与B 横坐标,利用图象求出反比例函数值大于一次函数值时x 的范围即可;(3)根据12ABC AOC BOC S S S ∆∆∆=+=,求出OC 的长,进而得到此时C 点的坐标.【解答】解:(1)直线232y x =过点(2,)A a 和点(,3)B b −, 3232a ∴=⨯=,332b =−, 2b ∴=−. 双曲线1k y x=过点(2,3)A , 236k ∴=⨯=,∴双曲线1k y x =的表达式为16y x=;(2)观察图象,可得当2x <−或02x <<时,反比例函数值大于一次函数值,即使得12y y >的x 的取值范围是2x <−或02x <<;(3)(2,3)A ,(2,3)B −−,12ABC AOC BOC S S S ∆∆∆=+=, ∴11331222OC OC ⨯+⨯=, 4OC ∴=,∴此时C 点的坐标为(4,0).【点评】此题考查了待定系数法求反比例函数解析式,一次函数与反比例函数的交点问题,函数图象上点的坐标特征,三角形的面积,利用了数形结合的思想,正确求出反比例函数解析式是解本题的关键.2.(2023•苏州)如图,一次函数2y x =的图象与反比例函数(0)k y x x=>的图象交于点(4,)A n .将点A 沿x 轴正方向平移m 个单位长度得到点B ,D 为x 轴正半轴上的点,点B 的横坐标大于点D 的横坐标,连接BD ,BD 的中点C 在反比例函数(0)k y x x=>的图象上. (1)求n ,k 的值;(2)当m 为何值时,AB OD ⋅的值最大?最大值是多少?【分析】(1)首先将点(4,)A n 代入2y x =可求出n ,再将点A 的坐标代入/y k x =即可求出k ;(2)过点C 作直线EF x ⊥轴于F AB 于E ,先证ECB ∆和FCD ∆全等,得BE DF =,4CE CF ==,进而可求出点(8,4)C ,根据平移的性质得点(4,8)B m +,则4BE DF m ==−,12OD m =−,据此可得出(12)AB DD m m ⋅=−,最后求出这个二次函数的最大值即可.【解答】解:(1)将点(4,)A n 代入2y x =,得:8n =,∴点A 的坐标为(4,8),将点(4,8)A 代入k y x=,得:32k =. (2)点B 的横坐标大于点D 的横坐标,∴点B 在点D 的右侧.过点C 作直线EF x ⊥轴于F ,交AB 于E ,由平移的性质得://AB x 轴,AB m =,B CDF ∴∠=∠,点C 为BD 的中点,BC DC ∴=,在ECB ∆和FCD ∆中,B CDF BC DC BCE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ECB FCD ASA ∴∆≅∆,BE DF ∴=,CE CF =.//AB x 轴,点A 的坐标为(4,8),8EF ∴=,4CE CF ∴==,∴点C 的纵坐标为4,由(1)知:反比例函数的解析式为:32y x=, ∴当4y =时,8x =,∴点C 的坐标为(8,4), ∴点E 的坐标为(8,8),点F 的坐标为(8,0),点(4,8)A ,AB m =,//AB x 轴,∴点B 的坐标为(4,8)m +,484BE m m ∴=+−=−,4DF BE m ∴==−,8(4)12OD m m ∴=−−=−2(12)(6)36AB OD m m m ⋅=−=−−+∴当6m =时,AB OD ⋅取得最大值,最大值为36.【点评】此题主要考查了反比例函数的图象、二次函数的图象和性质,点的坐标平移等,解答此题的关键是熟练掌握待定系数法求函数的解析式,理解点的坐标的平移,难点是在解答(2)时,构造二次函数求最值.3.(2024•常州模拟)如图,反比例函数1k y x =的图象与一次函数2y k x b =+的图象交于点(1,2)A −,1(4,)2B −. (1)求函数1k y x=和2y k x b =+的表达式; (2)若在x 轴上有一动点C ,当2ABC AOB S S ∆∆=时,求点C 的坐标.【分析】(1)将点(1,2)A −,1(4,)2B −分别代入反比例函数1k y x =和一次函数2y k x b =+的解析式,求解即可;(2)设AB 与y 轴交于点D 作//CE y 轴交AB 于点E ,利用三角形的面积公式,列出方程,求解即可.【解答】解:(1)将点(1,2)A −,1(4,)2B −分别代入反比例函数1k y x =和一次函数2y k x b =+的解析式, 1122k ∴=−⨯=−,222142k b k b −+=⎧⎪⎨+=−⎪⎩, 12k ∴=,21232k b ⎧=−⎪⎪⎨⎪=⎪⎩. ∴反比例函数的解析式为:2y x =,一次函数的解析式为:1322y x =−+. (2)如图,设AB 与y 轴交于点D ,过点C 作//CE y 轴交AB 于点E ,设(,0)C m ,13(,)22E m m ∴−+.13||22CE m ∴=−+.令0x =,则32y =, 3(0,)2D ∴, 32OD ∴=, 11315()[4(1)]2224AOB B A S OD x x ∆∴=⋅−=⨯⨯−−=. 1522ABC AOB S S ∆∆∴==. ∴115()22B A CE x x ⋅−=,即11315||52222m ⋅−+⋅=. 解得3m =−或9m =,∴点C 的坐标为(3,0)−或(9,0).【点评】本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.4.(2024•常州模拟)如图,一次函数1(0)y kx b k =+≠与函数为2(0)m y x x =>的图象交于1(4,1),(,)2A B a 两点.(1)求这两个函数的解析式;(2)根据图象,直接写出满足120y y −>时x 的取值范围;(3)点P 在线段AB 上,过点P 作x 轴的垂线,垂足为M ,交函数2y 的图象于点Q ,若POQ ∆的面积为3,求点P 的坐标.【分析】(1)将A 点坐标代入即可得出反比例函数2(0)m y x x=>,求得函数的解析式,进而求得B 的坐标,再将A 、B 两点坐标分别代入1y kx b =+,可用待定系数法确定一次函数的解析式;(2)由题意即求12y y >的x 的取值范围,由函数的图象即可得出反比例函数的值小于一次函数值的x 的取值范围;(3)由题意,设(,29)P p p −+且142p ……,则4(,)Q p p ,求得429PQ p p=−+−,根据三角形面积公式得到14(29)32POQ S p p p∆=−+−⋅=,解得即可. 【解答】解:(1)反比例函数2(0)m y x x=>的图象经过点(4,1)A , 14m ∴=. 4m ∴=.∴反比例函数解析式为24(0)y x x=>. 把1(2B ,)a 代入24(0)y x x=>,得8a =. ∴点B 坐标为1(2,8), 一次函数解析式1y kx b =+图象经过(4,1)A ,1(2B ,8), ∴41182k b k b +=⎧⎪⎨+=⎪⎩.解得29k b =−⎧⎨=⎩. 故一次函数解析式为:129y x =−+.(2)由120y y −>,12y y ∴>,即反比例函数值小于一次函数值. 由图象可得,142x <<.(3)由题意,设(,29)P p p −+且142p ……, 4(,)Q p p∴. 429PQ p p∴=−+−. 14(29)32POQ S p p p∆∴=−+−⋅=. 解得152p =,22p =. 5(2P ∴,4)或(2,5). 【点评】本题主要考查一次函数与反比例函数交点问题,熟练掌握待定系数法求函数解析式是解题的关键.5.(2024•沭阳县模拟)如图,反比例函数k y x=的图象与一次函数y mx n =+的图象相交于(,1)A a −,(1,3)B −两点.(1)求反比例函数和一次函数的解析式;(2)设直线AB 交y 轴于点C ,点(,0)N t 是x 轴正半轴上的一个动点,过点N 作NM x ⊥轴交反比例函数k y x =的图象于点M ,连接CN ,OM .若3COMN S >四边形,求t 的取值范围.【分析】(1)将点B ,点A 坐标代入反比例函数的解析式,可求a 和k 的值,利用待定系数法可求一次函数解析式;(2)先求出点C 坐标,由面积关系可求解.【解答】解:(1)反比例函数k y x=的图象与一次函数y mx n =+的图象相交于(,1)A a −,(1,3)B −两点, 13(1)k a ∴=−⨯=⨯−,3k ∴=−,3a =,∴点(3,1)A −,反比例函数的解析式为3y x−=,由题意可得:313m n m n =−+⎧⎨−=+⎩,解得:12m n =−⎧⎨=⎩, ∴一次函数解析式为2y x =−+;(2)直线AB 交y 轴于点C ,∴点(0,2)C ,31222OMN OCN COMN S S S t ∆∆∴=+=+⨯⨯四边形, 3COMN S >四边形, ∴312322t +⨯⨯>, 32t ∴>. 【点评】本题考查了反比例函数与一次函数的交点问题,考查了利用待定系数法求解析式,反比例函数的性质等知识,求出两个解析式是解题的关键.6.(2024•宿迁二模)已知函数1y x=的图象与函数(0)y kx k =≠的图象交于点(,)P m n (1)若2m n =,求k 的值和点P 的坐标.(2)当||||m n …时,结合函数图象,直接写出实数k 的取值范围.【分析】(1)由(0)y kx k =≠得n k m =,然后由2m n =可得到k 的值,设(2,)P n n ,将点P 的坐标代入反比例函数解析式可求得n 的值;(2)由(0)y kx k =≠得n k m =,然后结合条件||||m n …可得k 的取值范围. 【解答】解:(1)(0)y kx k =≠, 122y n n k x m n ∴====.2m n =,(2,)P n n ∴,21n n ∴=,解得:2n =±.m ∴=P ∴或(.(2)y kx =, y n k x m ∴==,||||m n …,1k ∴….【点评】本题主要考查的是反比例函数和一次函数的交点问题,掌握待定系数法求函数解析式的方法是解题的关键.7.(2024•泉山区校级模拟)如图,在平面直角坐标系xOy 中,一次函数152y x =+和2y x =−的图象相交于点A ,反比例函数k y x =的图象经过点A . (1)求反比例函数的表达式;(2)设一次函数152y x =+的图象与反比例函数k y x=的图象的另一个交点为B ,连接OB ,求ABO ∆的面积.【分析】(1)联立方程求得A 的坐标,然后根据待定系数法即可求得;(2)联立方程求得交点B 的坐标,进而求得直线与x 轴的交点,然后利用三角形面积公式求得即可.【解答】解:(1)由1522y x y x ⎧=+⎪⎨⎪=−⎩得24x y =−⎧⎨=⎩,(2,4)A ∴−, 反比例函数ky x =的图象经过点A ,248k ∴=−⨯=−,∴反比例函数的表达式是8y x =−; (2)解8152y x y x ⎧=−⎪⎪⎨⎪=+⎪⎩得24x y =−⎧⎨=⎩或81x y =−⎧⎨=⎩,(8,1)B ∴−,由直线AB 的解析式为152y x =+得到直线与x 轴的交点为(10,0)−,111041011522AOB S ∆∴=⨯⨯−⨯⨯=. 【点评】本题考查了一次函数和反比例函数的交点问题,通过方程组求得交点坐标是解题的关键.8.(2023•常州)在平面直角坐标系中,一次函数y kx b =+的图象与反比例函数m y x=的图象相交于点(2,4)A 、(4,)B n .C 是y 轴上的一点,连接CA 、CB .(1)求一次函数、反比例函数的表达式;(2)若ABC ∆的面积是6,求点C 的坐标.【分析】(1)利用待定系数法求得即可;(2)先求得(0,6)D ,再根据ABC BCDACD S S S ∆∆∆=−得1(42)62CD ⨯⋅−=,进而得出6CD =,据此可得点C 的坐标.【解答】解:(1)点(2,4)A 在反比例函数m y x =的图象上, 248m ∴=⨯=,∴反比例函数解析式为8y x =; 又点(4,)B n 在8y x =上,2n ∴=, ∴点B 的坐标为(4,2),把(2,4)A 和(4,2)B 两点的坐标代入一次函数y kx b =+得2442k b k b +=⎧⎨+=⎩,解得16k b =−⎧⎨=⎩,∴一次函数的解析为6y x =−+.(2)对于一次函数6y x =−+,令0x =,则6y =,即(0,6)D , 根据题意得:1(42)62ABC BCD ACD S S S CD ∆∆∆=−=⨯⋅−=, 解得:6CD =,0OC ∴=或12,(0,0)C ∴或(0,12).