中考数学专题方案设计方案型问题
中考数学解析汇编41 方案设计问题

方案设计问题(2012北海,23,8分)23.某班有学生55人,其中男生与女生的人数之比为6:5。
(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上。
请问男、女生人数有几种选择方案?【解析】(1)根据题目中的等量关系,设出未知数,列出方程,并求解,得男生和女生的人数分别为30人,25人。
(2)根据题意列出不等式组,并求解。
又因为人数不能为小数,列出不等式组的整数解,可以得出有两种方案。
【答案】解:(1)设男生有6x人,则女生有5x人。
1分依题意得:6x+5x=55 2分∴x=5∴6x=30,5x=25 3分答:该班男生有30人,女生有25人。
4分(2)设选出男生y人,则选出的女生为(20-y)人。
5分由题意得:2027y yy-->⎧⎨≥⎩6分解之得:7≤y<9∴y的整数解为:7、8。
7分当y=7时,20-y=13当y=8时,20-y=12答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人。
8分【点评】本题是方程和不等式组的应用,使用性比较强,适合方案设计。
解题时注意题目的隐含条件,就是人数必须是非负整数。
是历年中考考查的知识点,平时教学的时候多加训练。
难度中等。
24.(2012年广西玉林市,24,10分)一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.分析:(1)设甲车单独完成任务需要x天,乙单独完成需要y天,根据题意所述等量关系可得出方程组,解出即可;(2)结合(1)的结论,分别计算出三种方案各自所需的费用,然后比较即可.解:(1)设甲车单独完成任务需要x 天,乙单独完成需要y 天,由题意可得:⎪⎩⎪⎨⎧=-=⎪⎪⎭⎫ ⎝⎛+1511110x y y x ,解得:⎩⎨⎧==3015y x 即甲车单独完成需要15天,乙车单独完成需要30天;(2)设甲车租金为a ,乙车租金为b ,则根据两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得:⎩⎨⎧=-=+1500650001010b a b a ,解得:⎩⎨⎧==25004000b a . ①租甲乙两车需要费用为:65000元;②单独租甲车的费用为:15×4000=60000元;③单独租乙车需要的费用为:30×2500=75000元;综上可得,单独租甲车租金最少.点评:此题考查了分式方程的应用,及二元一次方程组的知识,分别得出甲、乙单独需要的天数,及甲、乙车的租金是解答本题的关键.27.(2012黑龙江省绥化市,27,10分)在实施“中小学校舍安全工程”之际,某县计划对A 、B 两类学校的校舍进行改造.根据预测,改造一所A 类学校和三所B 类学校的校舍共需资金480万元,改造三所A 类学校和一所B 类学校的校舍共需资金400万元.⑴ 改造一所A 类学校和一所B 类学校的校舍所需资金分别是多少万元?⑵ 该县A 、B 两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A 、B 两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A 、B 两类学校各有几所. 【解析】解:(1)等量关系为:①改造一所A 类学校和三所B 类学校的校舍共需资金480万元;②改造三所A 类学校和一所B 类学校的校舍共需资金400万元;设改造一所A 类学校的校舍需资金x 万元,改造一所B 类学校的校舍所需资金y 万元,则34803400x y x y +=⎧⎨+=⎩,解得90130x y =⎧⎨=⎩答:改造一所A 类学校的校舍需资金90万元,改造一所B 类学校的校舍所需资金130万元.(2)不等关系为:①地方财政投资A 类学校的总钱数+地方财政投资B 类学校的总钱数≥210;②国家财政投资A 类学校的总钱数+国家财政投资B 类学校的总钱数≤770.设A 类学校应该有a 所,则B 类学校有(8-a )所.则()()()()203082109020130308770a a a a +-≥⎧⎪⎨-+--≤⎪⎩,解得31a a ≤⎧⎨≥⎩∴1≤a ≤3,即a=1,2,3.答:有3种改造方案.方案一:A 类学校有1所,B 类学校有7所;方案二:A 类学校有2所,B 类学校有6所;方案三:A 类学校有3所,B 类学校有5所.【答案】 ⑴改造一所A 类学校和一所B 类学校的校舍所需资金分别是90万元、130万元;⑵共有三种方案.方案一:A 类学校1所,B 类学校7所;方案二:A 类学校2所,B 类学校6所;方案三:A 类学校3所,B 类学校5所.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.理解“国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元”这句话中包含的不等关系是解决本题的关键.难度中等.22. (2012山东莱芜, 22,10分)(本题满分10分)为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔个多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部分“八折”优惠.若买x 个文具盒需要1y 元,买x 支钢笔需要2y 元;求1y 、2y 关于x 的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.