华师大版八年级数学上14.1勾股定理课件(共20张PPT)
合集下载
八年级上华东师大版14.1勾股定理课件

勾股定理的逆定理指出:如果三角形的三边长a、b、c满足a² + b² = c²,那么这 个三角形一定是直角三角形。
逆定理为我们提供了一个判断三角形是否为直角三角形的方法,即验证三边是否 满足勾股定理的关系式。
02
勾股定理证明方法
拼图法证明
将两个直角三角形的斜边作为拼 图的两个边,通过拼接可以形成
05
拓展与延伸:费马大定理简介
费马大定理内容
费马大定理是指一个整数幂不可能被 分解为两个大于1的整数幂的和。
例如,费马猜想了不存在整数a、b和 c,使得a3=b3+c3(这被称为费马最 后定理)。
具体来说,费马猜想了以下三个情形 :对于任何大于2的整数n,不存在三 个大于1的整数a、b和c,使得 an=bn+cn。
例如,对于形如$a^2+b^2>c^2$的不等式,可以通过 构造直角三角形并应用勾股定理来证明或求解该不等式。
辅助角公式推导
勾股定理在三角函数中有重要应用, 特别是在推导辅助角公式时。
利用勾股定理和三角函数的定义,可 以推导出诸如$sin(A+B)$和 $cos(A+B)$等辅助角公式,从而简化 三角函数的计算和证明过程。
02
公式表示为:a² + b² = c²,其中 a和b是直角三角形的两个直角边 ,c是直角三角形的斜边。
勾股数及性质
勾股数是指满足勾股定理的三个正整 数,即a² + b² = c²中的a、b、c为 正整数。
勾股数的性质包括:任意两个勾股数 一定是互质的;一组勾股数中,必有 一个数是偶数等。
勾股定理逆定理
04
勾股定理在代数中的应用
求解代数式最值问题
利用勾股定理,可以将某些代数式转化为直角三角形中的边 长关系,进而利用三角形的性质求解最值问题。
逆定理为我们提供了一个判断三角形是否为直角三角形的方法,即验证三边是否 满足勾股定理的关系式。
02
勾股定理证明方法
拼图法证明
将两个直角三角形的斜边作为拼 图的两个边,通过拼接可以形成
05
拓展与延伸:费马大定理简介
费马大定理内容
费马大定理是指一个整数幂不可能被 分解为两个大于1的整数幂的和。
例如,费马猜想了不存在整数a、b和 c,使得a3=b3+c3(这被称为费马最 后定理)。
具体来说,费马猜想了以下三个情形 :对于任何大于2的整数n,不存在三 个大于1的整数a、b和c,使得 an=bn+cn。
例如,对于形如$a^2+b^2>c^2$的不等式,可以通过 构造直角三角形并应用勾股定理来证明或求解该不等式。
辅助角公式推导
勾股定理在三角函数中有重要应用, 特别是在推导辅助角公式时。
利用勾股定理和三角函数的定义,可 以推导出诸如$sin(A+B)$和 $cos(A+B)$等辅助角公式,从而简化 三角函数的计算和证明过程。
02
公式表示为:a² + b² = c²,其中 a和b是直角三角形的两个直角边 ,c是直角三角形的斜边。
勾股数及性质
勾股数是指满足勾股定理的三个正整 数,即a² + b² = c²中的a、b、c为 正整数。
勾股数的性质包括:任意两个勾股数 一定是互质的;一组勾股数中,必有 一个数是偶数等。
勾股定理逆定理
04
勾股定理在代数中的应用
求解代数式最值问题
利用勾股定理,可以将某些代数式转化为直角三角形中的边 长关系,进而利用三角形的性质求解最值问题。
1勾股定理的应用PPT课件(华师大版)

分析:由于车宽1.6米,所以卡车能否
通过,只要比较距厂门中线0.8米处的
高度与车高即可.如图所示,点D在离厂
门中线0.8米处,且CD⊥AB,与地面相
交于点H.