【点评】本题主要考查了一次函数与反比例函数交点问题,解题时注意:一次函数与反比例函数交点坐标同时满足一次函数与反比例函数解析式.9.(2024•姜堰区一模)如图,一次函数12y x a =−+的图象与反比例函数2(0)k y k x=>的图象在第一象限相交于点(,)A m n ,(2,3)B m n −.(1)求a 、k 的值;(2)当120y y >>时,直接写出x 的取值范围.【分析】(1)根据反比例函数图象上点的坐标特征,得到3m =,代入A 、B 点的坐标再代入一次函数解析式组成方程组求出n 和a ,最后求出k 值即可;(2)根据函数图象直接写出当120y y >>时自变量取值范围即可.【解答】解:(1)点(,)A m n ,(2,3)B m n −都在反比例函数图象上,3(2)mn n m ∴=⨯−,整理得:2(3)0n m −=,0m ≠,0n ≠,30m ∴−=,解得3m =.(3,)A n ,(1,3)B n 在直线12y x a =−+的图象上,∴623a n a n −+=⎧⎨−+=⎩,解得28n a =⎧⎨=⎩,(3,2)A ∴,(3,2)A 在反比例函数图象上,6k ∴=.8a ∴=,6k =.(2)由(1)可知:(3,2)A ,(1,6)B ,根据函数图象可知,120y y >>时,x 的取值范围为:13x <<.【点评】本题考查了一次函数与反比例函数的交点问题,交点坐标满足两个函数解析式是关键.10.(2024•昆山市模拟)如图,一次函数11(0)y k x b k =+≠的图象与反比例函数22(0)k y k x=≠的图象相交于A ,B 两点,其中点A 的坐标为(2,1)−,点B 的坐标为(1,)n .(1)求这两个函数的表达式;(2)根据图象,直接写出满足21k k x b x+>的取值范围; (3)求ABO ∆的面积.【分析】(1)待定系数法求出两个函数解析式即可;(2)根据图像直接写出不等式的解集即可;(3)根据AOB AOC BOC S S S ∆∆∆=+代入数据计算即可.【解答】解:(1)(2,1)A −,(1,)B n 在反比例函数图象上,221k n ∴=−⨯=,22k n ∴==−,∴反比例函数解析式为:2y x =−, (2,1)A −,(1,2)B −在一次函数图象上,∴11212k b k b +−=⎧⎨+=−⎩,解得111k b =−⎧⎨=−⎩,∴一次函数解析式为:1y x =−−.(2)根据两个函数图象及交点坐标,不等式21k k x b x +>的解集为:2x <−或01x <<. (3)设直线AB 与y 轴的交点为C ,则(0,1)C −即1OC =,1131211222AOB AOC BOC S S S ∆∆∆∴=+=⨯⨯+⨯⨯=.【点评】本题考查了一次函数与反比例函数的交点问题,交点坐标满足两个函数解析式.11.(2024•兴化市一模)已知函数1(k y k x =是常数,0)k ≠,函数2392y x =−+. (1)若函数1y 和函数2y 的图象交于点(2,6)A ,点(4,2)B n −.①求k ,n 的值.②当12y y >时,直接写出x 的取值范围.(2)若点(8,)C m 在函数1y 的图象上,点C 先向下平移1个单位,再向左平移3个单位,得点D ,点D 恰好落在函数1y 的图象上,求m 的值.【分析】(1)①根据反比例函数图象上点的坐标特征进行解答即可;②根据图形分布和解答横坐标直接写出不等式解集即可;(2)先根据平移条件得到(5,1)D m −,再根据反比例函数图象上点的坐标特征求出m 值即可.【解答】解:(1)①函数1y 和函数2y 的图象交于点(2,6)A ,点(4,2)B n −,264(2)k n ∴=⨯=⨯−,解得:12k =,5n =. ②由①可知,反比例函数解析式为12y x =,图象分布在第一、三象限,(2,6)A ,(4,3)B 12y y ∴>时,x 的取值范围为:02x <<或4x >.(2)点(8,)C m 在函数1y 的图象上,点C 先向下平移1个单位,再向左平移3个单位,得点D , (5,1)D m ∴−, D 恰好落在函数1ky x =图象上, 5(1)8m m ∴−=,解得53m =−. 【点评】本题考查了反比例函数与一次函数的交点问题,交点坐标满足两个函数解析式是关键.12.(2024•南通模拟)如图,直线AB 交双曲线k y x=于A 、B 两点,交x 轴于点C ,且B 恰为线段AC 的中点,连接OA .若6OAC S ∆=.求k 的值.【分析】设出点B 的坐标,进而可以表示出点A 和点C 的坐标,再根据OAC ∆的面积即可解决问题.【解答】解:设点B 坐标为(,)k a a ,点B 为线段AC 的中点, ∴22A B ky y a ==, 则点A 的坐标为2(,)2a k a , ∴2A C x x a +=, ∴32C x a =,则点C 坐标为3(,0)2a .又AOC ∆的面积为6, ∴132622k a a ⋅⋅=,解得4k =,故k 的值为4.【点评】本题考查反比例函数与一次函数的交点问题,熟知反比例函数及一次函数的图象和性质是解题的关键.13.(2024•亭湖区模拟)如图,等腰三角形OAB 中,AO AB =,点B 坐标为(4,0)顶点A 在反比例函数k y x=的图象上,且OAB ∆的面积为12.(1)k = .(2)过B 点直线对应的解析式为y x b =+与双曲线k y x =在第一,三象限交点分别为点M ,N . ①求点M ,N 的坐标.②直接写出不等式0k x b x −−…的解集.【分析】(1)过点A 作AC OB ⊥于点C ,利用三角形面积求得AC 即可求得点A 的坐标是(2,6),将点A 的坐标代入反比例函数表达式,即可求解;(2)①求得一次函数的解析式,与反比例函数解析式联立,解方程组即可求解;②根据图象即可求得.【解答】解:(1)过点A 作AC OB ⊥于点C ,等腰三角形OAB 中,AO AB =,点B 坐标为(4,0),4OB ∴=,OAB ∆的面积为12, ∴1122OB AC ⋅=,6AC ∴=,(2,6)A ∴,顶点A 在反比例函数k y x =的图象上,解得:2612k =⨯=,故答案为:12;(2)①把B 点的坐标代入y x b =+得:40b +=,4b ∴=−,∴过B 点直线解析式为4y x =−, 联立412y x y x =−⎧⎪⎨=⎪⎩,解得62x y =⎧⎨=⎩或26x y =−⎧⎨=−⎩,(6,2)M ∴,(2,6)N −−; ②观察图象,不等式0k x b x −−…的解集是06x <…或2x −….【点评】本题是反比例函数与一次函数的交点问题,考查了等腰三角形的性质,三角形的面积,待定系数法求反比例函数的解析式,一次函数与反比例函数的交点的求法,函数与不等式的关系,求得A 点的坐标以及数形结合是解题的关键.14.(2024•常熟市模拟)如图,一次函数112y x =−的图象与y 轴相交于B 点,与反比例函数(0,0)k y k x x =≠>图象相交于点(,2)A m .(1)求反比例函数的表达式;(2)点C 在点A 的左侧,过点C 作y 轴平行线,交反比例函数的图象于点D ,连接BD .设点C 的横坐标为a ,求当a 为何值时,BCD ∆的面积最大,这个最大值是多少?【分析】(1)根据待定系数法求出反比例函数解析式即可;(2)根据三角形面积公式列出关于a 的代数式,利用二次函数的最值求法求出最大面积即可.【解答】解:(1)点(,2)A m 在一次函数112y x =−的图象上, ∴1122m −=,解得6m =, (6,2)A ∴,点(6,2)A 在反比例函数图象上,6212k ∴=⨯=,∴反比例函数解析式为:12y x =;(2)在一次函数112y x =−中,令0x =,则1y =−,(0,1)B ∴−,点C 的横坐标为a ,点C 的纵坐标为112a −,12(,)D a a ∴,12112CD a a ∴=−+, 1121(1)22BCD S a a a ∆=⨯−+⨯211642a a =−++2125(1)44a =−−+, 104−<,BCD S ∆∴有最大值,当1a =时,最大值254BCD S ∆=.【点评】本题考查了反比例函数与一次函数的交点问题,熟练掌握交点坐标满足两个函数关系式是关键.15.(2024•东海县一模)一次函数5y x =−+与反比例函数k y x=的图象在第一象限交于A ,B 两点,其中(1,)A a .(1)求反比例函数表达式;(2)结合图象,直接写出5x−+…时,x 的取值范围; (3)若把一次函数5y x =−+的图象向下平移b 个单位,使之与反比例函数k y x =的图象只有一个交点,请直接写出b 的值.【分析】(1)待定系数法求出k 值即可;(2)根据图像和两个函数的交点坐标,直线写出不等式的解集即可;(3)把一次函数5y x =−+的图象向下平移b 个单位得到新的解析式为:5y x b =−+−,联立方程组得到2(5)40x b x −−+=,利用判别式等于0,解出b 值即可.【解答】解:(1)(1,)A a 在一次函数图象上,154a ∴=−+=,即(1,4)A ,(1,4)A 在反比例函数图象上,144k ∴=⨯=,∴反比例函数解析式为:4y x =; (2)联立方程组45y x y x ⎧=⎪⎨⎪=−+⎩,解得14x y =⎧⎨=⎩或41x y =⎧⎨=⎩,(1,4)A ∴,(4,1)B , 根据两个函数图象可知:不等式5kx x −+…的解集为:01x <…或4x …; (3)把一次函数5y x =−+的图象向下平移b 个单位得到新的解析式为:5y x b =−+−, 联立方程组54y x b y x =−+−⎧⎪⎨=⎪⎩,消掉得:45x b x −+−=, 整理得:2(5)40x b x −−+=,△2(5)160b =−−=, 54b ∴−=±,9b ∴=或1.【点评】本题考查了一次函数与反比例函数的交点问题,交点坐标满足两个函数解析式.16.(2024•钟楼区校级模拟)如图,已知反比例函数k y x=的图象与一次函数y ax b =+的图象相交于点(2,3)A 和点(,2)B n −.(1)求反比例函数与一次函数的解析式;(2)直接写出不等式k ax b x >+的解集;(3)若点P 是x 轴上一点,且满足PAB ∆的面积是10,请求出点P 的坐标.【分析】(1)将点A 坐标代入反比例函数解析式求出k ,从而求出点B 坐标,再通过待定系数法求一次函数解析式;(2)通过观察图象交点求解;(3)设点P 坐标为(,0)m ,通过三角形PAB 的面积为10及三角形面积公式求解.【解答】解:(1)将(2,3)代入k y x =得32k=,解得6k =,∴反比例函数解析式为6y x =.26n ∴−=,解得3n =−,所以点B 坐标为(3,2)−−,把(3,2)−−,(2,3)代入y ax b =+得:2332a b a b −=−+⎧⎨=+⎩,解得11a b =⎧⎨=⎩,∴一次函数解析式为1y x =+;(2)由图象可得当3x <−或02x <<时式kax b x >+;(3)设点P 坐标为(,0)m ,一次函数与x 轴交点为E ,把0y =代入1y x =+得01x =+,解得1x =−,∴点E 坐标为(1,0)−.11532222PAB PAE PBE S S S PE PE PE ∆∆∆∴=+=⨯+⨯=, ∴5102PE =,即5|1|102m +=,解得3m =或5m =−.∴点P 坐标为(3,0)或(5,0)−.【点评】本题考查一次函数与反比例函数的结合,解题关键是掌握待定系数法求函数解析式,掌握函数与不等式的关系.17.(2024•姑苏区校级模拟)如图,以x 轴上长为1的线段AB 为宽作矩形ABCD ,矩形长AD 、BC 交直线3y x =−+于点F 、E ,反比例函数(0)k y x x=>的图象正好经过点F 、E . (1)线段EF 长为 ;(2)求k 值.【分析】(1)表示出E 、F 的坐标,然后利用勾股定理即可求得EF 的长度;(2)根据反比例函数图象上点的坐标特征得到(3)(1)(2)k m m m m =−+=+−+,解得即可.【解答】解:(1)点F 、E 在直线3y x =−+图象上,∴设(,3)F m m −+,则(1E m +,(1)3)m −++,即(1,2)m m +−+EF ∴.故答案为:(2)反比例函数(0)k y x x=>的图象正好经过点F 、E , (3)(1)(2)k m m m m ∴=−+=+−+,解得1m =,(3)122k m m ∴=−+=⨯=.