【解析】(1)设每个文具盒x 元,每支钢笔y 元,可列方程组得⎩⎨⎧=+=+1617410025y x y x ,解之得⎩⎨⎧==1514y x 答:每个文具盒14元,每支钢笔15元. ……………………………………………………..4分(2)由题意知,y 1关于x 的函数关系式为y 1=14×90%x ,即y 1=12.6x.由题意知,买钢笔10以下(含10支)没有优惠,故此时的函数关系式为y 2=15x.当买10支以上时,超出部分有优惠,故此时函数关系式为y 2=15×10+15×80%(x -10)即y2=12x+30 . ……………………………………………………..7分(3)当y1< y2即12.6x<12x+30时,解得x<50;当y1= y2即12.6x=12x+30时,解得x=50;当y1> y2即12.6x>12x+30时,解得x>50.综上所述,当购买奖品超过10件但少于50件时,买文具盒省钱;当购买奖品超过50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱. . ……………………………………………………..10分【答案】(1)答:每个文具盒14元,每支钢笔15元.(2)y1=12.6x; y2=12x+30.(3)当购买奖品超过10件但少于50件时,买文具盒省钱;当购买奖品超过50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱.【点评】本题考察了列二元一次方程组解实际问题,求一次函数的解析式和利用一元一次不等式组选择最优化的方案。
初中数学中考指导二轮复习锦囊专题九方案设计型问题

专题九方案设计型问题一、中考专题讲解方案设计型问题,方案设计型问题是设置一个实责问题的情况,给出若干信息,提出解决问题的要求,追求合适的解决方案,有时还给出几个不相同的解决方案,要求判断其中哪个方案最优.方案设计型问题主要观察学生的着手操作能力和实践能力.随着新课程改革的不断深入,一些奇特、灵便、亲近联系本质的方案设计问题正越来越碰到中考命题人员的喜爱,这些问题主要观察学生着手操作能力和创新能力,这也是新课程所要求的中心内容之一。
二、解题策略和解法精讲方案设计型问题涉及生产生活的方方面面,如:测量、购物、生产配料、汽车分派、图形拼接等。
所用到的数学知识有方程、不等式、函数、解直角三角形、概率和统计等知识。
这类问题的应用性特别突出,题目一般较长,做题从前要仔细读题,理解题意,选择和构造合适的数学模型,经过数学求解,最后解决问题。
解答此类问题必定拥有扎实的基础知识和灵便运用知识的能力,别的,解题时还要侧重综合运用转变思想、数形结合的思想、方程函数思想及分类谈论等各种数学思想。
三、中考考点精讲考点一:设计测量方案问题这类问题主要包括物体高度的测量和地面宽度的测量。
所用到的数学知识主要有相似、全等、三角形中位线、投影、解直角三角形等。
例 1 (2014? 浙江宁波,第26 题 14 分)木匠黄师傅用长AB=3,宽 BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、 O2分别在 CD、 AB上,半径分别是O1C、 O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,合适平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)经过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x( 0<x< 1),圆的半径为y.①求 y 关于 x 的函数解析式;②当 x 取何值时圆的半径最大,最大多数径为多少?并说明四种方案中哪一个圆形桌面的半径最大.考点:圆的综合题解析:( 1)观察图易知,截圆的直径需不高出长方形长、宽中最短的边,由已知长宽分别为3, 2,那么直接取圆直径最大为2,则半径最大为1.(2)方案二、方案三中求圆的半径是老例的利用勾股定理或三角形相似中对应边长成比率等性质解直角三角形求边长的题目.一般都先设出所求边长,此后利用关系代入表示其他相关边长,方案二中可利用△O1O2E 为直角三角形,则满足勾股定理整理方程,方案三可利用△AOM∽△OFN后对应边成比率整理方程,进而可求 r 的值.(3)①近似( 1)截圆的直径需不高出长方形长、宽中最短的边,诚然方案四中新拼的图象不用然为矩形,但直径也不得高出横纵向方向跨度.则选择最小跨度,取其,即为半径.由EC为 x,则新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+ x,则需要先判断大小,此后分别谈论结论.②已相关系表达式,则直接依照不等式性质易得方案四中的最大多数径.另与前三方案比较,即得最后结论.解答:( 1)方案一中的最大多数径为1.解析以下:因为长方形的长宽分别为3, 2,那么直接取圆直径最大为2,则半径最大为1.(2)如图 1,方案二中连接O1, O2,过 O1作 O1E⊥ AB于 E,方案三中,过点O分别作 AB, BF的垂线,交于M, N,此时 M, N恰为⊙ O与 AB, BF的切点.方案二:设半径为r ,在 Rt△ O1O2E 中,∵O1O2=2r , O1E=BC=2, O2E=AB﹣ AO1﹣ CO2=3﹣2r ,∴( 2r)2=22 +( 3﹣ 2r)2,解得 r =.新 _课 _标第 _一 _网方案三:设半径为r ,在△ AOM和△ OFN中,,∴△ AOM∽△ OFN,∴,∴,解得 r =.比较知,方案三半径较大.(3)方案四:①∵ EC=x,∴新拼图形水平方向跨度为3﹣x,竖直方向跨度为 2+x.近似( 1),所截出圆的直径最大为3﹣x或 2+x较小的.1.当 3﹣ x<2+x 时,即当 x>时, r =(3﹣ x);2.当 3﹣ =2+时,即当=时,r =( 3﹣) =;x x x3.