讲授新课
解:在Rt△OCD中,由勾股定理,可得
CD OC 2 OD2 12 0.82 0.6,
CH=CD+DH=0.6+2.3=2.9>2.5.
的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸
边的水面,请问这个水池的深度和这根芦苇的长度各是多少?
解: 设水池的水深AC为x尺,则这根芦苇长为AD=AB=(x+1)尺,
在直角三角形ABC中,BC=5尺
由勾股定理得:BC2+AC2=AB2
即
52+x2=(x+1)2
25+x2= x2+2x+1,
可见高度上有0.4米的余量,因此卡
车能通过厂门.
讲授新课
2、有一根高为16米的电线杆在A处断裂,如图所示,电线杆的
顶部C落在离电线杆底部B处8米远的地方,求电线杆断裂处A到
地面的距离.
根据题意可知在Rt△ABC中,
∠ABC =90°,BC=8米,AB+
AC=16米.若设AB=x米,则
AC=(16-x)米,然后根据勾股定理
90°.∴S四边形ABCD=S△ABC+S△ACD= AB·BC+
AC·AD= ×4×3+ ×5×12=36.
∵36×30=1080(元),
∴这块地全部种草的费用是1080元.
讲授新课
练一练
1、一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示
最新华师大版八年级数学上册第14章 勾股定理小结与复习教学课件 (共16张PPT)

互逆命题:
两个命题中, 如果第一个命题的题设是第 二个命题的结论, 而第一个命题的结论又 是第二个命题的题设,那么这两个命题叫 做互逆命题. 如果把其中一个叫做原命题, 那么另一个 叫做它的逆命题. 互逆定理: 如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互 逆定理, 其中一个叫做另一个的逆定理.
5.长度分别为 3 , 4 , 5 , 12 ,13 的五根木棒能搭成(首尾连接)直角三 角形的个数为( B ) A 1个 B 2个 C 3个 D 4个
6、在△ABC中,∠C=90°,AC =3,CB=4. A D (1)求△ABC的面积
⑵求斜边AB
⑶求高CD
A
C
B
7.如图,两个正方形 的面积分别为64,49, D 则AC= .17
勾 股 数
满足a2 +b2=c2的三个正整数 a、b、c,称为勾股数.
1、在直角三角形ABC中,∠C=90°, (1)已知a:b=3:4,c=25, 求a和b (2)已知∠A=30°a=3,求b和c
(3)已知∠A=45°,c=8,求a和b 2、直角△的两边长为8和10,求第三 边的长度.
3.请完成以下未完成的勾股数: 17 ; (1)8、15、_____ 24 (2)10、26、_____ . 4.△ABC中,a2+b2=25,a2-b2=7, 2.4 又c=5,则最大边上的高是______ .
A
钝角三角形ABC
AB=c,若∠C=90°,如图(1),根据勾 股定理,则a2+b2=c2 。若△ABC不是直角 三角形,如图(2)和(3),请你类比勾 股定理,试猜想 a2+b2 与c2的关系,并证 明你的结论。 A A A ( 2 ) ( 1) (3) b C a
1勾股定理(第1课时)(教学PPT课件(华师大版))28张

正方形中小方格的个数,你有什么猜想?
1955年希腊发行的一枚纪念邮票.
讲授新课
知识点一 直角三角形三边的关系
视察正方形瓷砖铺成的地面.
(1)正方形P的面积是
1
(2)正方形Q的面积是
1
平方厘米;
(3)正方形R的面积是
2
平方厘米.
平方厘米;
上面三个正方形的面积之间有什么关系?
等腰直角三角形ABC三边长度之间存在什么关系吗?
程.
b
a
b
a
c
c
b
c
c
a
a
b
讲授新课
证明:大正方形的面积=(a+b)2.
四个个全等的直角三角形和小正方形的面积
1
2
2
之和= 4 ab c 2ab c .
2
b
由题可知(a+b)2=2ab+c2,
a
c
化简可得a2+b2=c2.
我们利用拼图的方法,将形的问题
与数的问题结合起来,再进行整式
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
SA+SB=SC
讲授新课
猜想:两直角边a、b与斜边 c 之间的关系?