【点评】本题是反比例函数与一次函数的交点问题,考查了一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式,求线段的长度,正确表示出点的坐标是解题的关键.18.(2024•昆山市一模)如图,在平面直角坐标系xOy 中,一次函数11(y k x b k =+,b 为常数,且10)k ≠与反比例函数22(k y k x=为常数,且20)k ≠的图象交于点(,6)A m ,(4,3)B −. (1)求反比例函数和一次函数的表达式;(2)当210k k x b x>+>时,直接写出自变量x 的取值范围; (3)已知一次函数1y k x b =+的图象与x 轴交于点C ,点P 在x 轴上,若PAC ∆的面积为9;求点P 的坐标.【分析】(1(2)根据函数图象,写出反比例函数图象在一次函数上方时且在x 轴上方时,自变量的取值范围,即可求解;(3)先求得点C 的坐标,进而根据三角形的面积公式,即可求解.【解答】解:(1)将(4,3)B −代入2k y x=, 解得:212k =−,∴反比例函数表达式为12y x =−, 将(,6)A m 代入12y x=−, 解得:2m =−, (2,6)A ∴−,将(2,6)A −,(4,3)B −代入1y k x b =+,得112643k b k b −+=⎧⎨+=−⎩,解得:1323k b ⎧=−⎪⎨⎪=⎩, ∴一次函数的表达式为:332y x =−+; (2)(2,6)A −,(4,3)B −, 根据函数图象可得:当210k k x b x >+>时,20x −<<; (3)332y x =−+,令0y =, 解得:2x =,(2,0)C ∴,设(,0)P p ,则|2|PC p =−,PAC ∆的面积为9, ∴1|2|692p ⨯−⨯=, 解得:5p =或1−,(5,0)P ∴或(1,0)P −.【点评】本题是反比例函数与一次函数的交点问题,考查了待定系数法求反比例函数的解析式,一次函数19.(2024•盐城模拟)如图,已知一次函数11y k x b =+的图象与反比例函数22k y x=,分别交于点A 和点B ,且A 、B 两点的坐标分别是(1,2)A −−和(2B .)m ,连接OA 、OB .(1)求一次函数11y k x b =+与反比例函数22k y x =的函数表达式; (2)求AOB ∆的面积.【分析】(1)用待定系数法求出反比例函数解析式,用AB 两点坐标求出直线解析式即可;(2)求出直线AB 与x 轴的交点M 的坐标,利用AOB BMO AMO S S S ∆∆∆=+代入数据计算即可.【解答】解:(1)点(1,2)A −−在反比例函数图象上,2k ∴=,反比例函数解析式为:2y x=; (2B .)m 在反比例函数图象上,1m ∴=,即(2,1)B ,点AB 在一次函数11y k x b =+的图象上,∴11221k b k b −+=−⎧⎨+=⎩,解得:111k b =⎧⎨=−⎩, 一次函数解析式为:1y x =−,(2)设直线AB 交x 轴于点M ,当0y =,1x =,(1,0)M ,1OM =. 所以1131112222AOB BMO AMO S S S ∆∆∆=+=⨯⨯+⨯⨯=.小的分界点.20.(2024•天宁区校级模拟)如图,在平面直角坐标系xOy 中,一次函数2y x b =+的图象与x 轴交于点(1,0)A −,与y 轴交于点B ,与反比例函数(0)k y x x=>的图象交于点C ,且AB BC =.点D 是x 轴正半轴上一点,连接CD ,45ODC ∠=︒.(1)求b 和k 的值;(2)求ACD ∆的面积.【分析】(1)将点A 坐标代入一次函数解析式,求出b 的值,再利用平行线分线段成比例的性质得出1OH OA ==,24CH OB ==,求出C 点坐标,即可求出k 的值;(2)根据45ODC ∠=︒得到DCH ∆是等腰直角三角形,求出AD ,再求ACD ∆的面积即可.【解答】解:(1)将点(1,0)A −代入一次函数2y x b =+,得20b −+=,解得2b =,(0,2)B ∴,2OB ∴=,在22y x =+中,令0y =,则1x =−,(1,0)A ∴−,1OA ∴=,过点C 作CH x ⊥轴于点H ,则//OB , ∴OA OB AB AH CH AC==, AB BC =, ∴1212AH CH ==, 2AH ∴=,4CH =,1OH OA ∴==,(1,4)C ∴, 反比例函数(0)k y x x=>的图象过点C , 144k ∴=⨯=; (2)45ODC ∠=︒,CH x ⊥轴于点H ,45DCH ∴∠=︒,DCH ∴∆是等腰直角三角形,4DH CH ∴==,1146AD ∴=++=,ACD ∴∆的面积为:11641222AD CH ⋅=⨯⨯=.【点评】本题是反比例函数与一次函数的交点问题,考查了待定系数法求函数的解析式,平行线分线段成比例定理,等腰直角三角形的性质,求出点C 坐标是解决本题的关键.21.(2024•姑苏区校级一模)如图,一次函数1y kx b =+的图象与反比例函数2(0)m y x x=>的图象交于点(4,1)A 和点(2,)B n .(1)求一次函数和反比例函数解析式;(2)过点B 作BC y ⊥轴于点C ,连接OA ,求四边形OABC 的面积;(3)根据图象直接写出使kx b+<x 的取值范围.【分析】(1)采用待定系数法求函数解析式.先将点A 的坐标代入反比例函数解析式,求出m 值,再将点B 代入反比例函数解析式求出nn 值,然后将A 、B 点坐标代入一次函数解析数即可.(2)四边形OABC 的面积可由一次函数与坐标轴围成的三角形减去两个小三角形的面积得到,求出一次函数与坐标轴的交点即可求出面积.(3)结合图象确定x 的取值范围即可.【解答】解:(1)将点(4,1)A 代入2(0)m y x x =>中, 得14m =,解得4m =, 故24y x =; 将点(2,)B n 代入24y x =,可得422n ==,将(4,1)A ,(2,2)B 代入1y kx b =+,得1422k b k b =+⎧⎨=+⎩,解得123k b ⎧=−⎪⎨⎪=⎩, 故1132y x =−+;(2)如图所示,对于一次函数1132y x =−+,令0x =,则13y =,即(0,3)E令10y =,则6x =,即(6,0)D ,6OD ∴=,3OE =,(2,2)B ,BC y ⊥轴,2BC ∴=,321CE =−=,设AOD ∆的高为h ,由(4,1)A 可知1h =,DOE BOE AODOABC S S S S ∆∆∆=−−四边形 111222OD OE BC CE OD h =⨯⨯−⨯⨯−⨯⨯111632161222=⨯⨯−⨯⨯−⨯⨯5=;(3)结合图象可知,当mkx b x +<时, x 的取值范围为02x <<或4x >.【点评】本题主要考查反比例函数和一次函数的图象性质、待定系数法等综合知识,解决本题的关键是求得正确的点的坐标,将四边形OABC 放在大三角形中求解面积.22.(2024•新北区一模)如图,反比例函数(0)k y x x=>与一次函数2y x m =+的图象交于点(1,4)A ,BC y ⊥轴于点D ,分别交反比例函数与一次函数的图象于点B 、C .(1)求反比例函数和一次函数的表达式;(2)连接AB ,若1OD =,求ABC ∆的面积.【分析】(1)将点A 坐标分别代入两个解析式得到k 、m 值即可;(2)将1y =分别代入两个解析式求出点B 、C 坐标,根据三角形面积公式计算即可.【解答】解:(1)点(1,4)A 在反比例函数图象上,144k ∴=⨯=,∴反比例函数解析式为:4y x=, 2y x m =+的图象过点(1,4)A ,421m ∴=⨯+.解得2m =,∴一次函数解析式为:22y x =+.(2)将1y =代入4y x=得4x =, (4,1)B ∴,将1y =代入22y x =+得12x =−,1(2C ∴−,1), 194()22BC ∴=−−=, 1927(41)224ABC S ∆∴=⨯⨯−=. 【点评】本题考查了一次函数与反比例函数的交点问题,交点坐标满足两个函数解析式.23.(2024•武进区校级模拟)如图,直线3y x =−+与y 轴交于点A ,与x 轴交于点D ,与反比例函数(0)k y k x=≠的图象交于点C ,过点C 作CB x ⊥轴于点B ,3AD AC =. (1)求点A 的坐标及反比例函数的解析式;(2)若点E 是直线3y x =−+与反比例函数(0)k y k x=≠图象的另一个交点,求COE ∆的面积.【分析】(1)求出点A 、点D 的坐标,然后表示出AO 、DO 的长度,再根据//CB y 轴得出DA DO AC OB =,由3AD AC =得出3OD BO =,求出点的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式;(2)联立两个函数解析式求出点E 坐标,再根据三角形的面积公式求面积即可.【解答】解:(1)直线3y x =−+与y 轴交于点A ,与x 轴交于点D ,(0,3)A ∴,(3,0)D ,即3OA =,3OD =,CB x ⊥轴,//CB y ∴轴, ∴DA DO AC OB=, 3AD AC =,3OD OB ∴=,1OB ∴=,∴点C 的横坐标为1−,点C 在直线3y x =−+上, ∴点(1,4)C −,144k ∴=−⨯=−,∴反比例函数的解析式为4y x=−; (2)联立方程组34y x y x =−+⎧⎪⎨=−⎪⎩,解得14x y =−⎧⎨=⎩或41x y =⎧⎨=−⎩, ∴直线与反比例函数图象的另一个交点E 的坐标为(4,1)−,111115||||313422222COE AOC AOD C D S S S OA x OA x ∆∆∆∴=+=⋅+⋅=⨯⨯+⨯⨯=. 【点评】本题考查了一次函数与坐标轴的交点,一次函数与反比例函数的交点,待定系数法求函数解析式,求出反比例函数解析式是解答本题的关键.24.(2024•东海县一模)如图1,在平面直角坐标系中,一次函数y x b =+的图象经过点(2,0)A −,与反比例函数ky x=的图象交于(,4)B a ,C 两点. (1)求一次函数和反比例函数的表达式;(2)点M 是反比例函数图象在第一象限上的点,且4MAB S ∆=,请求出点M 的坐标;(3)反比例函数具有对称性,适当平移就可发现许多神奇的现象.将该双曲线在第一象限的一支沿射线BC 方向平移,使其经过点C ,再将双曲线在第三象限的一支沿射线CB 方向平移,使其经过点B ,平移后的两条曲线相交于P ,Q 两点,如图2,此时平移后的两条曲线围成了一只美丽的“眸”, PQ 为这只“眸”的“眸径”,请求出“眸径” PQ 的长.【分析】(1)用待定系数法分别求一次函数和反比例函数的表达式;(2)由4MAB S ∆=,得点M 满足在与2y x =+M 在y x =或4y x =+上,列方程组求出交点,即可求出点M ;(3)将反比例函数平移后组成方程组求出交点,再求出PQ 长即可. 【解答】解:(1)把(2,0)A −代入y x b =+,得02b =−+, 2b ∴=,2y x ∴=+,把(,4)B a 代入2y x =+,得42a =+, 2a ∴=, 248k ∴=⨯=, 8y x∴=, ∴一次函数和反比例函数的表达式分别为:2y x =+,8y x=; (2)令2y x =+中0y =,得2x =−, ∴点(2,0)A −,AB ∴=142MAB S h ∆==⨯,h ∴=M 满足在与2y x =+∴点M 在y x =或4y x =+上,由8y x y x =⎧⎪⎨=⎪⎩,得11x y ⎧=⎪⎨=⎪⎩22x y ⎧=−⎪⎨=−⎪⎩点M 在第一象限, ∴点M坐标为,由48y x y x =+⎧⎪⎨=⎪⎩,得1122x y ⎧=−+⎪⎨=+⎪⎩2222x y ⎧=−−⎪⎨=−⎪⎩ 点M 在第一象限,∴点M坐标为(2−+2+,综上点M坐标为或(2−+2+; (3)平移之后的曲线为:866y x =−+和866y x =+−, 由866866y x y x ⎧=+⎪⎪−⎨⎪=−⎪+⎩,得11x y ⎧=⎪⎨=−⎪⎩22x y ⎧=−⎪⎨=⎪⎩,∴点(P −点Q,−,PQ ∴=【点评】本题考查了一次函数及反比例函数的性质的应用,待定系数法的应用及交点的求法是解题关键. 25.(2024•泗阳县校级二模)如图,已知(4,)A n −,(2,4)B −是一次函数y kx b =+的图象和反比例函数my x=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及AOB ∆的面积; (3)直接写出一次函数的值小于反比例函数值的x 的取值范围.【分析】(1)先把B 点坐标代入代入my x =,求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;。
