5.2隧道衬砌受力计算

合集下载

隧道设计衬砌计算范例(结构力学方法)

隧道设计衬砌计算范例(结构力学方法)

1.1工程概况川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约260km , 西至康定约97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。

二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。

1.2工程地质条件1.2.1 地形地貌二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。

隧道中部地势较高。

隧址区地形地貌与地层岩性及构造条件密切相关。

由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。

隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。

主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。

1.2.2 水文气象二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。

由于山系屏障,二郎山东西两侧气候有显著差异。

东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。

全年分早季和雨季。

夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。

《隧道衬砌详尽计算》课件

《隧道衬砌详尽计算》课件
运行分析后,需要对结果进行解读和 评估,判断衬砌结构的稳定性和安全 性。
软件应用案例及效果展示
某高速公路隧道施工过程中,采用有 限元分析软件对衬砌结构进行了详尽 的计算和分析,确保了隧道的施工安 全和质量。
此外,该软件还应用于其他多个隧道 工程中,均取得了良好的效果和效益 ,证明了其在隧道衬砌计算中的重要 性和优势。
CHAPTER
有限元分析软件介绍
1
有限元分析软件是一种广泛应用于工程领域的计 算工具,它能够模拟复杂的结构和现象,提供详 尽的分析结果。
2
在隧道衬砌计算中,有限元分析软件能够模拟衬 砌结构的受力状态、变形情况以及稳定性等,为 设计提供重要的参考依据。
3
常见的有限元分析软件包括ANSYS、ABAQUS、 SAP等,这些软件具有强大的计算能力和广泛的 应用领域。
3
有限元法
通过有限元分析软件,模拟衬砌结构的稳定性。
04 隧道衬砌计算的实例分析
CHAPTER
某隧道工程概况
隧道长度:10km
隧道名称:某高速公路隧道
01
隧道断面:矩形断面,宽度
20m,高度5m
02
03
工程地质:隧道穿越山岭地 区,地质条件复杂,包括岩
石、土壤和地下水等
04
05
施工环境:隧道施工难度较 大,需考虑通风、water supply and drainage等
面限制等。
计算结果的分析与评价
受力分析
分析衬砌结构在施工过程中的受力状态,包括衬砌内力、外力和 变形等。
安全评价
根据计算结果,评价衬砌结构的安全性,判断衬砌是否满足设计 要求和施工安全。
优化建议
根据计算和分析结果,提出衬砌结构的优化建议,提高隧道施工 的安全性和可靠性。

5.2.隧道构造设计

5.2.隧道构造设计

隧道工程
公路隧道建筑限界
H—净高,一条公路应用一个净高,高速公路和一级、二级公路为 净高,一条公路应用一个净高,高速公路和一级、二级公路为5.0m; 净高 ; 四级公路为4.5m; 三、四级公路为 ; E—建筑限界顶角宽度,当L≤1m时,E=L;当L>1m时,E=1m; 建筑限界顶角宽度, 建筑限界顶角宽度 时 ; > 时 ; L—侧向宽度,高速公路、一级公路的侧向宽度为硬路肩宽度(L1或L2), 侧向宽度,高速公路、一级公路的侧向宽度为硬路肩宽度( 侧向宽度 其它各级公路的侧向宽度为路肩宽度减去0.25m; 其它各级公路的侧向宽度为路肩宽度减去 ;
喷锚支护
金属网和钢架 共同支护
复合式衬砌—外衬和内衬两层, 复合式衬砌 外衬和内衬两层,所
以也叫它为“双层衬砌” 以也叫它为“双层衬砌”
隧道构造设计
---衬砌的适用条件