A
a
B b
c
a2+b2=c2
C
讲授新课
概念总结
由上面的探索可以发现:对于任意的直角三角形,如果它的两
数学(华东师大版)
八年级 上册
第14章 勾股定理
1955年希腊发行的一枚纪念邮票.
讲授新课
知识点一 直角三角形三边的关系
视察正方形瓷砖铺成的地面.
(1)正方形P的面积是
1
(2)正方形Q的面积是
1
平方厘米;
(3)正方形R的面积是
2
平方厘米.
平方厘米;
上面三个正方形的面积之间有什么关系?
等腰直角三角形ABC三边长度之间存在什么关系吗?
程.
b
a
b
a
c
c
b
c
c
a
a
b
讲授新课
证明:大正方形的面积=(a+b)2.
四个个全等的直角三角形和小正方形的面积
1
2
2
之和= 4 ab c 2ab c .
2
b
由题可知(a+b)2=2ab+c2,
a
c
化简可得a2+b2=c2.
我们利用拼图的方法,将形的问题
与数的问题结合起来,再进行整式
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
SA+SB=SC
讲授新课
猜想:两直角边a、b与斜边 c 之间的关系?
A
a
B b
c
a2+b2=c2
C
讲授新课
概念总结
由上面的探索可以发现:对于任意的直角三角形,如果它的两
数学(华东师大版)
八年级 上册
第14章 勾股定理
华师大版八年级数学上册第14章第1节《反证法》课件

点拨:至少的反面是没有!
当堂练习
1.试说出下列命题的反面: (1)a是实数; a不是实数 (2)a大于2; a小于或等于2 (3)a小于2; a大于或等于2 (4)至少有2个; 没有两个 (5)最多有一个; 一个也没有 (6)两条直线平行; 两直线相交 2.用反证法证明“若a2≠ b2,则a ≠ b”的第一步是 假设a=b . 3.用反证法证明“如果一个三角形没有两个相等的角,那么这个 三角形不是等腰三角形”的第一步假设这个三角形是等腰三角形 .
4.命题“三角形中最多只有一个内角是直角”的结论的否定 是( C ) A.有两个内角是直角 B.有三个内角是直角 C.至少有两个内角是直角 D.没有一个内角是直角
5.否定“自然数a,b,c中恰有一个偶数”时,正确的反设 为( D ) A.a,b,c都是奇数 B. a,b,c都是偶数 C. a,b,c中至少有两个偶数 D. a,b,c中都是奇数或至少有两个偶数
(a≤b≤c),a2 +b2 ≠ c2”,请问这个三角形是否一定不是直角三
角形呢?请说明理由.
A
探究: (1)假设它是一个直角三角形; (2)由勾股定理,一定有a2 +b2 =c2,与已知 b 条件a2 +b2 ≠ c2矛盾; (3)因此假设不成立,即它不是一个直角三 C
角形.
c
a
B
探究发现
这种证明方法与前面的证明方法不同,其步骤为: (1)先假设结论的反面是正确的; (2)然后通过逻辑推理,得出与基本事实、已证的定理、 定义或已知条件相矛盾; (3)从而说明假设不成立,进而得出原结论正确。
以考虑用反证法.
证明:假设a与b不止一个交点,不妨假设有两个交点A和A',
因为两点确定一条直线,即经过点A和A’的直线有且只有一
当堂练习
1.试说出下列命题的反面: (1)a是实数; a不是实数 (2)a大于2; a小于或等于2 (3)a小于2; a大于或等于2 (4)至少有2个; 没有两个 (5)最多有一个; 一个也没有 (6)两条直线平行; 两直线相交 2.用反证法证明“若a2≠ b2,则a ≠ b”的第一步是 假设a=b . 3.用反证法证明“如果一个三角形没有两个相等的角,那么这个 三角形不是等腰三角形”的第一步假设这个三角形是等腰三角形 .
