【卓越学案】2017高考理科数学新课标一轮复习练习:11.2用样本估计总体.doc

合集下载

高三数学一轮复习课时作业12:§11.2 用样本估计总体

高三数学一轮复习课时作业12:§11.2 用样本估计总体

§11.2 用样本估计总体解密考纲:用样本估计总体在高考中,三种题型均有可能考查,作为解答题时,题目较简单,属于不能失分的题目.一、选择题1.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为『20,40),『40,60),『60,80),『80,100』.若低于60分的人数是15,则该班的学生人数是()A.45B.50C.55D.602.某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其平均数和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的平均数和方差分别为()A.x,s2+1002B.x+100,s2+1002C.x,s2D.x+100,s23.如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图,估计这批产品的中位数为()A.20B.25C.22.5D.22.754.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>c B.b>c>aC.c>a>b D.c>b>a5.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 6.下面左图是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A 1,A 2,…,A 16,右图是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是( )A .6B .10C .91D .92二、填空题7.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为__________.8.如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为__________.⎪⎪⎪018 90 3 59.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均属于区间『80,130』,其频率分布直方图如图所示,则在60株树木中底部周长小于100 cm 的株数为__________.三、解答题10.为迎接6月6日的“全国爱眼日”,某高中学生会从全体学生中随机抽取16名学生,经校医用视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如图,若视力测试结果不低于5.0,则称为“好视力”.(1)写出这组数据的众数和中位数;(2)从这16人中随机选取3人,求至少有2人是“好视力”的概率;(3)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记X 表示抽到“好视力”学生的人数,求X的分布列及数学期望.11.随着现代高等级公路的迅速发展,公路绿化苗木消费量剧增.某林场在某城市的零售店分析往年“美人梅”的零售情况,作出相关的统计与分析,按照日零售量『50,100),『100,150),『150,200),『200,250』分成4组,并制作了日零售量的频率分布直方图,如图所示(假设每天的零售量相互独立,且日零售量落入各组的频率视为概率).(1)求图中a的值;(2)求从明日开始的连续4天中,有2天的日零售量少于150株而另外2天的日零售量不少于200株的概率;(3)用X表示从明日开始的连续4天里日零售量不少于150株的天数,求随机变量X的分布列和数学期望.12.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为『40,50),『50,60),…,『80,90),『90,100』.(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在『40,60)的受访职工中,随机抽取2人,求此2人评分都在『40,50)的概率.——★参考答案★——一、选择题1.『答案』B『解析』 根据频率分布直方图,低于60分的同学所占频率为(0.005+0.01)×20=0.3,故该班的学生人数为150.3=50(人),故选B .2.『答案』D『解析』 对平均数和方差的意义深入理解可巧解,因为每个数据都加上了100,故平均数也增加100,而离散程度应保持不变,故选D . 3.『答案』C『解析』 产品的中位数出现在概率是0.5的地方,自左至右各小矩形面积依次为0.1,0.2,0.4,0.15,0.15,设中位数是x ,则由0.1+0.2+0.08·(x -20)=0.5,得x =22.5,故选C . 4.『答案』D『解析』 平均数a =110×(15+17+14+10+15+17+17+16+14+12)=14.7,中位数b =15,众数c =17,∴c >b >a . 5.『答案』A『解析』 根据折线图可知,2014年8月到9月、2014年10月到11月等月接待游客量都是减少,所以A 项错误. 6.『答案』B『解析』 由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知,数学成绩大于等于90的人数为10,因此输出结果为10,故选B . 二、填空题 7.『答案』10『解析』 设5个班级的人数分别为x 1,x 2,x 3,x 4,x 5,则x 1+x 2+x 3+x 4+x 55=7,(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2+(x 5-7)25=4,即5个整数平方和为20,最大的数比7大但与7的差值不能超过3,否则方差超过4, 故最大值为10,最小值为4. 8.『答案』6.8『解析』 ∵x =8+9+10+13+155=11,∴s 2=(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)25=6.8.9.『答案』24『解析』 由题意,在抽测的60株树木中,底部周长小于100 cm 的株数为(0.015+0.025)×10×60=24.三、解答题10.解:(1)由题意知众数为4.6和4.7,中位数为4.75.(2)记“至少有2人是‘好视力’”为事件A ,则事件A 包含的基本事件个数为C 24·C 112+C 34,总的基本事件个数为C 316,故P (A )=C 24·C 112+C 34C 316=19140. (3)X 的所有可能取值为0,1,2,3.由于该校人数很多,故X 近似服从二项分布B ⎝⎛⎭⎫3,14. P (X =0)=⎝⎛⎭⎫343=2764,P (X =1)=C 13×14×⎝⎛⎭⎫342=2764, P (X =2)=C 23×⎝⎛⎭⎫142×34=964,P (X =3)=⎝⎛⎭⎫143=164, 则X 的分布列为故X 的数学期望E (X )=3×14=34.11.解:(1)第一个小矩形的面积为1-(0.005+0.006+0.007)×50=0.1,则a =0.150=0.002.(2)设日零售量为x ,有2天日零售量少于150株,另外2天日零售量不少于200株为事件A .则P (x <150)=0.002×50+0.006×50=0.4, P (x ≥200)=0.005×50=0.25,∴P (A )=C 24×0.42×0.252=0.06.(3)由(2)知,日零售量不少于150株的概率P =1-0.4=0.6,则X ~B (4,0.6),于是P (X =k )=C k 4·0.6k ·0.44-k (k =0,1,2,3,4), 则关于随机变量X 的分布列为∴E (X )=0×16625+1×96625+2×216625+3×216625+4×81625=2.4.12.解:(1)因为(0.004+a +0.018+0.022×2+0.028)×10=1,所以a =0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在『50,60)的有50×0.006×10=3(人),记为A1,A2,A3;受访职工中评分在『40,50)的有50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在『40,50)的结果有1种,即{B1,B2},故所求的概率为P=110.。