九上反比例函数提高题及常考题型和压轴题(含解析汇报)

反比例函数常考题型与解析一 •选择题(共14小题)1 .若双曲线y 二二过两点(-1, y i), (- 3 , y 2),则y i 与y 的大小关系为()A . y i >y 2B . y i v yC . y i =y 2D . y i 与y 2大小无法确定 2 .已知二次函数y= -(x - a ) 2 - b 的图象如图所示,则反比例函数 4.若点 A (x i , i )、B (X 2, 2)、C (X 3,- 3)在双曲线 y=-寺上,则(A . X i > X 2> X 3B . X i > X 3> X 2C . X 3> X 2 > X iD . X 3> X i > X 25.如图所示,两个反比例函数y=「j 和y=]] j 在第一象限内的图象依次是 C i和C 2,设点P 在C i 上, PC 丄X 轴于点C ,交C 2于点A , PD 丄y 轴于点D ,交C 2于点B ,贝U 四边形PAOB 的面积为( )y=-_!与一次函数y=ax+b 的图象可能是( ) 3. )A .6 .如图,点A 是反比例函数y 二匸(> 0)的图象上任意一点,AB //x 轴交反比例函数y 二-丄的图象于点B ,以AB 为边作平行四边形ABCD ,其中C , D 在x x轴上,则平行四边形ABCD 的面积为( )A. 2 B . 3 C . 4 D . 57 .如图,平行四边形ABCD 的顶点C 在y 轴正半轴上,CD 平行于x 轴,直线 AC交x 轴于点E ,BC 丄AC ,连接BE ,反比例函数尸邑(x >0)的图象经过点A . 2B .- 2C . 3D . 48 .如图,矩形OABC 的两边0A 、OC 在坐标轴上,且 0C=20A ,M 、N 分别 为0A 、0C 的中点,BM 与AN 交于点E ,若四边形EMON 的面积为2,则经 过点B 的双曲线的解析式为(D . k i ?k 2 — k2 C . k i ?k 2k 的取值范围是() A . - 2 wkd B . k<-2 或 k >4C .— 2<k < 0 或 k >4D . - 2<k v 0 或 O v k V10 .如图,平面直角坐标系中,点A 是x 轴负半轴上一个定点,点P 是函数y=11 .已知反比例函数y=§,当1 <x <3时,yA . 3B . 4C . 5D . 6若反比例函数y=」_与线段AB 有公共点时,~6 (x <0)上一个动点,PB 丄y 轴于点B ,当点 P 的横坐标逐渐增大时,四边形A .先增后减B .先减后增C .逐渐减小D .逐渐增大的最小整数值是( ) 612 .下列函数中,满足y的值随x的值增大而增大的是()A. y= - 2x B . y=3x - 1 C . y=g D . y=x 213 .如图,在反比例函数y=-—的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点Ctan /CAB=2,贝U k 的值为(14 .如图,△OAC和△BAD都是等腰直角三角形,/ ACO= ZADB=90。
2020-2021九年级中考数学反比例函数解答题压轴题提高专题练习及答案

2020-2021九年级中考数学反比例函数解答题压轴题提高专题练习及答案一、反比例函数1.如图,反比例函数y= 的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y= 在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=﹣2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.【答案】(1)解:∵反比例函数y= 的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)解:当b=﹣2时,直线解析式为y=﹣x﹣2,∵y=0时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S△OCD= ×2×2=2(3)解:存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b= (舍去),∴b的值为﹣.【解析】【分析】(1)根据反比例函数的图象上点的坐标特征易得k=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,则利用坐标轴上点的坐标特征可求出C(﹣2,0),D(0,﹣2),然后根据三角形面积公式求解;(3)先表示出C(b,0),根据三角形面积公式,由于S△ODQ=S△OCD,所以点Q和点C到OD的距离相等,则Q的横坐标为(﹣b,0),利用直线解析式可得到Q(﹣b,2b),再根据反比例函数的图象上点的坐标特征得到﹣b•2b=﹣4,然后解方程即可得到满足条件的b的值.2.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x >0)的图象上时,求菱形ABCD平移的距离.【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(,2),∴DO=AD=3,∴A点坐标为:(,5),∴k=5 ;(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2= ,解得x= ,∴FF′=OF′﹣OF= ﹣ = ,∴菱形ABCD平移的距离为,同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,菱形ABCD平移的距离为,综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.3.如图,在平面直角坐标系中,反比例函数y= 的图象与一次函数y=ax+b的图象交于点A(﹣2,3)和点B(m,﹣2).(1)求反比例函数和一次函数的解析式;(2)直线x=1上有一点P,反比例函数图象上有一点Q,若以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,直接写出点Q的坐标.【答案】(1)解:∵点A(﹣2,3)在反比例函数y= 的图形上,∴k=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B在反比例函数y=﹣的图形上,∴﹣2m=﹣6,∴m=3,∴B(3,﹣2),∵点A,B在直线y=ax+b的图象上,∴,∴,∴一次函数的解析式为y=﹣x+1(2)解:∵以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,∴AB=PQ,AB∥PQ,设直线PQ的解析式为y=﹣x+c,设点Q(n,﹣),∴﹣ =﹣n+c,∴c=n﹣,∴直线PQ的解析式为y=﹣x+n﹣,∴P(1,n﹣﹣1),∴PQ2=(n﹣1)2+(n﹣﹣1+ )2=2(n﹣1)2,∵A(﹣2,3).B(3,﹣2),∴AB2=50,∵AB=PQ,∴50=2(n﹣1)2,∴n=﹣4或6,∴Q(﹣4. )或(6,﹣1)【解析】【分析】(1)先利用待定系数法求出反比例函数解析式,进而求出点B的坐标,再用待定系数法求出直线解析式;(2)先判断出AB=PQ,AB∥PQ,设出点Q的坐标,进而得出点P的坐标,即可求出PQ,最后用PQ=AB建立方程即可得出结论.4.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.5.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.所以双曲线的解析式为y=﹣.设点B的坐标为(m,﹣m).∵点B在双曲线上,∴﹣m2=﹣4,解得m=2或m=﹣2.∵点B在第四象限,∴m=2.∴B(2,﹣2).将点A、B、C的坐标代入得:,解得:.∴抛物线的解析式为y=x2﹣3x.(2)解:如图1,连接AC、BC.令y=0,则x2﹣3x=0,∴x=0或x=3,∴C(3,0),∵A(﹣1,4),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点D是直线AB与x轴的交点,∴D(1,0),∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;(3)解:存在,理由:如图2,由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,∴原抛物线的顶点坐标为(,﹣),∴抛物线向左平移个单位,再向上平移个单位,而平移前A(﹣1,4),B(2,﹣2),∴平移后点A(﹣,),B(,),∴点A关于y轴的对称点A'(,),连接A'B并延长交y轴于点P,连接AP,由对称性知,∠APE=∠BPE,∴△APB的内切圆的圆心在y轴上,∵B(,),A'(,),∴直线A'B的解析式为y=3x﹣,∴P(0,﹣).【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.6.平面直角坐标系xOy中,已知函数y1= (x>0)与y2=﹣(x<0)的图象如图所示,点A、B是函数y1= (x>0)图象上的两点,点P是y2=﹣(x<0)的图象上的一点,且AP∥x轴,点Q是x轴上一点,设点A、B的横坐标分别为m、n(m≠n).(1)求△APQ的面积;(2)若△APQ是等腰直角三角形,求点Q的坐标;(3)若△OAB是以AB为底的等腰三角形,求mn的值.【答案】(1)解:过点P、A、Q分别作PM x轴交x轴于点M,PN x轴交x轴于点N,QR AP轴交AP轴于点R,则四边形APMN、四边形PMQR、四边形ARQN是矩形,如图所示:∵点A的横坐标为m,且在函数上,AP∥x轴,且点P在函数上,∴点A(m, ),点P(-m, ),∴MN=m-(-m)=2m,PM= ,∴S矩形PMNA=2m╳ =8,∵四边形PMQR、四边形ARQN是矩形,∴S△PQM=S△PRQ, S△ANQ=S△ARQ,∴S△APQ=S△PRQ+ S△ARQ= S矩形PMNA=4(2)解:当PQ x轴时,则PQ=,,AP=2m,∵PQ=AP∴2m= ,∴m=∴ ,当PQ=AQ时,则(3)解:∵△OAB是以AB为底的等腰三角形,∴OA=OB,∵A(m, ),B(n, ),∴∴mn=4.【解析】【分析】(1)过点P、A、Q分别作PM ⊥ x轴交x轴于点M,PN ⊥ x轴交x轴于点N,QR ⊥ AP轴交AP轴于点R,则四边形APMN、四边形PMQR、四边形ARQN是矩形,根据点A的横坐标为m,利用函数解析式表示出点A的坐标和点P的坐标,最后用三角形的面积公式即可得出结论。
九年级中考数学反比例函数解答题压轴题提高专题练习附详细答案