4.命题“三角形中最多只有一个内角是直角”的结论的否定 是( C ) A.有两个内角是直角 B.有三个内角是直角 C.至少有两个内角是直角 D.没有一个内角是直角
5.否定“自然数a,b,c中恰有一个偶数”时,正确的反设 为( D ) A.a,b,c都是奇数 B. a,b,c都是偶数 C. a,b,c中至少有两个偶数 D. a,b,c中都是奇数或至少有两个偶数
(a≤b≤c),a2 +b2 ≠ c2”,请问这个三角形是否一定不是直角三
角形呢?请说明理由.
A
探究: (1)假设它是一个直角三角形; (2)由勾股定理,一定有a2 +b2 =c2,与已知 b 条件a2 +b2 ≠ c2矛盾; (3)因此假设不成立,即它不是一个直角三 C
角形.
c
a
B
探究发现
这种证明方法与前面的证明方法不同,其步骤为: (1)先假设结论的反面是正确的; (2)然后通过逻辑推理,得出与基本事实、已证的定理、 定义或已知条件相矛盾; (3)从而说明假设不成立,进而得出原结论正确。
以考虑用反证法.
证明:假设a与b不止一个交点,不妨假设有两个交点A和A',
因为两点确定一条直线,即经过点A和A’的直线有且只有一
华师大版八年级数学上册第十四章勾股定理PPT教学课件全套

解: 在 Rt△ABC 中, 斜边不确定, 这就需要分情况讨论: 若 AB 是斜边,则 AB2=AC2+BC2=152+82=289,从 而 AB=17; 若 AB 不是斜边,由 AC>BC,知 AC 为斜边,此时 AC2 =AB2+BC2,即 AB2=AC2-BC2=152-82=161,从而 AB = 161. 综上所述,AB 边的长为 17 或 161.
图 14-1-3
14.1.1
探索直角三角形三边的关系
重难互动探究
探究问题一 理解勾股定理 (1)求出如图 14-1-4 所示直角三角形中未知边的长度; (2)在直角三角形 ABC 中, ∠C = 90°, BC = 12, AC = 9,求 AB 的长; (3)已知:图 14-1-5 的正方形是以直角三角形的边长为 边的正方形,那么正方形 A 的面积是多少? (4)已知:图 14-1-6 的正方形是以直角三角形的边长为 边的正方形,那么正方形 B 的边长是多少?
图 14-1-4
图 14-1-5
图 14-1-6
14.1.1
探索直角三角形三边的关系
解:(1)如图 14-1-4,在 Rt△ABC 中,∠C=90°,AC =15, BC=8.由勾股定理, 得 AB2=AC2+BC2=152+82=289, ∴ AB=17. (2)∵∠C = 90°,BC = 12,AC = 9 ,∴ AB2=BC2 +AC2=122+92=225, ∴AB=15. (3) 由勾股定理可知:直角三角形的两条直角边上的正方 形的面积和等于斜边上的正方形的面积,故可以求得正方形 A 的面积是 37+63=100. (4)由勾股定理可知: 直角三角形的两条直角边上的正方形 的面积和等于斜边上的正方形的面积, 故可以求得正方形 B 的 面积是 100-36=64,所以边长是 8.
华东师大版八年级上册数学课件:14.1 勾股定理最新课件
锐角三角形
(,13 直角三角形
请比较上述每个三角形的两条较短边的平方和 与最长边的平方之间的大小关系. 并指出最长边所 对的角是什么角。
6cm
7cm
5cm ⑴
7cm
10cm
锐角三角形
较短的两条边的平方和 __大_于___最长边的平方
52 ++ 62> 72 最长边所对的角
❖ AC2+BC2=AB2 → ∠ACB为直角
❖ AC2+BC2>AB2 → ∠ACB为锐角
C
A
C
A
BC
A B
B
归纳应用方法:
用勾股定理的逆定理判断直角三角形的步骤:
△ABC中
①、确定最大边(最大边c所对的角是最大角)
②、验证:c2与a2+b2是否相等 若 c2 == a2 ++ b2则△ABC是以∠C=90°的直角三角形
Ca
B C′ a
B′
证明:我们作Rt△A′B′C′,使A′C′=AC,B′C′=BC
在 Rt△A′B′C′中根据 勾股定理有
A B 2=A C 2+B C 2
∵ BC = a, AC = b
\ AB2 = a2 + b2 = c2 AB = c
ABC≌ ABC
C= C =90
知识要点 勾股定理的逆定理:
所对的直角边是斜边的一半 ; (6)在直角三角形中, 如果一条直角边是斜边的一半,
那么它所对的锐角是30°。 反之,一个三角形满足什么条件,才能是直角三角形呢?