隧道工程
对地质条件的适用性较强, 整体式模筑混凝土衬砌 — 对地质条件的适用性较强,易于按需要
成型,整体性好,抗渗性强,并适用于多种施工条件,如可用木模板、 成型,整体性好,抗渗性强,并适用于多种施工条件,如可用木模板、钢 模板或衬砌模板台车等
隧道构造设计
---衬砌的一般构造要求
- 石料和混凝土预制块
隧道工程
石料或混凝土预制块用强度等级不低于M10的水泥砂浆砌筑衬砌。石料 的水泥砂浆砌筑衬砌。 石料或混凝土预制块用强度等级不低于 的水泥砂浆砌筑衬砌 的强度等级不应低于MU60,并且有裂隙和易风化的石料不应采用。混凝 的强度等级不应低于 ,并且有裂隙和易风化的石料不应采用。 土预制块强度等级不应低于MU20。 土预制块强度等级不应低于 。
• •
拼装成环后立即受力,便于机械化施工, 装配式衬砌 — 拼装成环后立即受力,便于机械化施工,改善劳动条

毕业设计之隧道衬砌

毕业设计之隧道衬砌

毕业设计之隧道衬砌翠峰山隧道衬砌设计5.1 概述隧道洞身的衬砌结构根据隧道围岩地质条件、施工条件和使用要求大致可以分为以下几种类型:喷锚衬砌、整体式衬砌和复合式衬砌。

规范规定,高速公路的隧道应采用复合式衬砌。

隧道衬砌设计应综合考虑地质条件、断面形状、支护结构、施工条件等,并应充分利用围岩的自承能力。

衬砌应有足够的强度和稳定性,保证隧道长期安全使用。

注:1、隧道高度h=内轮廓线高度+衬砌厚度+预留变形量;2、隧道跨度b=内轮廓线宽度+衬砌厚度+预留变形量。

5.2深埋衬砌内力计算5.2.1深、浅埋的判断隧道进、出口段埋深较浅,需按浅埋隧道进行设计。

由明洞计算可知:h q =0. 45⨯2S -1[1+i (B -5)](5.1)式中:s —围岩的级别,取s =4;B —隧道宽度i —以B =5.0m的垂直均布压力增减率,因B =11.8m>5m,所以i =0.1。

带入数据得:h q =6.264对于Ⅳ级围岩: H p =2.5h q =2.5⨯6.264=15.66 深埋:h >H p ;浅埋:h q <h ≤H p ;超浅埋:h ≤h q 。

5.2.2围岩压力计算基本参数:围岩为Ⅳ级,容重γ=20kN /m 3,围岩的弹性抗力系数K =0.5⨯106kN /m 3,衬砌材料为C25钢筋混凝土,弹性模量E h =2.95⨯107KPa 。

1、围岩垂直均布压力根据《公路隧道设计规范》(JTG D70-2019) 的有关计算公式及已知的围岩参数,代入公式:q =0.45⨯2S -1⨯γ⨯ω(5.2)式中: S —围岩的级别,取S=4;γ—围岩容重,根据基本参数γ=23 KN/m3;ω—宽度影响系数,由式ω=1+i(B-5)=1.76计算; B —隧道宽度,B=2⨯(5.7+0.5+0.5)=12.4m;i —以B=5.0m的垂直均布压力增减率。

因B=12.6m>5m,所以i=0.1。

所以围岩竖向荷载: q =0.45⨯24-1⨯20⨯1.74=125.28KN /m 2 2、围岩水平均布压力5 e =0. 2q (5.3)式中:Ⅳ类围岩压力的均布水平力e =(0.15~0.3)q ,这里取值0.25 代入数据得:25125. =28K 3N 1. 3m 2 0. 2⨯/5.2.3衬砌几何要素计算图示如下q1234567R 78R 图5.1 衬砌结构计算图示1、衬砌几何尺寸内轮廓线半径:r 1=5. 70m , r 2=8. 20m ;拱轴线半径:r 1' =5.95m ,r 2' =8.45m ;拱顶截面厚度d 0=0.5m ,拱底截面厚度d n =0.5m。