核按钮(新课标)2017高考数学一轮复习 第十一章 统计训练 文

核按钮(新课标)2017高考数学一轮复习 第十一章 统计训练 文

第十一章统计考纲链接1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会做两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).4.统计案例(1)通过典型案例了解回归分析的思想、方法,并能初步应用回归分析的思想、方法解决一些简单的实际问题.(2)通过典型案例了解独立性检验的思想、方法,并能初步应用独立性检验的思想、方法解决一些简单的实际问题.§11.1随机抽样1.简单随机抽样(1)简单随机抽样:一般地,设一个总体含有N 个个体,从中逐个________地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会________,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样方法有两种:________法和________法.抽签法(抓阄法):一般地,抽签法就是把总体中的N个个体________,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取______个号签,连续抽取________次,就得到一个容量为n的样本.随机数法:随机数法就是利用______________、随机数骰子或计算机产生的随机数进行抽样.简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.2.系统抽样(1)一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:①先将总体的N个个体________.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;②确定分段间隔k,对编号进行分段.当Nn(n 是样本容量)是整数时,取k=Nn,如果遇到Nn不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除;③在第1段用______________抽样方法确定第一个个体编号l(l≤k);④按照一定的规则抽取样本.通常是将l加上________得到第2个个体编号________,再________得到第3个个体编号________,依次进行下去,直到获取整个样本.(2)当总体中元素个数较少时,常采用____________,当总体中元素个数较多时,常采用______________.3.分层抽样(1)分层抽样的概念:一般地,在抽样时,将总体分成________的层,然后按照一定的________,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)当总体是由__________的几个部分组成时,往往选用分层抽样的方法.(3)分层抽样时,每个个体被抽到的机会是________的.自查自纠:1.(1)不放回 都相等(2)抽签 随机数 编号 1 n 随机数表 2.(1)①编号 ③简单随机④间隔k (l +k ) 加k (l +2k ) (2)简单随机抽样 系统抽样3.(1)互不交叉 比例 (2)差异明显 (3)均等(2015·南昌模拟)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样解:总体中所要调查的因素受学段影响较大,而受性别影响不大,所以最合理的抽样方法是按学段分层抽样.故选C.从匀速传递的新产品生产流水线上,质检员每10分钟从中抽取一件新产品进行某项指标检测,这样的抽样是( )A .系统抽样B .分层抽样C .简单随机抽样D .随机数法 解:根据定义易判断这样的抽样为系统抽样.故选A.(2014·重庆)某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250解:样本抽取比例为703500=150,该校总人数为3500+1500=5000,由n 5000=150得n =100.故选A.为了了解某地参加计算机水平测试的5008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样抽取样本时,每组的容量为____________.解:由于5008不能被200整除,所以须先剔除8人,再由5000÷200=25知每组的容量为25.故填25.某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号为第1组,6~10号为第2组,…,196~200号为第40组).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.解:由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37;易知40岁以下年龄段的职工数为200×0.5=100,所以40岁以下年龄段应抽取的人数为40200×100=20.故填37;20.类型一 简单随机抽样某大学为了支援我国西部教育事业,决定从应届毕业生报名的18名志愿者中选取6名组成志愿小组.请用抽签法和随机数表法设计抽样方案.解:(抽签法) 第一步:将18名志愿者编号,编号为1,2,3, (18)第二步:将18个号码分别写在18张外形完全相同的纸条上,并揉成团,制成号签;第三步:将18个号签放入一个不透明的盒子里,充分搅匀;第四步:从盒子中逐个抽取6个号签,并记录上面的编号;第五步:所得号码对应的志愿者就是志愿小组的成员.(随机数表法)第一步:将18名志愿者编号,编号为01,02,03, (18)第二步:在随机数表中任选一数作为开始,按任意方向读数,比如从第8行第29列的数7开始,向右读;第三步:从数7开始,向右读,每次取两位,凡不在01~18中的数或已读过的数,都跳过去不作记录,依次可得到12,07,15,13,02,09;第四步:找出以上号码对应的志愿者,即是志愿小组的成员.点拨:考虑到总体中个体数较少,利用抽签法或随机数表法很容易获取样本,但须按这两种抽样方法的操作步骤进行.注意掌握随机数表的使用方法.有一批机器,编号为1,2,3,…,112,为调查机器的质量问题,打算抽取10台入样,请写出用简单随机抽样方法获得样本的步骤.解法一:将112个外形完全相同的号签(编号001,002,...,112)放入一个不透明的盒子里,充分搅拌均匀后,每次不放回地从盒子中抽取1个号签,连续抽取10次,就得到1个容量为10的样本.解法二:第一步,将机器编号为001,002,003, (112)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如选第9行第7个数“3”,向右读;第三步,从“3”开始,向右读,每次读取三位,凡不在001~112中的数跳过去不读,前面已经读过的数也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092,这样就得到一个容量为10的样本;第四步,找出以上号码对应的机器,即是要抽取的样本.类型二系统抽样从某厂生产的10002辆汽车中随机抽取100辆测试某项性能,请合理选择抽样方法进行抽样,并写出抽样过程.解:因为总体容量和样本容量都较大,可用系统抽样.抽样步骤如下:第一步,将10002辆汽车用随机方式编号;第二步,从总体中剔除2辆(剔除法可用随机数表法),将剩下的10000辆汽车重新编号(分别为00001,00002,…,10000),并分成100段;第三步,在第一段00001,00002,…,00100这100个编号中用简单随机抽样方法抽出一个作为起始号码(如00006);第四步,把起始号码依次加上间隔100,可获得样本.点拨:①总体容量和样本容量都较大时,选用系统抽样比较合适;②系统抽样的号码成等差数列,公差为每组的容量.(2013·陕西)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1, 2, … , 840随机编号,则抽取的42人中,编号落入区间[481, 720]的人数为( )A.11 B.12 C.13 D.14解:从840名职工中抽取42人,按系统抽样分42组,每组20人,每组中抽取1人,在[481,720] 中有720-480=240人,240÷20=12组,编号落入区间[481,720]的人数为12.故选B.类型三分层抽样某企业共有5个分布在不同区域的工厂,职工3万人,其中职工比例为3∶2∶5∶2∶3.