当 3﹣ x> 2+x 时,即当x<时, r =(2+x).②当 x>时, r =(3﹣ x)<(3﹣)=;当 x=时, r =(3﹣)=;当 x<时, r =(2+x)<(2+)=,∴方案四,当 x=时, r 最大为.∵ 1<<<,∴方案四时可取的圆桌面积最大.谈论:此题观察了圆的基本性质及经过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质谈论等内容,题目虽看似奇特不易找到思路,但仔细观察每一小问都是老例的基础考点,所以整体来说是一道质量很高的题目,值得仔细练习.对应训练1.(2014?济宁,第 20 题 8 分)在数学活动课上,王老师发给每位同学一张半径为 6 个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意采纳作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.名称四均分圆的面积方案方案一方案二方案三采纳的工具带刻度的三角板画出表示图简述设计方案作⊙ O两条互相垂直的直径AB、 CD,将⊙ O的面积分成相等的四份.指出对称性既是轴对称图形又是中心对称图形考点:利用旋转设计图案;利用轴对称设计图案.解析:依照圆的面积公式以及轴对称图形和中心对称图形定义分别解析得出即可.解答:名称四均分圆的面积方案方案一方案方案二三采纳的工具带刻度的三角板带刻带刻度三度三角板、角板、量角圆规.器、圆规.画出表示图简述设计方作⊙ O两条互相垂直的直径AB、 CD,将⊙ O的面积分成相等的四份.(1)( 4)案以点作⊙OO为的一圆心,条直以 3径个单AB;位长( 5)度为分别半径以作圆;OA、OB(2)的中在大点为⊙O圆心,上依以3次取个单三等位长分点度为A、B、半径C;作⊙(3)O1、⊙连接 O2;OA、则⊙OB、 O1、⊙O C. O2和则小⊙O圆O 中剩与三余的等份两部圆环分把把⊙ O⊙O的面的面积四积四均分.均分.指出对称性既是轴对称图形又是中心对称图形.轴对既是称图轴对形称图形又是中心对称图形.谈论:此题主要观察了利用轴对称设计图案以及轴对称图形以及中心对称图形的性质,熟练利用扇形面积公式是解题要点.考点二:设计搭配方案问题这类问题不但在中考中经常出现,大家在平时的练习中也会经常碰到。
中考数学专题复习《设计方案》测试卷-附带答案

中考数学专题复习《设计方案》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一选择题1.(2023九上·菏泽月考)在数学活动课上老师让同学们判断一个由四根木条组成的四边形是否为矩形下面是一个学习小组拟定的方案其中正确的方案是()A.测量四边形的三个角是否为直角B.测量四边形的两组对边是否相等C.测量四边形的对角线是否互相平分D.测量四边形的其中一组邻边是否相等2.(2023九上·安徽期中)某班计划在劳动实践基地内种植蔬菜班长买回来10米长的围栏准备围成两边靠墙(两墙垂直且足够长)的菜园为了让菜园面积尽可能大同学们提出了围成矩形等腰直角三角形(两直角边靠墙)扇形这三种方案如图所示.最佳方案是()A.方案1B.方案2C.方案1或方案2D.方案33.(2022·自贡)九年级2班计划在劳动实践基地内种植蔬菜班长买回来8米长的围栏准备围成一边靠墙(墙足够长)的菜园为了让菜园面积尽可能大同学们提出了围成矩形等腰三角形(底边靠墙)半圆形这三种方案最佳方案是()A.方案1B.方案2C.方案3D.方案1或方案24.(2023·衡水模拟)要得知某一池塘两端A B的距离发现其无法直接测量两同学提供了如下间接测量方案.方案Ⅰ:如图1 先过点B作BF⊥AB再在BF上取C D两点使BC=CD接着过点D作BD的垂线DE交AC的延长线于点E 则测量DE的长即可方案Ⅱ:如图2 过点B作BD⊥AB再由点D观测用测角仪在AB的延长线上取一点C 使∠BDC=∠BDA则测量BC的长即可.对于方案ⅠⅡ说法正确的是()A.只有方案Ⅰ可行B.只有方案Ⅱ可行C.方案Ⅰ和Ⅱ都可行D.方案Ⅰ和Ⅱ都不可行5.(2023·北京市模拟)某产品的盈利额(即产品的销售价格与固定成本之差)记为y 购买人数记为x 其函数图象如图1所示.由于日前该产品盈利未达到预期相关人员提出了两种调整方案图2 图3中的实线分别为调整后y与x的函数图象.给出下列四种说法其中正确说法的序号是()①图2对应的方案是:保持销售价格不变并降低成本②图2对应的方案是:提高销售价格并提高成本③图3对应的方案是:提高销售价格并降低成本④图3对应的方案是:提高销售价格并保持成本不变A.①③B.②③C.①④D.②④二填空题6.(2022·瓯海模拟)小芳和小林为了研究图中“跑到画板外面去的两直线a b所成的角(锐角)”问题设计出如下两个方案:小林的方案小芳的方案测αβ的度数.测∠1 ∠ACB的度数.已知小林测得∠β=115°小芳作了AB=BC 并测得∠1=80°则直线a b所成的角为.7.(2023九上·港南期中)生物工作者为了估计一片山林中雀鸟的数量设计了如下方案:先捕捉50只雀鸟给它们做上标记后放回山林一段时间后再从山林中随机捕捉80只其中有标记的雀鸟有2只请你帮助工作人员估计这片山林中雀鸟的数量为只.8.(2021·东城模拟)数学课上李老师提出如下问题:已知:如图AB是⊙O的直径射线AC交⊙O于C.求作:弧BC的中点D.同学们分享了如下四种方案:①如图1 连接BC作BC的垂直平分线交⊙O于点D.②如图2 过点O作AC的平行线交⊙O于点D.③如图3 作∠BAC的平分线交⊙O于点D.④如图4 在射线AC上截取AE使AE=AB连接BE交⊙O于点D.上述四种方案中正确的方案的序号是.9.(2022·房山模拟)为确定传染病的感染者医学上可采用“二分检测方案”.假设待检测的总人数是2m(m为正整数).