5.2 区间隧道衬砌结构与构造

5.2 区间隧道衬砌结构与构造
57
双层衬砌
双层衬砌圆环构造图
58
3)挤压混凝土整体式衬砌 ①挤压混凝土衬砌(Extrude Concrete Lining,简称ECL)是随 着盾构向前掘进,用一套衬砌施工设备在盾尾同步灌注的混凝土 或钢筋混凝土整体式衬砌,因其灌注后即承受盾构千斤顶推力的 挤压作用;
59
②挤压混凝土衬砌可以是素混凝土的或钢筋混凝土的,但应用最 多的是钢纤维混凝土的; ③新浇注的混凝土在活动的端模板和可伸缩的弧形模板作用下, 同时承受盾构千斤顶和四周围岩的作用,处于三向受力状态。
9
非对称型喇叭口结构图
10
4)渡线隧道、折返线隧道 l 为满足运营需要,进行列车折返调度、换线、停车等作业,
区间隧道内需设置渡线、折返线等构筑物。隧道断面需适应 岔线线间距的渐变,并对结构物要进行特殊设计。
单渡线结构 11
广州地铁2号线明挖折返线隧道衬砌
12
5)联络通道及其它区间附属结构物 l 联络通道作用: l 列车如在区间隧道内发生火灾而又不能牵引到车站时,乘客必需
20
2020-1-12
21 21
5.2.2矿山法修建的隧道衬砌结构与构造 l 1、隧道衬砌结构类型与选择 l 地下铁道区间隧道采用矿山法施工时,一般采用拱形结构,其基本
断面型式为单拱、双拱和多跨连拱。单栱多用于单线或双线的区间 隧道或联络通道,双拱和多跨多用在停车线、折返线或嗽叭口岔线 上。
22
在区间隧道下车。为了保证乘客的安全疏散,两条单线区间隧道 之间应设置联络通道,可使乘客通过联络通道从另一条隧道疏散 到安全出口。 l 区间附属结构物: l 在线路的最低点需设置排水站。根据通风、环控系统的设计,有 时还需设置区间风道等附属结构物。
13

隧道工程第5章-隧道支护结构计算课件.ppt

隧道工程第5章-隧道支护结构计算课件.ppt
位移ue为:
e
ue
a
e
(4
3
)
a
e
e
(14
15
)
e
2 2
4
14
3
1
4
2
10
当基础无扩展时,墙顶位移为:
0 cp
uc0p
M
0 cp
1
M c0pu1
H
0
cp
2
H c0pu2
eeuee00
墙顶截面的弯矩Mc、水平力Hc、转角c、水平位移uc为:
Mc Hc
c
M
0 cp
X1
X2
另一种是开挖后,洞室围岩产生塑性区,此时洞室都要 采用承载的支护结构,支护结构对洞室围岩应力状态和位移 状态产生影响。
根据弹性力学和岩体力学可得,隧道壁的径向位移与支护阻 力之间的关系式:
u
பைடு நூலகம்
|r r0
r0 2G
(Hc
sin
C
cos)[(1
sin )
Hc C cot pa C cot
1sin
心某一距离的各点,其应力值是相同的,因此围岩中的塑性 区必然是个圆形区域。令这个圆形塑性区的半径为R0,那么
在塑性区与弹性区的交界面上(即在r=R0处),塑性区的应力 p与弹性区的应力 e一定保持平衡,同时,交界面上的应力
既要满足弹性条件,又要满足塑性条件,可得到在r=R0处:
围岩弹塑性区
p r
p
替,便可得到变位积分的近似计算公式:
ik
S E
ip
S E
MiMk
M
I iM
p
I
11
S E