现从3万人中抽取一个300人的样本,分析员工的生产效率.已知生产效率与不同的地理位置的生活习俗及文化传统有关,问应采取什么样的方法?并写出具体过程.解:应采取分层抽样的方法.过程如下:(1)将3万人分为五层,其中一个工厂为一层.(2)按照样本容量的比例随机抽取各工厂应抽取的样本:300×315=60(人);300×215=40(人);300×515=100(人);300×215=40(人);300×315=60(人).因此各工厂应抽取的人数分别为60人,40人,100人,40人,60人.(3)将300人组到一起即得到一个样本.点拨:分层抽样的实质为按比例抽取,当总体由差异明显的几部分组成时,多用分层抽样.应认识到,在各层抽取样本时,又可能会用到简单随机抽样,系统抽样,甚至分层抽样来抽取样本.(2014·天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取__________名学生.解:应从一年级本科生中抽取300×44+5+5+6=60名学生.故填60.1.简单随机抽样是系统抽样和分层抽样的基础,是一种等概率的抽样,它的特点是:(1)它要求总体个数较少;(2)它是从总体中逐个抽取的;(3)它是一种不放回抽样.2.系统抽样又称等距抽样,号码序列一旦确定,样本即确定好了.但要注意,如果编号的个体特征随编号的变化呈现一定的周期性,那么样本的代表性是不可靠的,甚至会导致明显的偏向.3.分层抽样一般在总体是由差异明显的几个部分组成时使用.4.抽样方法经常交叉使用,比如系统抽样中均匀分段后的第一段,可采用简单随机抽样;分层抽样中,若每层中个体数量仍很大时,则可辅之以系统抽样等.1.某商场想通过检查发票及销售记录的2%来快速估计每月的销售总额,采取如下方法:从某本50张的发票存根中随机抽取一张,如15号,然后按顺序往后将65号、115号、165号……发票上的销售额组成一个调查样本.这种抽取样本的方法是( )A.抽签法B.系统抽样C.分层抽样D.随机数表法解:易知为系统抽样.故选B.2.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是( )A.①简单随机抽样;②系统抽样;③分层抽样B.①简单随机抽样;②分层抽样;③系统抽样C.①系统抽样;②简单随机抽样;③分层抽样D.①分层抽样;②系统抽样;③简单随机抽样解:由各抽样方法的适用范围可知较为合理的抽样方法是:①用简单随机抽样,②用系统抽样,③用分层抽样.故选A.3.(2014·广东)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50 B.40 C.25 D.20解:由100040=25,可得分段的间隔为25.故选C.4.(2015·河北模拟)用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为( )A.1100B.120C.199D.150解:简单随机抽样中,每个个体被抽到的概率为样本容量总体中的个体数,即个体m被抽到的概率为5100=120.故选B.5.(2014·湖南)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( ) A.p1=p2<p3 B.p2=p3<p1C.p1=p3<p2 D.p1=p2=p3解:根据抽样方法的概念可知,简单随机抽样、系统抽样和分层抽样三种抽样方法中每个个体被抽到的概率相等,均是nN,故p1=p2=p3,故选D.6.(2013·江西)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,解:从选定的两位数字开始向右读,剔除不合题意及与前面重复的编号,得到符合题意的编号分别为08,02,14,07,01,…,因此选出来的第5个个体的编号为01.故选D.7.(2014·河北唐山统考)一支游泳队有男运动员32人,女运动员24人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为14的样本,则抽取男运动员的人数为________.解:设抽取男运动员的人数为x,则由题意得1432+24=x32,解得x=8.故填8.8.(2015·安徽模拟)高三(1)班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号,31号,44号学生在样本中,则样本中还有一个学生的编号是____________.解:∵系统抽样是等距抽样,52÷4=13,间隔为13,且5号,31号,44号学生在样本中,∴5+13=18,即样本中还有一个学生的编号是18.故填18.9.为了考察某校的教学水平,将抽查该校高三年级部分学生本学年的考试成绩进行考察.为了全面地反映实际情况,采用以下三种方式进行抽样(已知该校高三年级共有20个教学班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生人数都相同):①从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考察他们的学习成绩;②每个班都抽取1人,共计20人,考察这20个学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进行考察(已知若按成绩分,该校高三学生中优秀生共150人,良好生共600人,普通生共250人).根据上面的叙述,回答下列问题:(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式中各自采用了何种抽取样本的方法?解:(1)这三种抽取方式中,其总体都是指该校高三全体学生本学年的考试成绩,个体都是指高三年级每个学生本学年的考试成绩.其中第一种抽取方式中样本为所抽取的20名学生本学年的考试成绩,样本容量为20;第二种抽取方式中,样本为所抽取的20名学生本学年的考试成绩,样本容量为20;第三种抽取方式中,样本为所抽取的100名学生本学年的考试成绩,样本容量为100.(2)第一种采用简单随机抽样法;第二种采用系统抽样法和简单随机抽样法;第三种采用分层抽样法和简单随机抽样法.10.一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本.解:田径运动员的总人数是56+42=98(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取56×27=16(人),在女运动员中随机抽取28-16=12(人).这样,就可以得到一个容量为28的样本.11.某大学今年有毕业生1503人,为了了解毕业生择业的意向,打算从中选50人进行询问调查,试用系统抽样法确定出这50个人.解:总体中的每个个体都必须等可能地入样,为了实现系统抽样的平均分组且又等概率抽样,必须先剔除1503被50除的余数3,再“分段”,定起始位置.第一步:将1503名大学生随机编号:0001,0002, (1503)第二步:因为1503被50除余3,所以应从总体中剔除3人,用随机数表法确定被剔除的3位学生;第三步:将余下的1500名学生重新编号为0001,0002, (1500)第四步:将上述1500个号码按顺序平均分成50段,每段30人;第五步:在第一段0001,0002,…,0030这30个编号中随机确定一起始号i 0;第六步:取出编号为i 0,i 0+30,i 0+60,…,i 0+49×30的大学生,即得所需样本.某公司有1000名员工,其中:高层管理人员为50名,属于高收入者;中层管理人员为150名,属于中等收入者;一般员工为800名,属于低收入者.要对这个公司员工的收入情况进行调查,欲抽取100名员工,应当怎样进行抽样?解:可以采用分层抽样的方法,按照收入水平分成三层:高收入者、中等收入者、低收入者.从题中数据可以看出,高收入者为50名,占所有员工的比例为501000=5%,为保证样本的代表性,在所抽取的100名员工中,高收入者所占的比例也应为5%,数量为100×5%=5,所以应抽取5名高层管理人员.同理,抽取15名中层管理人员、80名一般员工,再对收入状况分别进行调查.§11.2 用样本估计总体1.用样本的频率分布估计总体分布(1)通常我们对总体作出的估计一般分成两种:一种是用样本的__________估计总体的__________;另一种是用样本的________估计总体的__________.(2)在频率分布直方图中,纵轴表示________,数据落在各小组内的频率用________________表示.各小长方形的面积总和等于________.(3)连接频率分布直方图中各小长方形上端的中点,就得到频率分布________.