将这2m个人的样本混合在一起做第1轮检测(检测1次)如果检测结果是阴性可确定这些人都未感染 如果检测结果是阳性 可确实其中感染者 则将这些人平均分成两组 每组2m−1个人的样本混合在一起做第2轮检测 每组检测1次.依此类推:每轮检测后 排除结果为阴性的组 而将每个结果为阳性的组再平均分成两组 做下轮检测 直至确定所有的感染者. 例如 当待检测的总人数为8 且标记为“x ”的人是唯一感染者时 “二分检测方案”可用如图所示.从图中可以看出 需要经过4轮共n 次检测后 才能确定标记为“x ”的人是唯一感染者.(1)n 的值为(2)若待检测的总人数为8 采用“二分检测方案” 经过4轮共9次检测后确定了所有的感染者 写出感染者人数的所有可能值三 实践探究题10.(2024·镇海区月考)根据以下素材 探索完成任务.如何确定木板分配方案?素材1我校开展爱心义卖活动 小艺和同学们打算推销自己的手工制品.他们以每块15元的价格买了100张长方形木板 每块木板长和宽分别为80cm 40cm.素材2现将部分木板按图1虚线裁剪 剪去四个边长相同的小正方形(阴影).把剩余五个矩形拼制成无盖长方体收纳盒 使其底面长与宽之比为3:1.其余木板按图2虚线裁剪出两块木板(阴影是余料) 给部分盒子配上盖子.素材3义卖时的售价如标签所示:问题解决任计算盒子高度求出长方体收纳盒的高度.务1 任务2 确定分配方案1若制成的有盖收纳盒个数大于无盖收纳盒 但不到无盖收纳盒个数的2倍 木板该如何分配?请给出分配方案.任务3确定分配方案2为了提高利润 小艺打算把图2裁剪下来的余料(阴影部分)利用起来 一张矩形余料可以制成一把小木剑 并以5元/个的价格销售.请确定木板分配方案 使销售后获得最大利润.11.(2023九上·鹿城月考)某校准备在校园里利用围墙(墙可用最大长度为25.2m )和48m 长的篱笆墙围成Ⅰ Ⅱ两块矩形开心农场.某数学兴趣小组设计了三种方案(除围墙外 实线部分为篱笆墙 且不浪费篱笆墙) 请根据设计方案回答下列问题:(1)方案一:如图① 全部利用围墙的长度 但要在Ⅰ区中留一个宽度AE =2m 的矩形水池 且需保证总种植面积为185.52m 2 试确定CG 的长(2)方案二:如图② 使围成的两块矩形总种植面积最大 请问BC 应设计为多长?此时最大面积为多少?(3)方案三:如图③ 在图中所示三处位置各留1m 宽的门 且使围成的两块矩形总种植面积最大 请问BC 应设计为多长?此时最大面积为多少?12.【综合与实践】有言道:“杆秤一头称起人间生计 一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案 然后动手制作 再结合实际进行调试 请完成下列方案设计中的任务. 【知识背景】如图 称重物时 移动秤砣可使杆秤平衡 根据杠杆原理推导得:(m 0+m)⋅l =M ⋅(a +y).其中秤盘质量m 0克 重物质量m 克 秤砣质量M 克 秤纽与秤盘的水平距离为l 厘米 科纽与零刻线的水平距离为a 厘米 秤砣与零刻线的水平距离为y 厘米. 【方案设计】目标:设计简易杆秤.设定m0=10,M=50最大可称重物质量为1000克零刻线与末刻线的距离定为50厘米.(1)当秤盘不放重物秤砣在零刻线时杆秤平衡请列出关于l a的方程(2)当秤盘放入质量为1000克的重物秤砣从零刻度线移至末刻线时杠杆平衡请列出关于l a的方程(3)根据(1)和(2)所列方程求出l和a的值(4)根据(1)-(3)求y关于m的函数解析式(5)从零刻线开始每隔100克在科杆上找到对应刻线请写出相邻刻线间的距离. 13.(2023九上·长清期中)某校项目式学习小组开展项目活动过程如下:项目主题:测量旗杆高度问题驱动:能利用哪些科学原理来测量旗杆的高度?组内探究:由于旗杆较高需要借助一些工具来测量比如自制的直角三角形硬纸板标杆镜子甚至还可以利用无人机…确定方法后先画出测量示意图然后实地进行测量并得到具体数据从而计算旗杆的高度.成果展示:下面是同学们进行交流展示时的部分测量方案:方案一方案二…测量标杆皮尺自制直角三角板硬纸板皮尺…工具测量示意图说明:线段AB 表示学校旗杆 小明的眼睛到地面的距离CD =1.7m 测点F 与B D 在同一水平直线上 D F B 之间的距离都可以直接测得 且A B C D E F 都在同一竖直平面内 点A C E 三点在同一直线上.说明:线段AB 表示旗杆 小明的身高CD =1.7m 测点D 与B 在同一水平直线上 D B 之间的距离可以直接测得 且A B CD E F G 都在同一竖直平面内 点A C E 三点在同一直线上 点C F G 三点在同一直线上.测量数据B D 之间的距离 16.8m B D 之间的距离 16.8m … D F 之间的距离 1.35mEF 的长度0.50m…EF 的长度2.60mCE 的长度0.75m… … …根据上述方案及数据 请你选择一个方案 求出学校旗杆AB 的高度.(结果精确到0.1m )14.(2024九上·杭州月考)根据以下素材 探索完成任务.如何设计喷泉喷头的升降方案?素材1如图 有一个可垂直升降的喷泉 喷出的水柱呈抛物线.记水柱上某一点到喷头的水平距离为x 米 到湖面的垂直高度为y 米.当喷头位于起始位置时 测量得x 与y 的四组数据如下: x (米) 0 2 3 4 y (米)121.751素材2公园想设立新的游玩项目 通过升降喷头 使游船能从水柱下方通过 如图 为避免游船被喷泉淋到 要求游船从水柱下方中间通过时 顶棚上任意一点到水柱的竖直距离均不小于0.4米.已知游船顶棚宽度为2.8米 顶棚到湖面的高度为2米.问题解决 任务确定喷泉形状 结合素材1 求y 关于x 的表达式.1任务2探究喷头升降方案为使游船按素材2要求顺利通过求喷头距离湖面高度的最小值.15.(2023九上·温州期末)根据素材解决问题.