九年级中考数学反比例函数解答题压轴题提高专题练习附详细答案一、反比例函数1.如图,反比例函数y= 的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y= 在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=﹣2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.【答案】(1)解:∵反比例函数y= 的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)解:当b=﹣2时,直线解析式为y=﹣x﹣2,∵y=0时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S△OCD= ×2×2=2(3)解:存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b= (舍去),∴b的值为﹣.【解析】【分析】(1)根据反比例函数的图象上点的坐标特征易得k=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,则利用坐标轴上点的坐标特征可求出C(﹣2,0),D(0,﹣2),然后根据三角形面积公式求解;(3)先表示出C(b,0),根据三角形面积公式,由于S△ODQ=S△OCD,所以点Q和点C到OD的距离相等,则Q的横坐标为(﹣b,0),利用直线解析式可得到Q(﹣b,2b),再根据反比例函数的图象上点的坐标特征得到﹣b•2b=﹣4,然后解方程即可得到满足条件的b的值.2.如图,已知直线y=x+k和双曲线y= (k为正整数)交于A,B两点.(1)当k=1时,求A、B两点的坐标;(2)当k=2时,求△AOB的面积;(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为S n,若S1+S2+…+S n= ,求n的值.【答案】(1)解:当k=1时,直线y=x+k和双曲线y= 化为:y=x+1和y= ,解得,,∴A(1,2),B(﹣2,﹣1)(2)解:当k=2时,直线y=x+k和双曲线y= 化为:y=x+2和y= ,解得,,∴A(1,3),B(﹣3,﹣1)设直线AB的解析式为:y=mx+n,∴∴,∴直线AB的解析式为:y=x+2∴直线AB与y轴的交点(0,2),∴S△AOB= ×2×1+ ×2×3=4;(3)解:当k=1时,S1= ×1×(1+2)= ,当k=2时,S2= ×2×(1+3)=4,…当k=n时,S n= n(1+n+1)= n2+n,∵S1+S2+…+S n= ,∴ ×(…+n2)+(1+2+3+…n)= ,整理得:,解得:n=6.【解析】【分析】(1)两图像的交点就是求联立的方程组的解;(2)斜三角形△AOB的面积可转化为两水平(或竖直)三角形(有一条边为水平边或竖直边的三角形称为水平或竖直三角形)的面积和或差;(3)利用n个数的平方和公式和等差数列的和公式可求出.3.如图,正比例函数和反比例函数的图象都经过点A(3,3),把直线OA向下平移后,与反比例函数的图象交于点B(6,m),与x轴、y轴分别交于C、D两点.(1)求m的值;(2)求过A、B、D三点的抛物线的解析式;(3)若点E是抛物线上的一个动点,是否存在点E,使四边形OECD的面积S1,是四边形OACD面积S的?若存在,求点E的坐标;若不存在,请说明理由.【答案】(1)解:∵反比例函数的图象都经过点A(3,3),∴经过点A的反比例函数解析式为:y= ,而直线OA向下平移后,与反比例函数的图象交于点B(6,m),∴m=(2)解:∵直线OA向下平移后,与反比例函数的图象交于点B(6,),与x轴、y轴分别交于C、D两点,而这些OA的解析式为y=x,设直线CD的解析式为y=x+b代入B的坐标得: =6+b,∴b=﹣4.5,∴直线OC的解析式为y=x﹣4.5,∴C、D的坐标分别为(4.5,0),(0,﹣4.5),设过A、B、D三点的抛物线的解析式为y=ax2+bx+c,分别把A、B、D的坐标代入其中得:解之得:a=﹣0.5,b=4,c=﹣4.5∴y=﹣0.5x2+4x﹣4.5(3)解:如图,设E的横坐标为x,∴其纵坐标为﹣0.5x2+4x﹣4.5,∴S1= (﹣0.5x2+4x﹣4.5+OD)×OC,= (﹣0.5x2+4x﹣4.5+4.5)×4.5,= (﹣0.5x2+4x)×4.5,而S= (3+OD)×OC= (3+4.5)×4.5= ,∴(﹣0.5x2+4x)×4.5= ,解之得x=4± ,∴这样的E点存在,坐标为(4﹣,0.5),(4+ ,0.5).【解析】【分析】(1)先根据点A的坐标求得反比例函数的解析式,又点B在反比例函数图像上,代入即可求得m的值;(2)先根据点A的坐标求得直线OA的解析式,再结合点B的坐标求得直线CD的解析式,从而可求得点C、D的坐标,利用待定系数法即可求得抛物线的解析式;(3)先设出抛物线上E点的坐标,从而表示出面积S1,再求得面积S 的值,令其相等可得到关于x的二元一次方程,方程有解则点E存在,并可求得点E的坐标.4.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)s(mm2)的反比例函数,其图象如图.(1)写出y与s的函数关系式;(2)求当面条粗3.2mm2时,面条的总长度是多少m?【答案】(1)解:设y与x的函数关系式为y= ,将x=4,y=32代入上式,解得:k=4×32=128,故y= .答:y与x的函数关系式y=(2)解:当x=3.2时,y= =40.答:当面条粗3.2mm2时,面条的总长度是40米【解析】【分析】(1)根据图象可设出关系式,再把一个点的坐标代入可求出关系式;(2)把x=3.2代入关系式可求出y的值,即得答案.5.如图,一次函数y=kx+b(k≠0)与反比例函数y= (m≠0)的图象有公共点A(1,a)、D(﹣2,﹣1).直线l与x轴垂直于点N(3,0),与一次函数和反比例函数的图象分别交于点B、C.(1)求一次函数与反比例函数的解析式;(2)根据图象回答,x在什么范围内,一次函数的值大于反比例函数的值;(3)求△ABC的面积.【答案】(1)解:∵反比例函数经过点D(﹣2,﹣1),∴把点D代入y= (m≠0),∴﹣1= ,∴m=2,∴反比例函数的解析式为:y= ,∵点A(1,a)在反比例函数上,∴把A代入y= ,得到a= =2,∴A(1,2),∵一次函数经过A(1,2)、D(﹣2,﹣1),∴把A、D代入y=kx+b (k≠0),得到:,解得:,∴一次函数的解析式为:y=x+1(2)解:如图:当﹣2<x<0或x>1时,一次函数的值大于反比例函数的值(3)解:过点A作AE⊥x轴交x轴于点E,∵直线l⊥x轴,N(3,0),∴设B(3,p),C(3,q),∵点B在一次函数上,∴p=3+1=4,∵点C在反比例函数上,∴q= ,∴S△ABC= BC•EN= ×(4﹣)×(3﹣1)= .【解析】【分析】由反比例函数经过点D(-2,-1),即可求得反比例函数的解析式;然后求得点A的坐标,再利用待定系数法求得一次函数的解析式;结合图象求解即可求得x在什么范围内,一次函数的值大于反比例函数的值;首先过点A作AE⊥x轴交x轴于点E,由直线l与x轴垂直于点N(3,0),可求得点E,B,C的坐标,继而求得答案.6.如图,在矩形OABC中,OA=6,OC=4,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?【答案】(1)解:∵在矩形OABC中,OA=6,OC=4,∴B(6,4),∵F为AB的中点,∴F(6,2),又∵点F在反比例函数(k>0)的图象上,∴k=12,∴该函数的解析式为y= (x>0)(2)解:由题意知E,F两点坐标分别为E(,4),F(6,),∴,==== ,∴当k=12时,S有最大值.S最大=3【解析】【分析】)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.7.如图,P1、P2是反比例函数y= (k>0)在第一象限图象上的两点,点A1的坐标为(4,0).若△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点.(1)求反比例函数的解析式.(2)①求P2的坐标.②根据图象直接写出在第一象限内当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值.【答案】(1)解:过点P1作P1B⊥x轴,垂足为B ∵点A1的坐标为(4,0),△P1OA1为等腰直角三角形∴OB=2,P1B= OA1=2∴P1的坐标为(2,2)将P1的坐标代入反比例函数y= (k>0),得k=2×2=4∴反比例函数的解析式为(2)①过点P2作P2C⊥x轴,垂足为C ∵△P2A1A2为等腰直角三角形∴P2C=A1C设P2C=A1C=a,则P2的坐标为(4+a,a)将P2的坐标代入反比例函数的解析式为,得a= ,解得a1= ,a2= (舍去)∴P2的坐标为(,)②在第一象限内,当2<x<2+ 时,一次函数的函数值大于反比例函数的值.【解析】【分析】(1)先根据点A1的坐标为(4,0),△P1OA1为等腰直角三角形,求得P1的坐标,再代入反比例函数求解;(2)先根据△P2A1A2为等腰直角三角形,将P2的坐标设为(4+a,a),并代入反比例函数求得a的值,得到P2的坐标;再根据P1的横坐标和P2的横坐标,判断x的取值范围.8.如图,在平面直角坐标系xOy中,直线y= x与反比例函数y= 在第一象限内的图象相交于点A(m,3).(1)求该反比例函数的关系式;(2)将直线y= x沿y轴向上平移8个单位后与反比例函数在第一象限内的图象相交于点B,连接AB,这时恰好AB⊥OA,求tan∠AOB的值;(3)在(2)的条件下,在射线OA上存在一点P,使△PAB∽△BAO,求点P的坐标.【答案】(1)解:∵点A(m,3)在直线y= x上∴3= m,∴m=3 ,∴点A(3 ,3),∵点A(3 ,3)在反比例函数y= 上,∴k=3 ×3=9 ,∴y=(2)解:直线向上平移8个单位后表达式为:y= x+8∵AB⊥OA,直线AB过点A(3 ,3)∴直线AB解析式:y=﹣ x+12,∴ x+8=﹣ x+12,∴x= .∴B(,9),∴AB=4在Rt△AOB中,OA=6,∴tan∠AOB=(3)解:∵△APB∽△ABO,∴,由(2)知,AB=4 ,OA=6即∴AP=8,∵OA=6,∴OP=14,过点A作AH⊥x轴于H∵A(3 ,3),∴OH=3 ,AH=3,在Rt△AOH中,∴tan∠AOH= = = ,∴∠AOH=30°过点P作PG⊥x轴于G,在Rt△APG中,∠POG=30°,OP=14,∴PG=7,OG=7∴P(7 ,7).【解析】【分析】(1)先确定出点A坐标,再用待定系数法求出反比例函数解析式;(2)先求出直线AB解析式,进而得出点B坐标秒即可得出结论;(3)利用相似三角形的性质得出AP,进而求出OP,再求出∠AOH=30°,最后用含30°的直角三角形的性质即可得出结论.9.如图1,已知双曲线y= (k>0)与直线y=k′x交于A、B两点,点A在第一象限,试回答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为________;当x满足:________时,≤k′x;(2)如图2,过原点O作另一条直线l,交双曲线y= (k>0)于P,Q两点,点P在第一象限.四边形APBQ一定是________;(3)若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.(4)设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.【答案】(1)(﹣3,﹣1);﹣3≤x<0或x≥3(2)平行四边形(3)∵点A的坐标为(3,1),∴k=3×1=3,∴反比例函数的解析式为y= ,∵点P的横坐标为1,∴点P的纵坐标为3,∴点P的坐标为(1,3),由双曲线关于原点对称可知,点Q的坐标为(﹣1,﹣3),点B的坐标为(﹣3,﹣1),如图2,过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,则四边形CDEF是矩形,CD=6,DE=6,DB=DP=4,CP=CA=2,则四边形APBQ的面积=矩形CDEF的面积﹣△ACP的面积﹣△PDB的面积﹣△BEQ的面积﹣△AFQ的面积=36﹣2﹣8﹣2﹣8=16.(4)解:mn=k时,四边形APBQ是矩形,不可能是正方形,理由:当AB⊥PQ时四边形APBQ是正方形,此时点A、P在坐标轴上,由于点A,P可能达到坐标轴故不可能是正方形,即∠POA≠90°.因为mn=k,易知P、A关于直线y=x对称,所以PO=OA=OB=OQ,所以四边形APBQ是矩形.【解析】【解答】解:(1)∵A、B关于原点对称,A(3,1),∴点B的坐标为(﹣3,﹣1).由图象可知,当﹣3≤x<0或x≥3时,≤k′x.故答案为(﹣3,﹣1),﹣3≤x<0或x≥3;(2)∵A、B关于原点对称,P、Q关于原点对称,∴OA=OB,OP=OQ,∴四边形APBQ是平行四边形.故答案为:平行四边形;=36﹣2﹣8﹣2﹣8=16.【分析】(1)根据正比例函数与反比例函数的图象的交点关于原点对称,即可解决问题,利用图象根据正比例函数的图象在反比例函数的图象的上方,即可确定自变量x的范围.(2)利用对角线互相平分的四边形是平行四边形证明即可.(3)利用分割法求面积即可.(3)根据矩形的性质、正方形的性质即可判定.10.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y= 的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y= 的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.