随着样本容量的增加,作图时所分的________增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称之为______________,它能够更加精细地反映出____________________________________.(4)当样本数据较少时,用茎叶图表示数据的效果较好,它不但可以____________________,而且可以______________,给数据的记录和表示都带来方便.2.用样本的数字特征估计总体的数字特征 (1)众数,中位数,平均数众数:在一组数据中,出现次数________的数据叫做这组数据的众数.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或者最中间两个数据的________)叫做这组数据的中位数.平均数:样本数据的算术平均数,即x =______________.在频率分布直方图中,中位数左边和右边的直方图的面积应该________.(2)样本方差,样本标准差 标准差s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x n 是__________________,n 是________,x 是________.标准差是反映总体__________的特征数,样本方差是样本标准差的__________.通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差.自查自纠:1.(1)频率分布 分布 数字特征 数字特征 (2)频率组距各小长方形的面积 1 (3)折线图 组数 总体密度曲线 总体在各个范围内取值的百分比 (4)保留所有信息 随时记录2.(1)最多 平均数 1n(x 1+x 2+…+x n ) 相等(2)样本数据的第n 项 样本容量 平均数 波动大小平方在频率分布直方图中,各个长方形的面积表示( )A .落在相应各组的数据的频数B .相应各组数据的频率C .该样本所分成的组数D .该样本的样本容量解:在频率分布直方图中,小长方形面积=组距×频率组距=频率,所以每个小长方形的面积是相应各组数据的频率.故选B.(2015·陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A .93B .123C .137D .167解:由扇形统计图可得,该校女教师人数为110×70%+150×(1-60%)=137.故选C.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5)9[23.5,27.5) 18 [27.5,31.5) 11[31.5,35.5)12[35.5,39.5) 7 [39.5,43.5)3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是( )A.16B.13C.12D.23解:落在[31.5,43.5)的频数为22,所以概率约为13.故选B.(2015·江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为____________.解:x =4+6+5+8+7+66=6.故填6.(2015·湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.1314150 0 3 4 5 6 6 8 8 8 91 1 12 2 23 34 45 5 56 6 780 1 2 2 3 3 3若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.解:由题意可知,这35名运动员的分组情况为,第一组(130,130,133,134,135),第二组(136,136,138,138,138),第三组(139,141,141,141,142),第四组(142,142,143,143,144),第五组(144,145,145,145,146),第六组(146,147,148,150,151),第七组(152,152,153,153,153),故成绩在区间[139,151]上的运动员恰有4组,故所求人数为4.故填4.类型一 数字特征及其应用(2015·广东)某工厂36名工人的年的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的平均值x 和方差s 2; (3)36名工人中年龄在x -s 与x +s 之间有多少人?所占的百分比是多少(精确到0.01%)?解:(1)根据系统抽样的方法,抽取容量为9的样本,因此分成9组,每组4人,由于第一组中用随机抽样抽到的年龄数据为44,且编号间隔为4,因此,依次抽到的年龄数据为:44,40,36,43,36,37,44,43,37.(2)x =19(44+40+36+43+36+37+44+43+37)=40,s 2=19[(44-40)2+(40-40)2+(36-40)2+(43-40)2+(36-40)2+(37-40)2+(44-40)2+(43-40)2+(37-40)2]=1009.(3)s =s 2=1009=103, x -s =3623,x +s =4313,在x -s 与x +s 之间的数据是37,38,39,40,41,42,43,处在此年龄阶段的工人一共有23人,所占比例为2336×100%≈63.89%.点拨:(1)根据系统抽样的定义和性质,结合题意,直接列举样本;(2)利用均值、方差的概念求解样本的均值x 及方差s 2;(3)利用(2)的结果,计算得到年龄在x -s 与x +s 之间的人数,再求解百分比.本题主要考查系统抽样及平均数、方差的知识,意在考查学生的数据处理能力和计算能力.某汽车制造厂分别从A ,B 两种轮胎中各随机抽取了8个进行测试,列出了每一个轮胎行驶的最远里程数(单位:1000 km ):轮胎A 96 112 97 108 100 103 86 98 轮胎B 108 101 94 105 96 93 97 106 (1)分别计算A ,B 两种轮胎行驶的最远里程的平均数、中位数;(2)分别计算A ,B 两种轮胎行驶的最远里程的极差、标准差;(3)根据以上数据,你认为哪种型号轮胎的性能更加稳定?解:(1)A 轮胎行驶的最远里程的平均数为: 96+112+97+108+100+103+86+988=100,中位数为:100+982=99;B 轮胎行驶的最远里程的平均数为: 108+101+94+105+96+93+97+1068=100,中位数为:101+972=99.(2)A 轮胎行驶的最远里程的极差为:112-86=26,标准差为: s =错误!=2212≈7.43;B 轮胎行驶的最远里程的极差为:108-93=15,标准差为:s=错误!=1182≈5.43. (3)虽然A 轮胎和B 轮胎的最远行驶里程的平均数相同,但B 轮胎行驶的最远里程的极差和标准差相对于A 轮胎较小,所以B 轮胎性能更加稳定.类型二频率分布表、频率分布直方图及其应用(2014·全国Ⅰ)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解:(1)这些数据的频率分布直方图为:(2)质量指标值的样本平均数为x =80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100,质量指标值的样本方差为s 2=(-20)2×0.06+(-10)2×0.26+02×0.38+102×0.22+202×0.08=104,所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.点拨:(1)先利用表中的数据正确计算每组的频率,再据此作出频率分布直方图,注意纵坐标是频率组距;(2)求平均值时注意利用区间中点值;(3)只须将满足题意的各组数据的频率相加,再进行判断.随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:1212的值; (2)根据上述频率分布表,画出样本频率分布直方图.解:(1)根据已知数据统计出n 1=7,n 2=2, 计算得f 1=0.28,f 2=0.08.(2)由于组距为5,用频率组距得各组的纵坐标分别为0.024,0.040,0.064,0.056,0.016.不妨以0.008为纵坐标的一个单位长,5为横坐标的一个单位长画出样本频率分布直方图如下.类型三 茎叶图及其应用以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数。