设计货船通过圆形拱桥的方案素材1图1中有一座圆拱石桥图2是其圆形桥拱的示意图测得水面宽AB=16m 拱顶离水面的距离CD=4m.素材2如图3 一艘货船露出水面部分的横截面为矩形EFGH 测得EF=3m EH=10m.因水深足够货船可以根据需要运载货物.据调查船身下降的高度y(米)与货船增加的载重量x (吨)满足函数关系式y=1100x.问题解决任务1确定桥拱半径求圆形桥拱的半径.任务2拟定设计方案根据图3状态货船能否通过圆形桥拱?若能 最多还能卸载多少吨货物?若不能 至少要增加多少吨货物才能通过?16.(2024九下·宁波月考)根据以下素材 探索完成任务.如何确定拍照打卡板素材一 设计师小聪为某商场设计拍照打卡板(如图1) 图2为其平面设计图.该打卡板是轴对称图形 由长方形DEFG 和等腰三角形ABC 组成 且点B F G C 四点共线.其中 点A 到BC 的距离为1.2米 FG =0.8米 DG =1.5米.素材二因考虑牢固耐用 小聪打算选用甲 乙两种材料分别制作长方形DEFG 与等腰三角形ABC (两种图形无缝隙拼接) 且甲材料的单价为85元/平方米 乙材料的单价为100元/平方米.问题解决任务一推理最大高度小聪说:“如果我设计的方案中CB长与C D 两点间的距离相等 那么最高点B 到地面的距离就是线段DG 长” 他的说法对吗?请判断并说明理由.任务二 探究等腰三角形ABC 面积 假设CG 长度为x 米 等腰三角形ABC 的面积为S 求S 关于x 的函数表达式.任务三确定拍照打卡板 小聪发现他设计的方案中 制作拍照打卡板的总费用不超过180元 请你确定CG 长度的最大值.17.(2024九上·杭州月考)根据以下素材 探索完成任务如何设计拱桥上救生圈的悬挂方案?素材1图1是一座抛物线形拱桥 以抛物线两个水平最低点连线为x 轴 抛物线离地面的最高点的铅垂线为y 轴建立平面直角坐标系 如图2所示. 某时测得水面宽20m 拱顶离水面最大距离为10m 抛物线拱形最高点与x 轴的距离为5m .据调查 该河段水位在此基础上再涨1m 达到最高.素材2为方便救助溺水者 拟在图1的桥拱上方栏杆处悬挂救生圈 如图3 救生圈悬挂点为了方便悬挂 救生圈悬挂点距离抛物线拱面上方1m 且相邻两救生圈悬挂点的水平间距为4m .为美观 放置后救生圈关于y 轴成轴对称分布.(悬挂救生圈的柱子大小忽略不计)任务1确定桥拱形状 根据图2 求抛物线的函数表达式.任务2拟定设计方案求符合悬挂条件的救生圈个数 并求出最右侧一个救生圈悬挂点的坐标.任务3探究救生绳长度 当水位达到最高时 上游个落水者顺流而下到达抛物线拱形桥面的瞬间 若要确保救助者把拱桥上任何一处悬挂点的救生圈抛出都能抛到落水者身边 求救生绳至少需要多长.(救生圈大小忽略不计 结果保留整数)问题解决(1)任务1 确定桥拱形状 根据图2 求抛物线的函数表达式. (2)任务2 拟定设计方案求符合悬挂条件的救生圈个数 并求出最右侧一个救生圈悬挂点的坐标. (3)任务3 探究救生绳长度当水位达到最高时 上游个落水者顺流而下到达抛物线拱形桥面的瞬间 若要确保救助者把拱桥上任何一处悬挂点的救生圈抛出都能抛到落水者身边 求救生绳至少需要多长.(救生圈大小忽略不计 结果保留整数)18.(2023九上·浙江期中)根据以下素材 探索完成任务.绿化带灌溉车的操作方案素材1辆绿化带灌溉车正在作业 水从喷水口喷出 水流的上下两边缘可以抽象为两条抛物线的一部分:喷水口离开地面高1.6米 上边缘抛物线最高点离喷水口的水平距离为3米 高出|喷水口0.9米 下边缘水流形状与上边缘相同 且喷水口是最高点。
人教版中考复习数学练习专题五:方案设计专题(含答案)

专题五方案设计专题【考纲与命题规律】考纲要求方案设计问题是运用学过的技能和方法,进行设计和操作,然后通过分析计算,证明等,确定出最佳方案的数学问题,一般涉及生产的方方面面,如:测量,购物,生产配料,汽车调配,图形拼接,所用到的数学知识有方程、不等式、函数解直角三角形,概率和统计等知识.命题规律方案设计问题应用性比较强,解题时要注重综合应用转化思想,数形结合的思想,方程函数思想及分类讨论等各种数学思想.【课堂精讲】例1.手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)分析:(1)正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,连接HE、EF、FG、GH、HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.解答:根据分析,可得。
(1)第一种情况下,分割后得到的最小等腰直角三角形是△AEH、△BEF、△CFG、△DHG,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(2)第二种情况下,分割后得到的最小等腰直角三角形是△AEO、△BEO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(3)第三种情况下,分割后得到的最小等腰直角三角形是△AHO、△DHO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(4)第四种情况下,分割后得到的最小等腰直角三角形是△AEI、△OEI,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2÷2=2×2÷2÷2=1(cm2).例2.甲乙两家商场平时以同样的价格出售相同的商品。
中考数学专题训练:方案设计型(含答案)

青花椒
野生蘑菇
每辆汽车运载量(吨)
A型
2
2
B型
4
2
C型
1
6
车型
A
B
C
每辆车运费(元)
1500
1800
2000
(1)设A型汽车安排 辆,B型汽车安排 辆,求 与 之间的函数关系式.