【答案】(1)解:∵A(0,4),B(﹣3,0),C(2,0),∴OA=4,OB=3,OC=2,∴AB= =5,BC=5,∴AB=BC,∵D为B点关于AC的对称点,∴AB=AD,CB=CD,∴AB=AD=CD=CB,∴四边形ABCD为菱形(2)解:∵四边形ABCD为菱形,∴D点的坐标为(5,4),反比例函数y= 的图象经过D点,∴4= ,∴k=20,∴反比例函数的解析式为:y=(3)解:∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN是BM经过平移得到的,∴首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y= ,得y= ,∴M点的纵坐标为:﹣4= ,∴M点的坐标为:(0,)【解析】【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D 的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN 是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,继而求得M点的坐标.11.如图,在平面直角坐标系中,点A(-5,0),以OA为半径作半圆,点C是第一象限内圆周上一动点,连结AC、BC,并延长BC至点D,使CD=BC,过点D作x轴垂线,分别交x轴、直线AC于点E、F,点E为垂足,连结OF.(1)当∠BAC=30º时,求△ABC的面积;(2)当DE=8时,求线段EF的长;(3)在点C运动过程中,是否存在以点E、O、F为顶点的三角形与△ABC相似,若存在,请求出点E的坐标;若不存在,请说明理由.【答案】(1)解:∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,AB=10,∠BAC=30°,∴BC= AB=5,∴AC= ,∴S△ABC= AC⋅BC=(2)解:连接AD,∵∠ACB=90°,CD=BC,∴AD=AB=10,∵DE⊥AB,∴AE= =6,∴BE=AB−AE=4,∴DE=2BE,∵∠AFE+∠FAE=90°,∠DBE+∠FAE=90°,∴∠AFE=∠DBE,∵∠AEF=∠DEB=90°,∴△AEF∽△DEB,∴ =2,∴EF= AE= ×6=3(3)解:连接EC,设E(x,0),当的度数为60°时,点E恰好与原点O重合;①0°< 的度数<60°时,点E在O、B之间,∠EOF>∠BAC=∠D,又∵∠OEF=∠ACB=90°,由相似知∠EOF=∠EBD,此时有△EOF∽△EBD,∴,∵EC是Rt△BDE斜边的中线,∴CE=CB,∴∠CEB=∠CBE,∴∠EOF=∠CEB,∴OF∥CE,∴△AOF∽△AEC∴,∴,即,解得x= ,因为x>0,∴x= ;②60°< 的度数<90°时,点E在O点的左侧,若∠EOF=∠B,则OF∥BD,∴OF= BC= BD,∴即解得x= ,若∠EOF=∠BAC,则x=− ,综上点E的坐标为( ,0) ;(,0);(−,0).【解析】【分析】(1)根据圆周角定理求得∠ACB=90°,根据30°的直角三角形的性质求得BC,进而根据勾股定理求得AC,然后根据三角形面积公式即可求得;(2)连接AD,由垂直平分线的性质得AD=AB=10,又DE=8,在Rt△ODE中,由勾股定理求AE,依题意证明△AEF∽△DEB,利用相似比求EF;(3)当以点E、O、F为顶点的三角形与△ABC相似时,分为两种情况:①当交点E在O,B之间时;②当点E在O点的左侧时;分别求E点坐标.12.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.。
中考数学压轴题之反比例函数(中考题型整理,突破提升)及详细答案

则
,
解得
.
故直线 AP 的函数关系式为 y=x+3,
则点 C 的坐标(0,3),OC=3,
∴ S△ AOP=S△ AOC+S△ POC
= OC•AR+ OC•PS
又∵ 点 F 在反比例函数
(k>0)的图象上,∴ k=12,
∴ 该函数的解析式为 y= (x>0)
(2)解:由题意知 E,F 两点坐标分别为 E( ,4),F(6,
∴ 当 k=12 时,S 有最大值.S 最大=3
【解析】【分析】)当 F 为 AB 的中点时,点 F 的坐标为(3,1),由此代入求得函数解
C 与 D 横纵坐标乘积相等,求出 b 的值确定出 B 坐标,进而求出 k 的值,确定出双曲线解 析式;(3)抓住两个关键点,将 A 坐标代入双曲线解析式求出 b 的值;将 C 坐标代入双 曲线解析式求出 b 的值,即可确定出平行四边形与双曲线总有公共点时 b 的范围.
5.如图,正比例函数和反比例函数的图象都经过点 A(3,3),把直线 OA 向下平移后, 与反比例函数的图象交于点 B(6,m),与 x 轴、y 轴分别交于 C、D 两点.
(1)求 m 的值; (2)求过 A、B、D 三点的抛物线的解析式; (3)若点 E 是抛物线上的一个动点,是否存在点 E,使四边形 OECD 的面积 S1
, 是四边
形 OACD 面积 S 的 ?若存在,求点 E 的坐标;若不存在,请说明理由. 【答案】(1)解:∵ 反比例函数的图象都经过点 A(3,3),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数常考题型与解析一.选择题(共14小题)1.若双曲线y=过两点(﹣1,y1),(﹣3,y2),则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.y1与y2大小无法确定2.已知二次函数y=﹣(x﹣a)2﹣b的图象如图所示,则反比例函数y=与一次函数y=ax+b的图象可能是()A.B.C.D.3.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A. B. C. D.4.若点A(x1,1)、B(x2,2)、C(x3,﹣3)在双曲线y=﹣上,则()A.x1>x2>x3B.x1>x3>x2C.x3>x2>x1D.x3>x1>x25.如图所示,两个反比例函数y=和y=在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为()A.k1+k2B.k1﹣k2C.k1•k2D.k1•k2﹣k26.如图,点A是反比例函数y=(>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作平行四边形ABCD,其中C,D在x轴上,则平行四边形ABCD的面积为()A.2 B.3 C.4 D.57.如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于x轴,直线AC 交x轴于点E,BC⊥AC,连接BE,反比例函数(x>0)的图象经过点D.已=2,则k的值是()知S△BCEA.2 B.﹣2 C.3 D.48.如图,矩形OABC的两边OA、OC在坐标轴上,且OC=2OA,M、N分别为OA、OC的中点,BM与AN交于点E,若四边形EMON的面积为2,则经过点B的双曲线的解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣9.已知点A(﹣2,1),B(1,4),若反比例函数y=与线段AB有公共点时,k 的取值范围是()A.﹣2≤k≤4 B.k≤﹣2或k≥4C.﹣2≤k<0或k≥4 D.﹣2≤k<0或0<k≤410.如图,平面直角坐标系中,点A是x轴负半轴上一个定点,点P是函数y=(x<0)上一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB 的面积将会()A.先增后减B.先减后增C.逐渐减小D.逐渐增大11.已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.612.下列函数中,满足y的值随x的值增大而增大的是()A.y=﹣2x B.y=3x﹣1 C.y= D.y=x213.如图,在反比例函数y=﹣的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动.若tan∠CAB=2,则k的值为()A.2 B.4 C.6 D.814.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC ﹣S△BAD为()A.36 B.12 C.6 D.3二.填空题(共11小题)15.如图,等腰直角三角形OAB的一条直角边在y轴上,点P是边AB上的一个动点,过点P的反比例函数y=的图象交斜边OB于点Q,(1)当Q为OB中点时,AP:PB=(2)若P为AB的三等分点,当△AOQ的面积为时,k的值为.16.在函数(k>0的常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为.17.如图,四边形ABCD与EFGH均为正方形,点B、F在函数y=(x>0)的图象上,点G、C在函数y=﹣(x<0)的图象上,点A、D在x轴上,点H、E在线段BC上,则点G的纵坐标.18.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数的图象上,且x1<x2<0,则y l y2(填“>”或“<”).19.如图,△AOB与反比例函数交于C、D,△AOB的面积为6,若AC:CB=1:3,则反比例函数的表达式为.20.函数y=中,若x>1,则y的取值范围为,若x<3,则y的取值范围为.21.如图,点A为反比例函数y=﹣图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为.22.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.23.已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是.24.双曲线y=在每个象限内,函数值y随x的增大而增大,则m的取值范围是.25.如图,已知点A、C在反比例函数y=的图象上,点B,D在反比例函数y=的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=,CD=,AB 与CD间的距离为6,则a﹣b的值是.三.解答题(共15小题)26.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.27.如图,已知一次函数y1=﹣x+a与x轴、y轴分别交于点D、C两点和反比例函数交于A、B两点,且点A的坐标是(1,3)点B的坐标是(3,m)(1)求a,k,m的值;(2)求C、D两点的坐标,并求△AOB的面积.28.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求PA+PB的最小值.29.如图,直线y1=kx+b与双曲线y2=交于A、B两点,它们的横坐标分别为1和5.(1)当m=5时,求直线AB的解析式及△AOB的面积;(2)当y1>y2时,直接写出x的取值范围.30.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;=10,求点E的坐标.(2)点E为y轴上一个动点,若S△AEB31.如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC=.(1)求反比例函数的解析式;(2)当y1<y2时,求x的取值范围.32.如图,直角三角板ABC放在平面直角坐标系中,直角边AB垂直x轴,垂足为Q,已知∠ACB=60°,点A,C,P均在反比例函数y=的图象上,分别作PF ⊥x轴于F,AD⊥y轴于D,延长DA,FP交于点E,且点P为EF的中点.(1)求点B的坐标;(2)求四边形AOPE的面积.33.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B 重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?34.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上.(1)求反比例函数y=的表达式;=S△AOB,求点P的坐标;(2)在x轴的负半轴上存在一点P,使得S△AOP(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.35.