人教版高三数学一轮复习精品课件5:11.2 用样本估计总体

人教版高三数学一轮复习精品课件5:11.2 用样本估计总体
11.2 用样本估计总体
1.了解分布的意义与作用,会列频率分布表、会画频率分布直 方图、频率折线图、茎叶图,理解它们各自的特点. 2.理解样本数据标准差的意义和作用,会计算数据标准差. 3.能从样本数据中提取基本的数字特征(如平均数、标准差),并 作出合理的解释.
高三一轮总复习 ·新课标 ·数学
限时规范特训
路漫漫其修远兮,吾将上下而求索!
第十一章 第2讲
第3页
1 条重要规律——方差和标准差刻画样本数据的分散程度 标准差、方差描述了一组数据围绕平均数波动的大小.标准差、 方差越大,数据的离散程度越大,标准差、方差越小,数据的离 散程度越小. 2 个必会比较——频率分布直方图与茎叶图的优点和缺点 (1) 频率分布直方图: 优点:频率分布直方图能够很容易地表示大量数据,非常直观地 表明分布的规律.
考点 2 样本的数字特征
[判一判] 判断下列说法是否正确(在括号内填“√”或“× ”). (1)平均数、众数与中位数从不同的角度描述了一组数据的集 中趋势.(√) (2)一组数据的平均数一定大于这组数据中的每个数据.(×) (3)一组数据的方差越大,说明这组数据的波动越大.(√) (4)一组数据的众数可以是一个或几个,那么中位数也具有相 同的结论.(×)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟
君不见,黄河之水天上来,奔流到海不复回。 君不见,高堂明镜悲白发,朝如青丝暮成雪。 人生得意须尽欢,莫使金樽空对月。 天生我材必有用,千金散尽还复来。 烹羊宰牛且为乐,会须一饮三百杯。 岑夫子,丹丘生,将进酒,杯莫停。 与君歌一曲,请君为我倾耳听。 钟鼓馔玉不足贵,但愿长醉不复醒。 古来圣贤皆寂寞,惟有饮者留其名。 陈王昔时宴平乐,斗酒十千恣欢谑。 主人何为言少钱,径须沽取对君酌。 五花马,千金裘,呼儿将出换美酒,与尔同销万古愁

高三数学一轮复习课时作业7:11.2 用样本估计总体

高三数学一轮复习课时作业7:11.2 用样本估计总体

11.2 用样本估计总体一、选择题1.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为()A.65 B.65C. 2 D.22.从一堆苹果中任取10只,称得它们的质量如下(单位:克):12512012210513011411695120134则样本数据落在『114.4,124.5)内的频率为()A.0.2 B.0.3C.0.4 D.0.53.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是()A.12.512.5 B.12.513C.1312.5 D.13134.如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在『30,35),『35,40)、『40,45)的上网人数呈现递减的等差数列分布,则年龄在『35,40)的网民出现的频率为()A.0.04 B.0.06C.0.2 D.0.35.甲、乙两位同学在高三的5次月考中数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是x甲,x乙,则下列叙述正确的是()A.x甲>x乙;乙比甲成绩稳定B.x甲>x乙;甲比乙成绩稳定C.x甲<x乙;乙比甲成绩稳定D.x甲<x乙;甲比乙成绩稳定6.某中学高三年级从甲、乙两个班级各选出8名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的平均分是86,乙班学生成绩的中位数是83,则x+y的值为()A.9 B.10C.11 D.13二、填空题7.若一组样本数据2,3,7,8,a的平均数为5,则该组数据的方差s2=__________.8.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用右图所示的茎叶图表示,若甲运动员的中位数为a,乙运动员的众数为b,则a-b=__________.9.某地区为了解中学生的日平均睡眠时间(单位:h),随机选择了n位中学生进行调查,根据所得数据画出样本的频率分布直方图如图所示,且从左到右的第1个、第4个、第2个、第3个小长方形的面积依次构成公差为0.1的等差数列,又第一小组的频数是10,则n =________.三、解答题10.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:组号分组频数1『0,2)62『2,4)83『4,6)174『6,8)225『8,10)256『10,12)127『12,14)68『14,16)29『16,18)2合计100(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.(只需写出结论)11.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分『75,85)『85,95)『95,105)『105,115)『115,125)组频数62638228(1)在下表中作出这些数据的频率分布直方图:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014·新课标全国卷Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.答案一、选择题 1.『解析』由题可知样本的平均值为1,所以a +0+1+2+35=1,解得a =-1,所以样本的方差为15『(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2』=2,故选D.『答案』D2.『解析』依题意得,样本数据落在『114.4,124.5)内的频率为410=0.4,选C.『答案』C3.『解析』根据频率分布直方图特点可知,众数是最高矩形的中点,由图可知为12.5,中位数是10+0.5-0.20.1=13.『答案』B4.『解析』由频率分布直方图可知,年龄在『20,25)的频率为0.01×5=0.05,『25,30)的频率为0.07×5=0.35,又年龄在『30,35),『35,40),『40,45)的频率成等差数列分布,所以年龄在『35,40)的网民出现的频率为0.2.『答案』C5.『解析』由题意可知,x 甲=15×(72+77+78+86+92)=81,x 乙=15×(78+88+88+91+90)=87.又由方差公式可得s 2甲=15×『(81-72)2+(81-77)2+(81-78)2+(81-86)2+(81-92)2』=50.4,s 2乙=15×『(87-78)2+(87-88)2+(87-88)2+(87-91)2+(87-90)2』=21.6,因为s 2乙<s 2甲,故乙的成绩波动较小,乙的成绩比甲稳定.故选C.『答案』C6.『解析』观察茎叶图,甲班学生成绩的平均分是86,故x =8,乙班学生成绩的中位数是83,故y =5,∴x +y =13,故选D.『答案』D二、填空题 7.『解析』由2+3+7+8+a5=5,得a =5,所以s 2=15『(2-5)2+(3-5)2+(7-5)2+(8-5)2+(5-5)2』=265.『答案』265 8.『解析』由茎叶图可知,a =19,b =11,∴a -b =8. 『答案』89.『解析』设第1个小长方形的面积为S ,则4个小长方形的面积之和为4S +4×32×0.1, 由题意知,4S +4×32×0.1=1,∴S =0.1.又10n=0.1,∴n =100. 『答案』100三、解答题 10.『解析』(1)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有6+2+2=10名,所以样本中的学生课外阅读时间少于12小时的频率是1-10100=0.9.从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9. (2)课外阅读时间落在组『4,6)的有17人,频率为0.17,所以a =频率组距=0.172=0.085.课外阅读时间落在组『8,10)的有25人,频率为0.25,所以b =频率组距=0.252=0.125.(3)样本中的100名学生课外阅读时间的平均数在第4组. 11.『解析』(1)(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.12.『解析』(1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.。