隧道衬砌计算

隧道衬砌计算

隧道衬砌计算隧道衬砌是隧道工程中的重要部分,它承担着保护隧道结构、增强隧道稳定性和延长使用寿命的重要任务。

隧道衬砌的计算是确定隧道衬砌结构所需材料和尺寸的过程,下面将介绍隧道衬砌计算的相关内容。

隧道衬砌计算需要确定衬砌的材料。

常用的隧道衬砌材料有混凝土、钢筋混凝土和预制板等。

根据隧道的使用环境、地质条件和设计要求等因素,选择合适的材料进行衬砌计算。

隧道衬砌计算需要确定衬砌的尺寸。

衬砌的尺寸包括衬砌厚度、衬砌宽度和衬砌高度等。

衬砌厚度的确定需要考虑隧道的使用要求和地质条件,以保证衬砌的强度和稳定性。

衬砌宽度的确定需要考虑隧道的截面形状和使用要求,以保证衬砌的稳定性和使用功能。

衬砌高度的确定需要考虑隧道的设计要求和地质条件,以保证衬砌的稳定性和使用寿命。

隧道衬砌计算还需要考虑衬砌的受力情况。

隧道衬砌在使用过程中会受到地压力、水压力、温度变化和地震等外力的作用。

衬砌的受力分析是衬砌计算的重要内容,它可以通过有限元分析或经验公式等方法进行。

隧道衬砌计算还需要考虑衬砌的稳定性。

隧道衬砌在使用过程中需要保持稳定,不受地下水、岩层移动和地震等因素的影响。

衬砌的稳定性分析是衬砌计算的重要内容,它可以通过有限元分析或经验公式等方法进行。

隧道衬砌计算需要进行结构设计。

隧道衬砌的结构设计包括衬砌的布置方式、连接方式和支撑方式等。

衬砌的结构设计需要考虑隧道的使用要求和地质条件,以保证衬砌的稳定性和使用寿命。

隧道衬砌计算是确定隧道衬砌结构所需材料和尺寸的过程,它涉及衬砌材料的选择、衬砌尺寸的确定、衬砌受力情况的分析、衬砌稳定性的考虑和衬砌结构的设计等内容。

隧道衬砌计算的准确性和科学性对于保证隧道工程的安全稳定和使用寿命具有重要意义。

铁路隧道衬砌受力计算公式

铁路隧道衬砌受力计算公式

铁路隧道衬砌受力计算公式隧道是铁路线路中重要的组成部分,它可以穿越山脉、河流等地形障碍,使铁路线路更加通畅。

而隧道的衬砌是保证隧道结构安全稳定的重要组成部分。

在设计和施工隧道衬砌时,需要对其受力情况进行合理的计算,以保证其安全可靠。

在铁路隧道衬砌的受力计算中,需要考虑到多种因素,包括隧道的地质情况、地表荷载、车辆荷载等。

为了准确计算隧道衬砌的受力情况,需要使用一定的公式和方法。

首先,我们来看一下隧道衬砌的受力计算公式:1. 地表荷载的计算公式:地表荷载是指地表以上的荷载,包括建筑物、交通载荷等。

在铁路隧道衬砌的设计中,需要考虑地表荷载对衬砌的影响。

地表荷载的计算公式为:P = qA。

其中,P为地表荷载,q为单位面积的地表荷载值,A为地表面积。

2. 车辆荷载的计算公式:铁路隧道是铁路线路的一部分,车辆荷载是指通过隧道的列车对隧道衬砌的荷载。

车辆荷载的计算公式为:P = qL。

其中,P为车辆荷载,q为单位长度的车辆荷载值,L为车辆长度。

3. 地质荷载的计算公式:地质荷载是指地下岩层对隧道衬砌的荷载。

地质荷载的计算公式为:P = γh。

其中,P为地质荷载,γ为岩层的密度,h为岩层的厚度。

在实际的隧道衬砌设计中,需要综合考虑地表荷载、车辆荷载和地质荷载对隧道衬砌的影响,进行合理的受力计算,以保证隧道衬砌的安全可靠。