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.36.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO=,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为=4S△DFO,求点D的坐标.点F,连接OD、BF.如果S△BAF37.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C 的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.(1)求反比例函数和一次函数的表达式;(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.38.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.39.如图,直线y=ax+b与反比例函数y=(x>0)的图象交于A(1,4),B(4,n)两点,与x轴、y轴分别交于C、D两点.(1)m=,n=;若M(x1,y1),N(x2,y2)是反比例函数图象上两点,且0<x1<x2,则y1y2(填“<”或“=”或“>”);(2)若线段CD上的点P到x轴、y轴的距离相等,求点P的坐标.40.如图,P1、P2是反比例函数y=(k>0)在第一象限图象上的两点,点A1的坐标为(4,0).若△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点.(1)求反比例函数的解析式.(2)①求P2的坐标.②根据图象直接写出在第一象限内当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y=的函数值.2017年03月20日初中数学3的初中数学组卷参考答案与试题解析一.选择题(共14小题)1.(2017秋•海宁市校级月考)若双曲线y=过两点(﹣1,y1),(﹣3,y2),则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.y1与y2大小无法确定【分析】根据反比例函数图象上点的坐标图特征得到﹣1•y1=2,﹣3•y2=2,然后计算出y1和y2比较大小.【解答】解:∵双曲线y=过两点(﹣1,y1),(﹣3,y2),∴﹣1•y1=2,﹣3•y2=2,∴y1=﹣2,y2=﹣,∴y1<y2.故选B.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.2.(2016•威海)已知二次函数y=﹣(x﹣a)2﹣b的图象如图所示,则反比例函数y=与一次函数y=ax+b的图象可能是()A.B.C.D.【分析】观察二次函数图象,找出a>0,b>0,再结合反比例(一次)函数图象与系数的关系,即可得出结论.【解答】解:观察二次函数图象,发现:抛物线的顶点坐标在第四象限,即a>0,﹣b<0,∴a>0,b>0.∵反比例函数y=中ab>0,∴反比例函数图象在第一、三象限;∵一次函数y=ax+b,a>0,b>0,∴一次函数y=ax+b的图象过第一、二、三象限.故选B.【点评】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,解题的关键是根据二次函数的图象找出a>0,b>0.本题属于基础题,难度不大,解决该题型题目时,熟记各函数图象的性质是解题的关键.3.(2016•绥化)当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A. B. C. D.【分析】根据k>0,判断出反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限,结合选项所给图象判断即可.【解答】解:∵k>0,∴反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限.故选C.【点评】本题考查了反比例函数与一次函数图象的知识,解答本题的关键在于通过k >0判断出函数所经过的象限.4.(2017•南岗区一模)若点A (x 1,1)、B (x 2,2)、C (x 3,﹣3)在双曲线y=﹣上,则( )A .x 1>x 2>x 3B .x 1>x 3>x 2C .x 3>x 2>x 1D .x 3>x 1>x 2【分析】把点的坐标分别代入函数解析式,可求得x 1、x 2、x 3的值,可求得答案.【解答】解:∵点A (x 1,1)、B (x 2,2)、C (x 3,﹣3)在双曲线y=﹣上,∴1=﹣,2=﹣,﹣3=﹣,解得点x 1=﹣1,x 2=﹣,x 3=,∴x 3>x 2>x 1,故选C .【点评】本题主要考查函数图象上的点与函数的关系,掌握函数图象上的点的坐标满足函数解析式是解题的关键.5.(2017•海宁市校级模拟)如图所示,两个反比例函数y= 和y= 在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,则四边形PAOB 的面积为( )A .k 1+k 2B .k 1﹣k 2C .k 1•k 2D .k 1•k 2﹣k 2【分析】根据反比例函数系数k 的几何意义得到S 矩形PCOD =k 1,S △AOC =S △BOD =k 2,然后利用四边形PAOB 的面积=S 矩形PCOD ﹣S △AOC ﹣S △BOD 进行计算.【解答】解:∵PC ⊥x 轴,PD ⊥y 轴,∴S 矩形PCOD =k 1,S △AOC =S △BOD =×k 2,∴四边形PAOB 的面积=S 矩形PCOD ﹣S △AOC ﹣S △BOD =k 1﹣k 2﹣k 2=k 1﹣k 2.故选B .【点评】本题考查了反比例函数系数k 的几何意义:在反比例函数y=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.6.(2017•肥城市三模)如图,点A 是反比例函数y=(>0)的图象上任意一点,AB ∥x 轴交反比例函数y=﹣的图象于点B ,以AB 为边作平行四边形ABCD ,其中C ,D 在x 轴上,则平行四边形ABCD 的面积为( )A .2B .3C .4D .5【分析】设A 的纵坐标是b ,则B 的纵坐标也是b ,即可求得A 、B 的横坐标,则AB 的长度即可求得,然后利用平行四边形的面积公式即可求解.【解答】解:设A 的纵坐标是b ,则B 的纵坐标也是b .把y=b 代入y=得,b=,则x=,即A 的横坐标是,同理可得:B 的横坐标是:﹣.则AB=﹣(﹣)=.则S □ABCD =×b=5.故选D .【点评】本题考查了是反比例函数与平行四边形的综合题,理解A 、B 的纵坐标是同一个值,表示出AB 的长度是关键.7.(2017•辽宁模拟)如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于x轴,直线AC交x轴于点E,BC⊥AC,连接BE,反比例函数(x>0)=2,则k的值是()的图象经过点D.已知S△BCEA.2 B.﹣2 C.3 D.4【分析】连接ED、OD,由平行四边形的性质可得出BC=AD、AD⊥AC,根据同底=S△DCE,同理可得出S△OCD=S△DCE,再利用反等高的三角形面积相等即可得出S△BCE比例函数系数k的几何意义即可求出结论.【解答】解:连接ED、OD,如图所示.∵四边形ABCD为平行四边形,∴BC=AD,BC∥AD.∵BC⊥AC,∴AD⊥AC.∵△BCE和△DCE有相同的底CE,相等的高BC=AD,=S△DCE.∴S△BCE∵CD平行于x轴,∴△OCD与△ECD有相等的高,∴S=S△DCE=S△BCE=2=|k|,△OCD∴k=±4.∵反比例函数在第一象限有图象,∴k=4.故选D.【点评】本题考查了反比例函数系数k的几何意义、平行四边形的性质以及平行=S△DCE=S△BCE是解题的关键.线的性质,利用同底等高的三角形面积相等找出S△OCD8.(2017•兴化市校级一模)如图,矩形OABC的两边OA、OC在坐标轴上,且OC=2OA,M、N分别为OA、OC的中点,BM与AN交于点E,若四边形EMON 的面积为2,则经过点B的双曲线的解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【分析】过M作MG∥ON,交AN于G,过E作EF⊥AB于F,由题意可知:AM=OM=a,ON=NC=2a,AB=OC=4a,BC=AO=2a,再根据三角形相似以及三角形面积之间的关系求出B点坐标,即双曲线解析式求出.【解答】解:过M作MG∥ON,交AN于G,过E作EF⊥AB于F,设EF=h,OM=a,由题意可知:AM=OM=a,ON=NC=2a,AB=OC=4a,BC=AO=2a△AON中,MG∥ON,AM=OM,∴MG=ON=a,∵MG∥AB∴==,∴BE=4EM,∵EF⊥AB,∴EF∥AM,∴==.∴FE=AM,即h=a,=4a×a÷2=2a2,∵S△ABMS△AON=2a×2a÷2=2a2,=S△AON,∴S△ABM=S四边形EMON=2,∴S△AEBS△AEB=AB×EF÷2=4a×h÷2=2,ah=1,又有h=a,a=(长度为正数)∴OA=,OC=2,因此B的坐标为(﹣2,),经过B的双曲线的解析式就是y=﹣.【点评】本题主要考查反比例函数的综合题的知识,解答本题的关键是辅助线的作法和相似三角形的性质的应用,此题难度中等.9.(2017•微山县模拟)已知点A(﹣2,1),B(1,4),若反比例函数y=与线段AB有公共点时,k的取值范围是()A.﹣2≤k≤4 B.k≤﹣2或k≥4C.﹣2≤k<0或k≥4 D.﹣2≤k<0或0<k≤4【分析】当k>0时,将x=1代入反比例函数的解析式的y=k,当k≤4时,反比例函数y=与线段AB有公共点;当k<0时,将x=﹣2代入反比例函数的解析式得:y=,当时,反比例函数图象与线段AB有公共点.【解答】解:①当k>0时,如下图:将x=1代入反比例函数的解析式得y=k,∵y随x的增大而减小,∴当k≤4时,反比例函数y=与线段AB有公共点.∴当0<k≤4时,反比例函数y=与线段AB有公共点.②当k<0时,如下图所示:将x=﹣2代入反比例函数得解析式得:y=﹣,∵反比例函数得图象随着x得增大而增大,∴当﹣≤1时,反比例函数y=与线段AB有公共点.解得:k≥﹣2,∴﹣2≤k<0.综上所述,当﹣2≤k<0或0<k≤4时,反比例函数y=与线段AB有公共点.故选;D.【点评】本题主要考查的是反比例函数的图象的性质,利用数形结合是解答本题的关键.10.(2017春•萧山区校级月考)如图,平面直角坐标系中,点A是x轴负半轴上一个定点,点P是函数y=(x<0)上一个动点,PB⊥y轴于点B,当点P 的横坐标逐渐增大时,四边形OAPB的面积将会()A.先增后减B.先减后增C.逐渐减小D.逐渐增大【分析】过点P作PC⊥x轴于点C,根据k的几何意义可知矩形PBOC的面积为6,然后只需要讨论△APC的面积大小即可.【解答】解:过点P作PC⊥x轴于点C,∵点P在y=﹣(x<0)∴矩形PBOC的面积为6设A的坐标为(a,0),P坐标(x,)(x<0),△APC的面积为S,当a<x<0时,∴AC=x﹣a,∴PC=﹣∴△APC的面积为S=(x﹣a)•=﹣3(1﹣)∵a<0,∴﹣a>0,∴﹣在a<x<0上随着x的增大而减小,∴1﹣在a<x<0上随着x的增大而减小,∴﹣3(1﹣)在a<x<0上随着x的增大而增大,∴S=S+6△APC∴S在a<x<0上随着x的增大而增大,当x≤a时,∴AC=a﹣x,∴PC=﹣∴△APC的面积为S=(a﹣x)•=﹣3(﹣1)∵a<0,∴在x<a随着x的增大而增大,∴﹣1在x<a上随着x的增大而增大,∴﹣3(﹣1)在x<a上随着x的增大而减小,∴S=6﹣S△APC∴S在x<a上随着x的增大而增大,∴当P的横坐标增大时,S的值是逐渐增大,故选(D)【点评】本题考查反比例函数的图象性质,解题的关键是将点P的位置分为两种情况进行讨论,然后根据反比例函数的变化趋势求出△APC的面积变化趋势.本题综合程度较高.11.(2016•龙东地区)已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.6【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.