【步步高】高三数学一轮 11.2 统计图表、数据的数字特征、用样本估计总体课时检测 理 (含解析)北师大版

【步步高】高三数学一轮 11.2 统计图表、数据的数字特征、用样本估计总体课时检测 理 (含解析)北师大版

11.2 统计图表、数据的数字特征、用样本估计总体一、选择题1.从一堆苹果中任取10只,称得它们的质量如下(单位:克):125,120,122,105,130,114,116,95,120,134, 则样本数据落在[114.5,124.5)内的频率为( ). A .0.2B .0.3C .0.4D .0.5解析 数据落在[114.5,124.5)内的有:120,122,116,120共4个,故所求频率为410=0.4. 答案 C2.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ). A.65B.65C. 2D .2解析 由题可知样本的平均值为1,所以a +0+1+2+35=1,解得a =-1,所以样本的方差为15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2. 答案 D3某班50名学生在一次百米测试中,成绩全部在[13,18]内,将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].如图是按上述分组方法得到的频率分布直方图.且第一组,第二组,第四组的频数成等比数列,则成绩在[13,15)内的学生人数为( ) A .12 B .14 C .16D .10解析 由图知第一、三、五小组的频率分别为0.08,0.38,0.06, ∴其频数分别为4,19,3,∴第二、四组的频数和为50-4-19-3=24.∵第一、二、四组的频数成等比数列,设其公比为q ,则第二、四组的频数为4q,4q 2. ∴4q +4q 2=24,解得q =2或q =-3(舍去), ∴第二小组的频数为4q =8,∴成绩在[13,15)内的学生有4+8=12(人). 答案 A4.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为( )A.18 B.36 C.54 D.72答案 B解析本题考查频率分布直方图.做这类题应注意组距、各小矩形的面积和为1等.1-2(0.02+0.05+0.15+0.19)=0.18,所以0.18×200=36.5.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表:s1,s2,s3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( ).A .s 3>s 1>s 2B .s 2>s 1>s 3C .s 1>s 2>s 3D .s 2>s 3>s 1 解析 ∵x 甲=+8+9+20=8.5, s 21=-2+-2+-2+-2]20=1.25,x 乙=+++20=8.5,s 22=6-2+-2]+-2+-2]20=1.45,x 丙=+++20=8.5,s 23=-2+-2]+-2+-2]20=1.05.由s 22>s 21>s 23,得s 2>s 1>s 3. 答案 B6.对某种电子元件的使用寿命进行跟踪调查,所得样本的频率分布直方图如图所示,由图可知,这一批电子元件中使用寿命在100~300 h 的电子元件的数量与使用寿命在300~600 h 的电子元件的数量的比是( ).A.12B.13C.14D.16 解析 寿命在100~300 h 的电子元件的频率为⎝ ⎛⎭⎪⎫12 000+32 000×100=420=15; 寿命在300~600 h 的电子元件的频率为⎝ ⎛⎭⎪⎫1400+1250+32 000×100=45. ∴它们的电子元件数量之比为15∶45=14.答案 C7.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( ).A .57.2,3.6B .57.2,56.4C .62.8,63.6D .62.8,3.6 解析 平均数增加,方差不变. 答案 D 二、填空题8.某企业3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1∶2∶1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共抽取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980 h,1 020 h,1 032 h ,则抽取的100件产品的使用寿命的平均值为________h. 解析 由于三个厂的产量比为1∶2∶1, 所以从三个厂抽出产品比例也应为1∶2∶1.所以100件产品的使用寿命平均值为980×1+1 020×2+1 032×14=1 013.答案 1 0139一个样本a,99,b,101,c 中,五个数顺次成等差数列,则这个样本的标准差为________. 答案 2解析 ∵a,99,b,101,c 成等差数列, ∴b =101+992=100,∴a =98,c =102.∴x =98+99+100+101+1025=100,∴s == 2.10.某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.解析 根据样本的频率分布直方图,成绩小于60分的学生的频率为(0.002+0.006+0.012)×10=0.20,所以可推测3 000名学生中成绩小于60分的人数为600名. 答案 60011.某校开展“爱我青岛,爱我家乡”摄影比赛,9位评委为参赛作品A 给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x 应该是________.解析 当x≥4时,89+89+92+93+92+91+947=6407≠91,∴x<4,则89+89+92+93+92+91+x +907=91,∴x=1.答案 112.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则x 2+y 2的值为________.解析 由15(x +y +10+11+9)=10,15[(x -10)2+(y -10)2+0+1+1]=2,联立解得,x2+y 2=208. 答案 208 三、解答题13.某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表(2)已知用B 配方生产的一件产品的利润y(单位:元)与其质量指标值t 的关系式为y =⎩⎪⎨⎪⎧-2,t <94,2,94≤t<102,4,t≥102.估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润.解析 (1)由试验结果知,用A 配方生产的产品中优质品的频率为22+8100=0.3,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32+10100=0.42,所以用B 配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值t≥94,由试验结果知,质量指标值t≥94的频率为0.96.所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96.用B 配方生产的产品平均一件的利润为 1100×[4×(-2)+54×2+42×4]=2.68(元). 14.中学高三年级参加市一轮验收考试的同学有1 000人,用系统抽样法抽取了一个容量为200的学生总成绩的样本,分数段及各分数段人数如下(满分750分):(2)画出频率分布直方图;(3)模拟本科划线成绩为550分,试估计该校的上线人数. 解析 (1)频率分布表如下:(2)频率分布直方图如下:(3)由频率分布表知,在样本中成绩在550分以上的人数的频率为0.20+0.15=0.35.由此可以估计该校本科模拟上线人数约为0.35×1 000=350(人).15.某制造商3月生产了一批乒乓球,随机抽取100个进行检查,测得每个球的直径(单位:mm),将数据进行分组,得到如下频率分布表:(1)补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;(2)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm,试求这批乒乓球的直径误差不超过0.03 mm的概率;(3)统计方法中,同一组数据常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).解析(1)频率分布表如下:频率颁布直方图如图:(2)误差不超过0.03 mm,即直径落在[39.97,40.03]内,其概率为0.2+0.5+0.2=0.9.(3)整体数据的平均值为39.96×0.10+39.98×0.20+40.00×0.50+40.02×0.20=40.00(mm).16.某市2010年4月1日~4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85 ,75,71,49,45.样本频率分布表:(1)完成频率分布表;(2)作出频率分布直方图;(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价. 解析 (1)频率分布表:(2)频率分布直方图:(3)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的115.有26天处于良的水平,占当月天数的1315.处于优或良的天数共有28天,占当有月数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115.污染指数在80以上接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%.说明该市空气质量有待进一步改善.。