直角三角形的判定 X
思考:
一个三角形满足什么条件才能是直角三角形?
(1)有一个角是直角的三角形是直角三角形; (2)有两个角的和是90°的三角形是直角三角形;
华师大版初中数学八年级上册14.1勾股定理第一课时课件 (共15张PPT)
教师寄语
----李老师与同学们共勉
创设情景
它标志着我 国古代数学 的成就!
弦图
这个弦图里由那些 基本图形组成?它 蕴涵了怎样的数学 知识呢?你想知道 些什么呢?
探索新知
观察图1-1,着色的三个 正方形的面积,然后思考 他们之间的面积有什么样 的数量关系。 9 个小方格 正方形A中含有___ 9 个单位面 即A的面积是____ 积; 9 个小方 正方形B中含有____ 9 个单 格,即B的面积是____ 位面积; 18 个小方 正方形C中含有____ 格,即C的面积是____ 18 个单 位面积;
直角三角形两直角边的平方和等于斜边
的平方。
3、应用勾股定理解决生活中实际问题
分类作业 促进发展
必做题:教材P111习题1、2题
同步练习(直角三角形三边关系)
选做题:利用我们今天所学的知识设 计一个图案
在数学的天地里,重要的不是我们知道什么, 而是我们怎么知道什么。—毕达哥拉斯
索
11/1/2018
数学世界
两千多年前,古希腊有个哥拉 两千多年前,古希腊有个毕达哥拉斯 斯学派,他们首先发现了勾股定理,因此 学派,他们首先发现了勾股定理,因此在 在国外人们通常称勾股定理为毕达哥拉斯 国外人们通常称勾股定理为毕达哥拉斯定 定理。为了纪念毕达哥拉斯学派, 1955 理。为了纪念毕达哥拉斯学派, 1955年 年希腊曾经发行了一枚纪念票。 希腊曾经发行了一枚纪念邮票。
A
C
B
图1-5
图1-6
勾股定理
勾
a
弦c
股 b
我们发现直角三角形两 直角边的平方和等于斜 边的平方,如果用a、b 和c分别表示直角三角形 的两直角边和斜边,那 么一定有a2+ b2= c2 这种关系我们称为勾股 定理。
----李老师与同学们共勉
创设情景
它标志着我 国古代数学 的成就!
弦图
这个弦图里由那些 基本图形组成?它 蕴涵了怎样的数学 知识呢?你想知道 些什么呢?
探索新知
观察图1-1,着色的三个 正方形的面积,然后思考 他们之间的面积有什么样 的数量关系。 9 个小方格 正方形A中含有___ 9 个单位面 即A的面积是____ 积; 9 个小方 正方形B中含有____ 9 个单 格,即B的面积是____ 位面积; 18 个小方 正方形C中含有____ 格,即C的面积是____ 18 个单 位面积;
直角三角形两直角边的平方和等于斜边
的平方。
3、应用勾股定理解决生活中实际问题
分类作业 促进发展
必做题:教材P111习题1、2题
同步练习(直角三角形三边关系)
选做题:利用我们今天所学的知识设 计一个图案
在数学的天地里,重要的不是我们知道什么, 而是我们怎么知道什么。—毕达哥拉斯
索
11/1/2018
数学世界
两千多年前,古希腊有个哥拉 两千多年前,古希腊有个毕达哥拉斯 斯学派,他们首先发现了勾股定理,因此 学派,他们首先发现了勾股定理,因此在 在国外人们通常称勾股定理为毕达哥拉斯 国外人们通常称勾股定理为毕达哥拉斯定 定理。为了纪念毕达哥拉斯学派, 1955 理。为了纪念毕达哥拉斯学派, 1955年 年希腊曾经发行了一枚纪念票。 希腊曾经发行了一枚纪念邮票。
A
C
B
图1-5
图1-6
勾股定理
勾
a
弦c
股 b
我们发现直角三角形两 直角边的平方和等于斜 边的平方,如果用a、b 和c分别表示直角三角形 的两直角边和斜边,那 么一定有a2+ b2= c2 这种关系我们称为勾股 定理。
华师大版初中八年级数学上册第14章《勾股定理》PPT课件
D
A
B
图1
CD
13
C
5
4
12
A3 B
图2
解:在△ABD中,
所以△ABD 是直角三角形,∠A是直角. 在△BCD中,
所以△BCD 是直角三角形,∠DBC是直角. 因此,这个零件符合要求.