【解答】解:在反比例函数y=中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y==2;当x=1时,y==6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.【点评】本题考查了反比例函数的性质,解题的关键是找出反比例函数y=在1<x<3中y的取值范围.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质得出该反比例函数的单调性是关键.12.(2016•德州)下列函数中,满足y的值随x的值增大而增大的是()A.y=﹣2x B.y=3x﹣1 C.y= D.y=x2【分析】根据一次函数、反比例函数、二次函数的性质考虑4个选项的单调性,由此即可得出结论.【解答】解:A、在y=﹣2x中,k=﹣2<0,∴y的值随x的值增大而减小;B、在y=3x﹣1中,k=3>0,∴y的值随x的值增大而增大;C、在y=中,k=1>0,∴y的值随x的值增大而减小;D、二次函数y=x2,当x<0时,y的值随x的值增大而减小;当x>0时,y的值随x的值增大而增大.故选B.【点评】本题考查了一次函数的性质、反比例函数的性质以及二次函数的性质,解题的关键是根据函数的性质考虑其单调性.本题属于基础题,难度不大,解决该题型题目时,熟悉各类函数的性质及其图象是解题的关键.13.(2016•乐山)如图,在反比例函数y=﹣的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动.若tan∠CAB=2,则k的值为()A.2 B.4 C.6 D.8【分析】连接OC,过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出△AOE∽△COF,根据相似三角形的性质得出,再由tan∠CAB==2,可得出CF•OF=8,由此即可得出结论.【解答】解:连接OC,过点A作AE⊥y轴于点E,过点C作CF⊥x轴于点F,如图所示.由直线AB与反比例函数y=的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠EOC=90°,∠EOC+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴.∵tan∠CAB==2,∴CF=2AE,OF=2OE.又∵AE•OE=|﹣2|=2,CF•OF=|k|,∴k=±8.∵点C在第一象限,∴k=8.故选D.【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,解题的关键是求出CF•OF=8.本题属于基础题,难度不大,解决该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结论.14.(2016•菏泽)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC 为()﹣S△BADA.36 B.12 C.6 D.3【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.【解答】解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数y=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=6.∴S△OAC ﹣S△BAD=a2﹣b2=(a2﹣b2)=×6=3.故选D.【点评】本题考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.二.填空题(共11小题)15.(2017•微山县模拟)如图,等腰直角三角形OAB的一条直角边在y轴上,点P是边AB上的一个动点,过点P的反比例函数y=的图象交斜边OB于点Q,(1)当Q为OB中点时,AP:PB=(2)若P为AB的三等分点,当△AOQ的面积为时,k的值为2或2.【分析】(1)设Q(m,),根据线段中点的性质找出点B、A的坐标,再结合反比例函数图象上点的坐标特征可找出点P的坐标,由此即可得出结论;(2)设P(n,)(n>0),根据三等分点的定义找出点B的坐标(两种情况),由此即可得出直线OB的解析式,联立直线OB和反比例函数解析式得出点Q的坐标,再根据三角形的面积公式找出关于k的一元一次方程,解方程即可得出结论.【解答】解:(1)设Q(m,),∵Q为OB中点,∴B(2m,),A(0,),∴P(,),∴AP:PB=:(2m﹣)=.故答案为:.(2)设P(n,)(n>0).P为AB的三等分点分两种情况:①AP:PB=,∴B(3n,),A(0,),∴直线OB的解析式为y=x=x,联立直线OB与反比例函数解析式,得:,解得:,或(舍去).=AO•x Q=××n=,∵S△AOQ解得:k=2;②AP:PB=2,∴B(n,),A(0,),∴直线OB的解析式为y=x=x,联立直线OB与反比例函数解析式,得:,解得:,或(舍去).=AO•x Q=××n=,∵S△AOQ解得:k=2.综上可知:k的值为2或2.故答案为:2或2.【点评】本题考查了等腰直角三角形的性质、反比例函数图象上点的坐标特征以及三角形的面积公式,解题的关键是:(1)求出点P的坐标;(2)分两种情况考虑.本题属于中档题,难度不小,在解决第二问时,需要联立直线与反比例函数的解析式找出交点坐标,再结合三角形的面积公式找出关于k的一元一次方程,解方程即可得出结论.16.(2017•茂县一模)在函数(k>0的常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为y3>y1>y2.【分析】先根据函数y=(k>0的常数)判断出函数图象所在的象限,再根据三点坐标判断出各点所在的象限,根据函数图象的特点进行解答即可.【解答】解:∵函数y=(k>0的常数),∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵﹣2<0,﹣1<0,>0,∴(﹣2,y1),(﹣1,y2)在第三象限,(,y3)在第一象限,∵﹣2<﹣1,∴0>y1>y2,y3>0,故答案为:y3>y1>y2.【点评】本题考查的是反比例函数的图象上点的坐标特点,熟知反比例函数图象在每一象限内的增减性是解答此题的关键.17.(2017•微山县模拟)如图,四边形ABCD与EFGH均为正方形,点B、F在函数y=(x>0)的图象上,点G、C在函数y=﹣(x<0)的图象上,点A、D在x轴上,点H、E在线段BC上,则点G的纵坐标+1.【分析】设线段AB的长度为a,线段EF的长度为b(a>0,b>0),利用反比例函数图象上点的坐标特征找出点B、C、F、G的坐标,再根据正方形的性质找出线段相等,从而分别找出关于a和关于b的一元二次方程,解方程即可得出a、b的值,从而得出结论.【解答】解:设线段AB的长度为a,线段EF的长度为b(a>0,b>0),令y=(x>0)中y=a,则x=,即点B的坐标为(,a);令y=﹣(x<0)中y=a,则x=﹣,即点C的坐标为(﹣,a).∵四边形ABCD为正方形,∴﹣(﹣)=a,解得:a=2,或a=﹣2(舍去).令y=(x>0)中y=2+b,则x=,即点F的坐标为(,2+b);令y=﹣(x<0)中y=2+b,则x=﹣,即点G的坐标为(﹣,2+b).∵四边形EFGH为正方形,∴+(﹣)=b,即b2+2b﹣4=0,解得:b=﹣1,或b=﹣﹣1(舍去).∴a+b=2+﹣1=+1.故答案为:+1.【点评】本题考查了反比例函数图象上点的坐标特征以及正方形的性质,解题的关键是求出a、b值.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数图象上点的坐标特征找出点的坐标,再结合正方形的性质分别找出关于正方形边长的一元二次方程是关键.18.(2017•郑州一模)已知P1(x1,y1),P2(x2,y2)两点都在反比例函数的图象上,且x1<x2<0,则y l<y2(填“>”或“<”).【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得比例函数的图象上,且x1<x2<0,则y l<y2,故答案为:<.【点评】本题考查了反比例函数图象上点的坐标特征,利用方比例函数的性质是解题关键.19.(2017•新城区校级模拟)如图,△AOB与反比例函数交于C、D,△AOB 的面积为6,若AC:CB=1:3,则反比例函数的表达式为y=.=,进而根据反比例函数系数k的几何意义可得k的值,【分析】根据题意S△AOC可得反比例函数的关系式.【解答】解:连接OC,∵△AOB的面积为6,若AC:CB=1:3,∴△AOC的面积=6×=,=AC•OA=xy=,∵S△AOC即|k|=,∴k=±3,又∵反比例函数的图象在第一象限,∴y=,故答案为y=.【点评】本题考查了待定系数法求反比例函数的解析式,反比例函数系数k的几何意义,根据题意求得△AOC的面积是解题的关键.20.(2017秋•海宁市校级月考)函数y=中,若x>1,则y的取值范围为0<y<6,若x<3,则y的取值范围为y<0或y>2.【分析】根据反比例函数的增减性确定y的取值范围即可.【解答】解:∵y=中k=6>0,∴在每一象限内y随着x的增大而减小,当x=1时y=6,当x=3时y=2,∴当x>1,则y的取值范围为0<y<6,当x<3时y的取值范围为y<0或y>2 故答案为:0<y<6;y<0或y>2.【点评】本题考查了反比例函数的性质,解题的关键是弄清反比例函数的增减性,难度不大.21.(2017春•启东市月考)如图,点A为反比例函数y=﹣图象上一点,过A 作AB⊥x轴于点B,连接OA,则△ABO的面积为2.【分析】根据过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.即可求解.【解答】解:△ABO的面积是:×|﹣4|=2.故答案是:2.【点评】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.22.(2016•宁波)如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为6.【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S=S△AOC﹣S△OBC==,△ABC故答案为:6.【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.23.(2016•潍坊)已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是﹣3<x<﹣1.【分析】根据反比例函数过点(3,﹣1)结合反比例函数图象上点的坐标特征可求出k值,根据k值可得出反比例函数在每个象限内的函数图象都单增,分别代入y=1、y=3求出x值,即可得出结论.【解答】解:∵反比例函数y=(k≠0)的图象经过(3,﹣1),∴k=3×(﹣1)=﹣3,∴反比例函数的解析式为y=.∵反比例函数y=中k=﹣3,∴该反比例函数的图象经过第二、四象限,且在每个象限内均单增.当y=1时,x==﹣3;当y=3时,x==﹣1.∴1<y<3时,自变量x的取值范围是﹣3<x<﹣1.故答案为:﹣3<x<﹣1.【点评】本题考查了反比例函数的性质以及反比例函数图象上点的坐标特征,解题的关键是求出k值.本题属于基础题,难度不大,解决该题型题目时,由点的坐标结合反比例函数图象上点的坐标特征求出k值,再根据反比例函数的性质找出去增减性是关键.24.(2016•兰州)双曲线y=在每个象限内,函数值y随x的增大而增大,则m的取值范围是m<1.【分析】根据反比例函数的单调性结合反比例函数的性质,可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:∵双曲线y=在每个象限内,函数值y随x的增大而增大,∴m﹣1<0,解得:m<1.故答案为:m<1.【点评】本题考查了反比例函数的性质以及解一元一次不等式,解题的关键是找出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质找出反比例系数k的取值范围是关键.25.(2016•滨州)如图,已知点A、C在反比例函数y=的图象上,点B,D在反比例函数y=的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=,CD=,AB与CD间的距离为6,则a﹣b的值是3.。