一轮复习课时训练§11.2:用样本估计总体

一轮复习课时训练§11.2:用样本估计总体

第十一章§2:用样本估计总体(与一轮复习课件对应的课时训练)满分100,训练时间45钟一、选择题:本大题共5小题,每小题8分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.甲、乙两名同学在五次《基本能力》测试中的成绩统计用茎叶图表示如图所示,若甲、乙两人的平均成绩分别是X甲、X 乙,则下列结论正确的是A. X 甲>X 乙;乙比甲成绩稳定 B .X 甲>X 乙;甲比乙成绩稳定C .X 甲<X 乙;甲比乙成绩稳定D .X 甲<X 乙;乙比甲成绩稳定2.为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力从4.6到5.0之间的学生数为b ,则a ,b的值分别为A .0.27,78B .0.27,83C .2.7,78D .2.7,833.在甲型H1N1流感发生期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A .甲地:总体均值为3,中位数为4B .乙地:总体均值为1,总体方差大于0C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为34.为了了解一片经济林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出样本的频率分布直方图(如图),那么在这100株树木中,底部周长小于110 cm 的株数是A .30B .60C .70D .805.一组数据中的每一个数据都乘以2,加上5以后,得一组新数据,若求得新数据的平均数为10,方差为4,则原数据的平均数和方差分别为A .5,4B .52,4C .5,1D .52,1二、填空题:本大题共3小题,每小题8分,共24分.6.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=__________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为__________.7.已知一样本数据的值从小到大依次为4,5,a,6,7,8,且中位数为6,则方差s2=________. 8.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是__________、__________. 三、解答题:本大题共2小题,共36分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分18分,(1)小问5分,(2)小问6分,(3)小问7分)2010年发生的“富士康12连跳事件”使得沿海企业普遍采取加薪措施来缓解用工短缺问题.深圳某企业在招工过程中对外宣传平均工资标准为2 000元/月,很多人到工厂工作一个月后,领到的工资却不足1 500元,为此他们找到老板询问为何与当初宣传的不一样.老板说我并没有骗你们,然后拿出如下的一张工资统计表,让他们自己算一算.(2)你认为这个企业是否欺骗了工人?(3)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数和众数又是多少?(精确到元)10.(本小题满分18分,(1)小问5分,(2)小问6分,(3)小问7分)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170~185 cm之间的概率;(3)从样本中身高在180~190 cm之间的男生中任选2人,求至少有1人身高在185~190 cm之间的概率.参考答案及其解析一、选择题:本大题共5小题,每小题8分,共40分.1.解析:X 甲=70,X 乙=68,且甲组数据分布均匀.答案:B2.解析:∵组距为0.1,前4组频数成等比数列,∴前4组频率也成等比数列.设这9组频率依次为a 1,a 2,…,a 9,则a 1=0.01,a 2=0.03,a 3=0.09,a 4=0.27.∵后6组的频数成等差数列,设公差为d ,则a 1+a 2+…+a 9=0.4+a 5+a 6+…+a 9=0.4+5×0.27+15d =1⇒d =-0.05.由题意知a =a 4=0.27,b =100×(0.27+0.22+0.17+0.12)=78. 答案:A3.解析:根据信息可知,连续10天内,每天的新增疑似病例不能有超过7的数,A 项中,中位数为4,可能存在大于7的数;同理,在C 项中也有可能;B 项中的总体方差大于0,叙述不明确,如果数目太大,也有可能存在大于7的数;D 项中,根据方差公式,如果有大于7的数存在,那么方差不会为3,故选D 项.答案:D4.解析:底部周长小于110 cm 的频率:10×0.01+10×0.02+10×0.04=0.7. 周长小于110 cm 的株数为100×0.7=70.答案:C5.解析:设原数据平均数为x ,方差为s 2,则2x +5=10,4s 2=4,所以x =52,s 2=1. 答案:D二、填空题:本大题共3小题,每小题8分,共24分.6.解析:各组的频率之和为0.05+0.1+0.2+10a +0.35=1,a =0.030,所选三组的频数之比为3∶2∶1,所以身高在[140,150]内的学生中选取的人数应为18×16=3. 答案:0.030 37.解析:由题意a +62=6,则a =6. 数据的平均数为x =4+5+6+6+7+86=6 s 2=16[(4-6)2+(5-6)2+(6-6)2+(6-6)2+(7-6)2+(8-6)2]=106=53. 答案:538.解析:把茎叶图中甲、乙两组的数据按从小到大的顺序分别排列,甲组数据:28,31,39,42,45,55,57,58,66;乙组数据:29,34,35,42,46,48,53,55,67,由中位数的定义可知甲、乙的中位数分别为45、46. 答案:45 46三、解答题:本大题共2小题,共36分.9.(本小题满分18分,(1)小问5分,(2)小问6分,(3)小问7分)解:(1)平均数是 x =4 000×1+3 500×1+2 000×2+1 500×1+1 000×5+500×3+0×2033+ 1 500≈590+1 500=2 090(元)中位数是1 500元,众数是1 500元.(2)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平,即企业有欺骗的嫌疑.(3)平均数是 x =1 500+28 500+18 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+1 788=3 288(元)中位数是1 500元,众数是1 500元.10.(本小题满分18分,(1)小问5分,(2)小问6分,(3)小问7分)解:(1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400.(2)由统计图知,样本中身高在170~185 cm 之间的学生有14+13+4+3+1=35人,样本容量为70,所以样本中学生身高在170~185 cm 之间的频率f =3570=0.5, 故由f 估计该校学生身高在170~185 cm 之间的概率p 1=0.5.(3)样本中身高在180~185 cm 之间的男生有4人,设其编号为①②③④,样本中身高在185~190 cm 之间的男生有2人,设其编号为⑤,⑥,从上述6人中任取2人的树状图为:故从样本中身高在180~190 cm 之间的男生中任选2人的所有可能结果数为15,至少有1人身高在185~190 cm 之间的可能结果数为9,因此,所求概率p 2=915=35.。

高三数学一轮复习课时作业10:§11.2 用样本估计总体

§11.2用样本估计总体1.(2017·铁岭月考)在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本数据每个都减5后所得数据,则A,B两样本的下列数字特征对应相同的是() A.平均数B.标准差C.众数D.中位数2.(2016·山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是『17.5,30』,样本数据分组为『17.5,20),『20,22.5),『22.5,25),『25,27.5),『27.5,30』.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.1403.(2017·北京西城区质检)下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间『22,30)内的频率为()A.0.2 B.0.4 C.0.5 D.0.64.(2016·西安模拟)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其平均数和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的平均数和方差分别为()A.x ,s 2+1002B.x +100,s 2+1002C.x ,s 2D.x +100,s 25.(2016·山西大学附中诊断测试)已知样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ),若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =a x +(1-a )y ,其中0<a <12,则n ,m 的大小关系为( ) A .n <mB .n >mC .n =mD .不能确定6.(2016·北京朝阳区期末)在一段时间内有2 000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90 km /h ~120 km/h ,试估计2 000辆车中,在这段时间内以正常速度通过该处的汽车约有( )A .30辆B .300辆C .170辆D .1 700辆7.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本方差为________.8.(2015·湖北)某电子商务公司对10 000名网络购物者在2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间『0.3,0.9』内,其频率分布直方图如图所示.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间『0.5,0.9』内的购物者的人数为________.9.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为________.10.某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是『0,100』,样本数据分组为『0,20),『20,40),『40,60),『60,80),『80,100』.则(1)图中的x=________;(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计有________名学生可以申请住宿.11.某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在『50,60』的频率及全班人数;(2)求分数在『80,90』之间的频数,并计算频率分布直方图中『80,90』间的矩形的高.12.某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.答案精析1.B 2.D 3.B 4.D 5.A 6.D 7.2 8.(1)3 (2)6 000 9.1610.(1)0.012 5 (2)7211.解 (1)分数在『50,60』的频率为0.008×10=0.08.由茎叶图知,分数在『50,60』之间的频数为2,所以全班人数为20.08=25. (2)分数在『80,90』之间的频数为25-2-7-10-2=4,频率分布直方图中『80,90』间的矩形的高为425÷10=0.016. 12.解 (1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本的中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本的中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.。