(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案.
(3)为节约运费,应采用(2)中哪种方案?并求出最少运费.
总收入(单位:元)
甲
3
1
12 500
乙
2
3
16 500
说明:不同种植户种植的同类蔬菜每亩的平均收入相等;亩为土地面积单位.
(1)求A,B两类蔬菜每亩的平均收入各是多少元;
(2)某种植户准备租20亩地用来种植A,B两类蔬菜,为了使总收入不低于63 000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有的租地方案.
根据题意列,得
解得20≤a≤22.
∵总利润W=5a+10(100-a)=-5a+1 000,W是关于x的一次函数,W随x的增大而减小,
∴当x=20时,W有最大值,此时W=900,且100-20=80,
答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
2.今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环保意识,节约用水,某校数学教师编造了一道应用题:为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:
设商店销售完毕后获得的利润为w元,
则w=(2200﹣2000)a+(1800﹣1600)a+(1100﹣1000)(100﹣2a)=200a+10000,
中考题中“方案设计型”问题的解法

中考题中“方案设计型”问题的解法2001年各地中考试题中出现了许多高质量的方案设计型题目,以激励学生运用数学知识和思想方法去解决现实生活中的问题,现介绍这类中考题的几种解法,供同学们毕业复习时参考。
一、用一元一次方程来解例1:我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元。
当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须用15天的时间将这批蔬菜全部销售加工完毕。
为此,公司研制了在种可行方案:方案一:将蔬菜全部进行粗加工。
方案二:尽可能多的对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接出售。
方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天完成。
你认为哪种方案获利最多?为什么?二、用一元一次不等式来解例2:某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除了保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年),年票分为A、B、C三类:A类年票每张120元,持票者进入园林时,无需再购买门票:B类门票每张60元,持票者进入该园林时,需再购买门票,每次2元,C类门票每张40元,持票者进入该园林时,需再购买门票,每次3元。
(1)如果你只选择一种购买门票的方法,并且你计划在一年中用80元在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。
(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算?三、用方程与不等式混合组来解例3:在双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派四、用分式方程来解例4:“丽园”开发公司生产的960件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元。
人教版九年级数学中考总复习 专题六 方案设计题 含解析及答案

专题六方案设计题专题提升演练1.一位园艺设计师计划在一块形状为直角三角形且有一个内角为60°的绿化带上种植四种不同的花卉,要求种植的四种花卉组成面积分别相等、形状完全相同的几何图案.某同学为此提供了如图所示的四种设计方案.其中可以满足园艺设计师要求的有()A.2种B.3种C.4种D.1种2.小明设计了一个利用两块相同的长方体木块测量一张桌子高度的方案,首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73 cmB.74 cmC.75 cmD.76 cm3.某化工厂,现有A种原料52 kg,B种原料64 kg,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3 kg,B种原料2 kg;生产1件乙种产品需要A种原料2 kg,B种原料4 kg,则生产方案的种数为()A.4B.5C.6D.74.某市有甲、乙两家液化气站,他们的每罐液化气的价格、质量都相同.为了促销,甲站的液化气每罐降价25%销售;乙站的液化气第1罐按原价销售,从第2罐开始以7折优惠销售,若小明家购买8罐液化气,则最省钱的方法是买站的.5.从边长为a的大正方形纸板中间挖去一个边长为b的小正方形后,其截成的四个相同的等腰梯形(如图①)可以拼成一个平行四边形(如图②).现有一张平行四边形纸片ABCD(如图③),已知∠A=45°,AB=6,AD=4.若将该纸片按图②的方式截成四个相同的等腰梯形,然后按图①的方式拼图,则得到的大正方形的面积为 .+6√26.某市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍. (1)求温馨提示牌和垃圾箱的单价各是多少元;(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10 000元,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少元.设温馨提示牌的单价是x 元, 则垃圾箱的单价是3x 元,由题意得2x+3×3x=550,解得x=50.故温馨提示牌的单价是50元,垃圾箱的单价是150元. (2)设购买温馨提示牌m 个, 则购买垃圾箱(100-m )个,由题意得50m+150(100-m )≤10000, 解得m ≥50.又100-m ≥48,∴m ≤52.∵m 为整数,∴m 的取值为50,51,52. 方案一:当m=50时,100-m=50,即购买50个温馨提示牌和50个垃圾箱,其费用为50×50+50×150=10000(元); 方案二:当m=51时,100-m=49,即购买51个温馨提示牌和49个垃圾箱,其费用为51×50+49×150=9900(元);方案三:当m=52时,100-m=48,即购买52个温馨提示牌和48个垃圾箱,其费用为52×50+48×150=9800(元).∵10000>9900>9800,∴方案三所需资金最少,最少是9800元.7.某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人. (1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童. ①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1 200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.