除了上述的受力计算公式外,还需要考虑到隧道衬砌的材料和结构形式对受力的影响。

隧道衬砌的材料通常为混凝土、钢筋混凝土等,其受力性能需要通过实验和理论分析进行评定。

而隧道衬砌的结构形式包括单壁式、双壁式、拱形等,不同结构形式对受力的分布和传递方式有所不同,需要进行详细的计算和分析。

在进行隧道衬砌受力计算时,还需要考虑到温度变化、地震荷载等外部因素对隧道衬砌的影响。

温度变化会导致隧道衬砌的膨胀和收缩,地震荷载会对隧道衬砌产生冲击和振动,这些外部因素需要进行合理的考虑和计算。

总之,铁路隧道衬砌受力计算是一个复杂的工程问题,需要考虑多种因素的综合影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

衬砌多为拱形结构,包括半衬砌、直墙拱形衬砌、 曲墙拱形衬砌,且多为复合式衬砌,初期为锚喷支 护,二次衬砌为模筑混凝土或钢筋混凝土衬砌。
5.2隧道衬砌受力计算
(1)半衬砌 在隧道拱顶部作拱圈,承于围岩上,可作构造边墙, 不承载。满足构造要求,见《设计规范》(9.5构 造要求) 条件: (2)直墙拱形衬砌 包括拱圈、竖直边墙和底板,需作衬砌背后回填。 条件: (3)曲墙拱形衬砌 包括拱圈、曲边墙和底板或仰拱 条件:
5.2隧道衬砌受力计算
5.2.4隧道衬砌计算的有关规定 计算隧道衬砌的内力和变形时,应考虑围岩对衬砌 变形的约束。 抗力的大小 σ =kδ
K 值取定
5.2隧道衬砌受力计算
复合式衬砌的初期支护,在Ⅰ~Ⅴ级围岩中, 应主要按工程类比法设计,其中,Ⅳ~Ⅴ级围岩的 支护参数应通过计算确定。 二次衬砌Ⅰ~Ⅲ级围岩中为安全储备,并按构造要 求设计; Ⅳ~Ⅴ级围岩中为承载结构,计算内力 和变形。 5.2.5隧道衬砌类型
5.2隧道衬砌受力计算
5.2隧道衬砌受力计算
5.2.1隧道衬砌受力特点 受力特点:衬砌与围岩相互作用,相互约束,衬砌拱 顶为“脱离区”,两侧及底部衬砌受到围岩的弹性 抗力作用。 弹性抗力的大小与围岩压力大小和结构变形有密切 关系。 弹性抗力的计算: 局部变形理论:与实际有出入,但简单且出入不大, 广泛采用;
5.2隧道衬砌受力计算
5.2隧道衬砌受力计算
5.2.2荷载的分类和组合 1.荷载的分类 永久荷载:指长期作用的荷载,包括围岩压力、 结构自重、结构附加恒载、混凝土收缩徐变的影响 力及水压力等 结构附加恒载:悬吊的风机等。 可变荷载:结构使用期内,其值随时变化,且其 变化较大的荷载。包括基本可变荷载和其它可变荷 载。
5.2隧道衬砌受力计算
5.2.2荷载的分类和组合 2.荷载的组合 将有可能同时作用在结构上的荷载进行编组,取其 最不利者作为设计荷载,求得最危险截面中的最大 内力值,用以选择截面尺寸。 荷载计算的有关规定,见《设计规范》(6.荷载)
5.2.3结构自重计算 衬砌拱圈计算方法(简化隧道衬砌受力计算
q=γ d0 或q=0.5γ (d0+dn) 适用条件:拱圈为等截面,或变截面但变化不大, 以及拱圈自重所占比例较小时
2.简化为垂直均布荷载与三角形荷载
△q=γ (dn/cosΦ n-d0)
或△q=γ (dn-d0)
适用条件:拱脚远大于拱顶的变截面,或矢高较大 时,非半圆拱。 3.拱圈分成足够数量的小块
相关文档
最新文档