例4 已知△ABC,AB=n²-1,BC=2n,AC=n²+1(n为大于
1的正整数).试问△ABC是直角三角形吗?若是,哪一条 边所对的角是直角?请说明理由
x=15, 15+9=24(m). 答:旗杆原来高24 m.
课堂小结
认识勾 股定理
如果直角三角形两直角边长 分别为a,b,斜边长为 c , 那么a2+b2=c2
利用勾股定理进行计算
第14章 勾股定理
14.1 勾股定理 第2课时
学习目标
情境引入
1.了解直角三角形的判定条件.(重点) 2.能够运用勾股数解决简单实际问题.(难点)
A 2 E 2 D △FCB均为直角三角形. 1 F 由勾股定理,知
4
BE2=22+42=20,EF2=22+12=5,
3 BF2=32+42=25,
B
4
C ∴BE2+EF2=BF2. ∴ △BEF是直角三角形.
课堂小结
一定是直 角三角形
勾股定理的逆定理:如果三角形的 三边长a,b,c满足a2+b2=c2,那么 这个三角形是直角三角形.
如图,在△ABC中,AB=c,BC=a,AC=b,(a≤b≤c)
有关系a2 +b2 =c2时,这个三角形一定是直角三角形吗?
解析:由a2 +b2 =c2 ,根据勾股定理的逆
+14.1.1第1课时+勾股定理+课件++2024—2025学年华东师大版数学八年级上册
上述这种验证勾股定理的方法是面积法.
小结:我们利用拼图的方法,将形的问题与数的问题结合 起来,再进行整式运算,从理论上验证了勾股定理.
巩固练习
1.画出两条直角边分别为5cm、12cm为直角三角形,然 后用刻度尺量出斜边的长度,并验证上述关系对这个直 角三角形是否成立.
解:如图.
A
13 5
C
Hale Waihona Puke 12B巩固练习
角形三 边关系
BC2 + AC2 = AB2
掌握新知
分析:
方法1:把 R 看作是四个直角三角形的面积+ 小正方形面积. 方法2:把 R 看作是大正方形面积减去四个直角三角形的面积.
R Q
P
R
Q
P
R Q
P
R
Q
P
掌握新知
小结: 由前面的探索可以发现: 对于任意的直角三角形,如果它的两条直角边分别 为 a、b,斜边为 c,那么一定有a2 + b2 = c2. 勾股定理: 直角三角形两直角边的平方和等于斜边的平方. 几何语言: ∵ 在 Rt△ABC 中 ,∠C = 90°, ∴ a2 + b2 = c2(勾股定理).
3.勾股定理的变形公式:a2=c2-b2,b2=c2-a2.