设该旅行团中成人x 人,少年y 人,根据题意,得{x +y +10=32,x =y +12,解得{x =17,y =5,故该旅行团中成人17人,少年5人.(2)①由题意得,所需门票的总费用是:100×8+100×0.8×5+100×0.6×(10-8)=1320(元). ②设可以安排成人a 人,少年b 人带队, 则1≤a ≤17,1≤b ≤5. 当10≤a ≤17时,若a=10,则费用为100×10+100×0.8×b ≤1200,解得b ≤52, ∴b 的最大值是2,此时a+b=12,费用为1160元. 若a=11,则费用为100×11+100×0.8×b ≤1200,解得b ≤54, ∴b 的最大值是1,此时a+b=12,费用为1180元.若a ≥12,则100a ≥1200,即成人门票至少需要1200元,不合题意,舍去.当1≤a<10时,若a=9,则费用为100×9+100×0.8×b+100×0.6×1≤1200,解得b ≤3, ∴b 的最大值是3,a+b=12,费用为1200元.若a=8,则费用为100×8+100×0.8×b+100×0.6×2≤1200,解得b ≤72,∴b 的最大值是3,a+b=11<12,不合题意,舍去.同理,当a<8时,a+b<12,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人.其中成人10人,少年2人时购票费用最少.。
3最优方案问题

二、方程+不等式型例2.学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?练习2:某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元。
(1)A、B两种商品的单价分别是多少元。
(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案。
二、图像型例3.某游泳馆普通票价为20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数,设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数解析式.(2)在同一个平面直角坐标系中,若三种消费方式对应的函数图像如图所示,请求出点A、B、C的坐标.(3)请根据函数图像,直接写出选择哪种消费方式最合算.2.我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的函数关系式,并写出自变量x的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票额外降价a元;人数超过100人时,每张门票降价额外2a元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400元,求a的值.3.在机器调试过程中,生产甲、乙两种产品的效率分别为y1、y2(单位:件/时),y1、y2与工作时间x(小时)之间大致满足如图所示的函数关系,y1的图象为折线OABC,y2的图象是过O、B、C三点的抛物线一部分.(1)根据图象回答:•调试过程中,生产乙的效率高于甲的效率的时间x(小时)的取值范围是; 说明线段AB的实际意义是_____________.(2)求出调试过程中,当6≤x≤8(3)时,生产甲种产品的效率y1(件/时)与工作时间x(小时)之间的函数关系式.(3)调试结束后,一台机器先以图中甲的最大效率生产甲产品m小时,再以图中乙的最大效率生产乙产品,两种产品共生产6小时,求甲、乙两种产品的生产总量Z(件)与生产甲所用时间m(小时)之间的函数关系式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科教师辅导讲义年级:辅导科目:数学课时数:3课题方案设计型问题教案目的教案内容一、【中考要求】方案设计问题是通过设置一个世纪问题的情景,给出若干信息,提出解决问题的要求,寻求恰当的解决方案,有时还给出几个不同的解决方案,要求判断其中哪个方案较优。
方案设计问题主要考查学生的动手操作能力和实践能力。
它包括测方案设计、作图方案设计和经济类方案设计。
(一)测量方案设计题,一般限定条件、限定测量工具,让同学们设计一个可行的方案,对某一物体的长度进行测量并计算,要注意的是设计出来的方案要有课操作性。
(二)作图、拼图方案设计题,它摆脱了传统的简单作图,它把作图的技能考查放在一个世纪生活的大背景下,考查学生的综合创新能力,它给同学们的创造性思维提供广阔的空间与平台。
此类题常以某些规则的图形,如等腰三角形、菱形、矩形、圆等,通过某些辅助线,将面积分割或分割后拼出符合某些条件的图形。
(三)经济类方案设计题,一般有较多种供选择的解决问题的方案,但在实施中要考虑到经济因素,此类问题类似于求最大值或最小值的问题,但解决的方法较多。
方案设计题贴近生活,具有角强的操作性和实践性,解决此类问题时要慎于思考,要先思考后动手,设计性问题的结果不一定唯一,但必须符合实际情况。
近年一些省市的中考数学题中涌现了立意活泼、设计新颖、富有创新意识、培养创新能力的要求学生自我设计题目。
这类命题以综合考查阅读理解能力、分析推理能力、数据处理能力、文字概括能力、书面表达能力和动手能力等。
二、【考点知识梳理】1.“动手操作”类题,多指对某种图形按照要求完成某些操作,进而对结果进行探究,直至解决的一类题型.“方案设计”是指根据要求,构造某种问题的具体解决方案或者对问题给出的若干种解决方法进行比较的一类题型.2.实际操作型问题是让学生在实际操作的基础上设计问题,主要有:(1)裁剪、折叠、拼图等动手操作问题,往往与面积、对称性相联系;(2)与画图、测量、猜想、证明等有关的探究性问题.3.方案设计问题的题型主要包括:(1)根据实际问题拼接或分割图形;(2)利用方程(组)、不等式(组)、函数等知识对实际问题中的方案进行比较等.三、【中考典例精析】类型一动手操作题如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是()A.2+10B.2+210C.12D.18【点拨】动手操作法.【答案】B提示:利用勾股定理即可得出结果.类型二方案设计题为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为3∶2,单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?【点拨】本题综合考查方程和不等式组的实际应用,正确理解题意找出题目的等量和不等量关系是解题的关键.注意求n 的整数解时不要漏解.【解答】(1)设篮球的单价为x 元,则排球的单价为23x 元,依题意得x +23x =80,解得x =48,∴23x =32. 即篮球和排球的单价分别是48元和32元.(2)设购买的篮球数量为n 个,则购买的排球数量为(36-n)个.由题意得⎩⎪⎨⎪⎧n>25,48n +32(36-n )≤1 600, 解得25<n ≤28.而n 为整数,所以其取值为26、27、28,对应的36-n 的值为10、9、8,故共有三种购买方案.方案一:购买篮球26个,排球10个;方案二:购买篮球27个,排球9个;方案三:购买篮球28个,排球8个. 四、【课堂训练】1.