巩固练习
例2 如图是赵爽弦图的示意图,它由4个全等的直角
三角形与一个小正方形组成,恰好拼成一个大正方. 其中: S大正方形=c2
c b
S小正方形=(b-a)2 S大正方形=4·S三角形+S小正方形
a b-a
即 c2=4×1 ab+(b-a)2, 2
c2=2ab+a2-2ab+b2
所以 a2+b2=c2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 若a = 6, c = 10, 则 b =
8
b
c
a
C
B
(2)若 b = 6 2 , a = 6 2 , 则c = 4
小试牛刀
1、已知Rt△ABC中,∠C=90°. (1)若c= 10,b = 8,则a = . (2)若BC=2,AC=6,则AB= 。 2、若一个直角三角形的三边长分别为 3,4, x,则x= .
c =a + b
b
c
a2=c2-b2
b2 =c2-a2
2
2
a c b
2
C
b= c2-a2
2
a
B
c a b
现在我们一起来探 索“弦图”的奥妙吧!
c a
b
S大正方形=c2 S小正方形=(b-a)2 S大正方形=4· S三角形+S小正方形
1 即:c 2=4 ab+(b-a) 2 2 C2=2ab+a2-2ab+b2
八年级数学(上册)• 华东师大版
勾股定理
新课引入
2005年2月15日中 午,吉林中百商厦 三楼失火,消防队 员赶来救火,了解 到每层楼高3米, 消防队员取来6.5米 长的云梯,如果梯 子的底部离墙基的 距离是2.5米,请问 消防队员能否进入 三楼灭火?
它标志着我 国古代数学 的成就!
这个图形里 到底蕴涵了什 么样博大精深 的知识呢?
(2)(3)
做一做
你是怎样得 到表中的结 果的?与同 伴交流交流。
A B
图1-3
C
C
(1)观察图 1-3、图1-4, 并填写右表:
幻 灯 片 9
A
B
图1-4 A的面积 B的面积 C的面积 (单位面积) (单位面积) (单位面积)
图1-3
图1-4
16
4
9
9
25
13
三个正方形 A,B,C的 面积之间有 什么关系?
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b, 斜边为c,那么 c 2 2 2 a
a b c
b
即 直角三角形两直角边的平方和等 A 于斜边的平方。
AC BC AB
2 2
2
勾
C
弦
股
B
A
勾股定理给出了直角三角形三边B
C
C
A
SA+SB=SC
B
即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积
幻灯片 7
(1)你能用三 角形的边长表示 正方形的面积吗?
(2)你能发现
A B
图1-3
C
C
A
直角三角形三边 B 长度之间存在什 图1-4 么关系吗? (3)分别以3厘米、4厘米为直角边作出一个 直角三角形,并测量斜边的长度。(2)中的 规律对这个三角形仍然成立吗?
一定要慎重哦!
想 一 想
小明的妈妈买了一部29英寸(74厘 米)的电视机。小明量了电视机的屏 幕后,发现屏幕只有58厘米长和46厘 米宽,他觉得一定是售货员搞错了。 你能解释这是为什么吗?
A D
解: ∵ AB2 BC2
46 58 5480
2
2
B
74 5476
2
2
C
∴ AC≈74 AC 74 荧屏对角线大约为74厘米 售货员没搞错 ∴
弦图
实验操作
1、观察图中用阴影画 出的三个正方形,你能 从中得出什么结论?
(1)观察图1-1
C A B 图1-1 A B
正方形A中含有 9 个 小方格,即A的面积是 9 个单位面积。
C
正方形B的面积是
9 个单位面积。
正方形C的面积是
图1-2
18 个单位面积。
(图中每个小方格代表一个单位面积) 你是怎样得到上面的结 果的?与同伴交流交流。 1 2 3
2
小结
说说这节课你有什么收获? 1、这节课我的收获是——; 2、我最感兴趣的地方是——; 3、我想进一步研究的问题是— ——;
作业
一、P6 习题1.1 第1、2、3、4题 二、准备4张全等的直角三角形纸片
a
c
b
再见
弦图
2 2 a +b
=
2 c
拼图展示
问题解决
1、让学生解决开始上课前提出的问题,前后 呼应,让学生体会到成功的快乐 A 三 楼 云 梯
C
B
2.求下列直角三角形中未知边的长:
比 一 比 看 看 谁 算 得 快 !
5 8 17
x
12
x
方法小结: 可用勾股定理建立方程.
比一比,看谁做得快
如图,在Rt△ABC中, ∠C = 90°, ∠A、∠B、∠C的对边分别为a、b、cA