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;…,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( )A .669B .670C .671D .672 解读:第n 次操作得到3n +1个小正方形,所以3n +1=2 011,所以n =670.答案:B2.(1)【操作发现】如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 的内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由.(2)【解决问题】保持(1)中的条件不变,若DC =2DF ,求AD AB的值. (3)【类比探究】保持(1)中的条件不变,若DC =n·DF ,求AD AB的值. 解:(1)同意.连结EF.则∠EGF =∠D =90°,EG =AE =ED ,EF =EF.∴Rt △EGF ≌Rt △EDF ,∴GF =DF.(2)由(1)知,GF =DF.设DF =x ,BC =y ,则有GF =x ,AD =y.∵DC =2DF ,∴CF =x ,DC =AB =BG =2x ,∴BF =BG +GF =3x.在Rt △BCF 中,BC 2+CF 2=BF 2,即y 2+x 2=(3x)2.∴y =22x ,∴AD AB =y 2x = 2.(3)由(1)知,GF =DF ,设DF =x ,BC =y ,则有GF =x ,AD =y.∵DC =n·DF ,∴DC =AB =BG =nx.∴CF =(n -1)x ,BF =BG +GF =(n +1)x.在Rt △BCF 中,BC 2+CF 2=BF 2,即y 2+[(n -1)x]2=[(n +1)x]2.∴y =2nx ,∴AD AB =y nx =2n n. 3.君实机械厂为青扬公司生产A 、B 两种产品,该机械厂由甲车间生产A 种产品,乙车间生产B 种产品,两车间同时生产.甲车间每天生产的A 种产品比乙车间每天生产的B 种产品多2件,甲车间3天生产的A 种产品与乙车间4天生产的B 种产品数量相同.(1)求甲车间每天生产多少件A 种产品?乙车间每天生产多少件B 种产品?(2)君实机械厂生产的A 种产品的出厂价为每件200元,B 种产品的出厂价为每件180元.现青扬公司需一次性购买A 、B 两种产品共80件,君实机械厂甲、乙两车间在没有库存的情况下只生产8天,若青扬公司出厂价购买A 、B 两种产品的费用超过15000元而不超过15080元.请你通过计算为青扬公司设计购买方案.解:(1)设乙车间每天生产x 件B 种产品,则甲车间每天生产(x +2)件A 种产品.根据题意3(x +2)=4x ,解得x =6.∴x +2=8.因此,甲车间每天生产8件A 种产品,乙车间每天生产6件B 种产品.(2)设青扬公司购买B 种产品m 件,则购买A 种产品(80-m)件.15 000<200(80-m)+180m ≤15 080,解得46≤m<50.∵m 为整数,∴m 为46或47或48或49.又∵乙车间8天只能生产48件,∴m 为46或47或48.故共有三种购买方案:方案1: 购买A 种产品32件,B 种产品48件;方案2: 购买A 种产品33件,B 种产品47件;方案3: 购买A 种产品34件,B 种产品46件.4.有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.解:(1)画树状图如下:或列表如下:由图(表)知,所有等可能的结果有12种,其中积为0的有4种,所以积为0的概率为P =412=13. (2)不公平.因为由图(表)知,积为奇数的有4种,积为偶数的有8种,所以积为奇数的概率为P 1=412=13; 积为偶数的概率为P 2=812=23. 因为13≠23,所以该游戏不公平. 游戏规则可修改如下:若这两个数的积为0,则小亮赢;积为奇数,则小红赢.(只要正确即可) 七、【课后达标练习】1.(10龙岩)我校为迎接县中学生篮球比赛,计划购买A 、B 两种篮球共20个供学生训练使用.若购买A 种篮球6个,则购买两种篮球共需费用720元;若购买A 种篮球12个,则购买两种篮球共需费用840元.(1)A 、B 两种篮球单价各多少元?(2)若购买A 种篮球不少于8个,所需费用总额不超过800元.请你按要求设计出所有的购买方案供学校参考,并分别计算出每种方案购买A、B 两种篮球的个数及所需费用.2.(10常州)如图所示,小吴和小黄在玩转盘游戏时,准备了两个可以自由转动的转盘甲、乙,每个转盘被分成面积相等的几个扇形区域,并在每个扇形区域内标上数字,游戏规则: 同时转动两个转盘,当转盘停止转动后,指针所指扇形区域内的数字之和为4,5或6时,则小吴胜否则小黄胜。
(如果指针恰好在分割线上,那么重转一次,直到指针指向某一扇形区域为止)(1)这个游戏规则对双方公平吗?说说你的理由;(2)请你设计一个对双方都公平的游戏规则.3.为实现区域教育均衡发展,我市计划对某县A 、B 两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A 类学校和两所B 类学校共需资金230万元;改造两所A 类学校和一所B 类学校共需资金205万元.(1)改造一所A 类学校和一所B 类学校所需的资金分别是多少万元?(2)若该县的A 类学校不超过5所,则B 类学校至少有多少所?(3)我市计划今年对该县A 、B 两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A 、B 两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?4.一种电讯信号转发装置的发射直径为31km .现要求:在一边长为30km 的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km 的正方形城区示意图,供解题时选用)5.(10河北)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为:y =1001 x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳1001x 2 元的附加费, 设月利润为w 外(元)(利润 = 销售额-成本-附加费).(1)当x = 1000时,y =元/件,w 内 =元;(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围);(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?6.如图,小明想用皮尺测量池塘A 、A 间的距离,但现有皮尺无法直接测量,学习有关知识后,他想出了一个方法:先在地上取一个可以直接到达A 、B 两点的点O ,连接OA 、OB ,分别在OA 、OB 上取中点C 、D ,连接CD ,并测得CD=a ,由此他即知道A 、B 间的距离是( )A.12a ; B.2a ; C.a ; D.3a 7.如图,转盘被分成六个扇形区域,并在上面依次写上数字1、2、3、4、5 6,转盘指针的位置固定,转动转盘后任其自由停止请你用这个转盘设计一个游戏(六等分扇形不变),使自由转动的转盘停止时,指针指向的区域的概率是2/3,并说明你的设计理由(设计方案可用土所示,也可以用文字表述)。