2017年高考数学第一轮复习测试题含答案.doc

2017年高考数学第一轮复习测试题含答案现在高三学生已经着手开始2017年高考数学复习了,只有认真的进行数学复习才能在考试中轻松取得好成绩,为了帮助大家做好高考数学复习,下面为大家带来2017年高考数学第一轮复习测试题含答案这篇内容,希望高考生能够认真阅读。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。

)1.(2011合肥质检)集合A={1,2,3},B={xR|x2-ax+1=0,aA},则AB=B 时a的值是()A.2B.2或3C.1或3D.1或2[答案] D[解析]由AB=B知BA,a=1时,B={x|x2-x+1=0}=A;a=2时,B={x|x2-2x+1=0}={1}A;a=3时,B={x|x2-3x+1=0}={3+52,3-52}?A,故选D.2.(文)(2011合肥质检)在复平面内,复数i3-i(i是虚数单位)对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限[答案] B[解析]z=i3-i=i?3+i?3-?-1?=-14+34i的对应点-14,34在第二象限.(理)(2011蚌埠二中质检)如果复数2-bi1+2i(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于()A.2B.23C.-23D.2[答案] C[解析]∵2-bi1+2i=?2-bi??1-2i?5=2-2b5+-b-45i的实部与虚部互为相反数,2-2b5+-b-45=0,b=-23,故选C.3.(文)(2011日照调研)若e1,e2是夹角为3的单位向量,且a=2e1+e2,b=-3e1+2e2,则ab等于()A.1B.-4C.-72D.72[答案] C[解析]e1e2=11cos3=12,ab=(2e1+e2)(-3e1+2e2)=-6e21+2e22+e1e2=-6+2+12=-72,故选C. (理)(2011河南豫州九校联考)若A、B是平面内的两个定点,点P为该平面内动点,且满足向量AB与AP夹角为锐角,|PB||AB|+PAAB=0,则点P的轨迹是()A.直线(除去与直线AB的交点)B.圆(除去与直线AB的交点)C.椭圆(除去与直线AB的交点)D.抛物线(除去与直线AB的交点) [答案] D[解析]以AB所在直线为x轴,线段AB中点为原点,建立平面直角坐标系,设A(-1,0),则B(1,0),设P(x,y),则PB=(1-x,-y),PA=(-1-x,-y),AB=(2,0),∵|PB||AB|+PAAB=0,2?1-x?2+?-y?2+2(-1-x)=0,化简得y2=4x,故选D.4.(2011黑龙江哈六中期末)为了了解甲,乙,丙三所学校高三数学模拟考试的情况,现采取分层抽样的方法从甲校的1260份,乙校的720份,丙校的900份模拟试卷中抽取试卷进行调研,如果从丙校抽取了50份,那么这次调研一共抽查的试卷份数为()A.150B.160C.200D.230[答案] B[解析]依据分层抽样的定义,抽样比为50900=118,故这次调研一共抽查试卷(1260+720+900)118=160份.5.(文)(2011福州市期末)设函数y=f(x)的定义域为实数集R,对于给定的正数k,定义函数fk(x)=f?x??f?x?k?k ?f?x?k?,给出函数f(x)=-x2+2,若对于任意的x(-,+),恒有fk(x)=f(x),则()A.k的最大值为2B.k的最小值为2C.k的最大值为1D.k的最小值为1[答案] B[解析]∵x(-,+)时,f(x)=-x2+22,且fk(x)=f(x)恒成立,且当f(x)k 时,fk(x)=k,故k的最小值为2.(理)(2011丰台区期末)用max{a,b}表示a,b两个数中的最大数,设f(x)=max{x2,x}(x14),那么由函数y=f(x)的图象、x轴、直线x=14和直线x=2所围成的封闭图形的面积是()A.3512B.5924C.578D.9112[答案] A[解析]如图,平面区域的面积为6.(2011北京丰台区期末)下面程序框图运行后,如果输出的函数值在区间[-2,12]内,则输入的实数x的取值范围是()A.(-,-1]B.[14,2]C.(-,0)[14,2]D.(-,-1][14,2][答案] D[解析]∵x0时,f(x)=2x(0,1),由02x12得,x-1;由-2log2x12x0得,14x2,故选D.7.(文)(2011潍坊一中期末)下列有关命题的说法错误的是()A.命题若x2-3x+2=0,则x=1的逆否命题为:若x1,则x2-3x+20B.x=1是x2-3x+2=0的充分不必要条件C.若pq为假命题,则p、q均为假命题D.对于命题p:xR使得x2+x+10,则綈p:xR,均有x2+x+10 [答案] C[解析]若pq为假命题,则p、q至少有一个为假命题,故C错误. (理)(2011巢湖质检)给出下列命题①设a,b为非零实数,则a②命题p:垂直于同一条直线的两直线平行,命题q:垂直于同一条直线的两平面平行,则命题pq为真命题;③命题xR,sinx1的否定为x0R,sinx01;④命题若x2且y3,则x+y5的逆否命题为若x+y5,则x2且y3,其中真命题的个数是()A.4个B.3个C.2个D.1个[答案] D[解析]①取a=-1,b=2满足a8.(文)(2011陕西宝鸡质检)若将函数y=cosx-3sinx的图象向左平移m(m0)个单位后,所得图象关于y轴对称,则实数m的最小值为() A.6 B.3C.23D.56[答案] C[解析]y=cosx-3sinx=2cosx+3左移m个单位得y=2cosx+m+3为偶函数,m+3=k,kZ.∵m0,m的最小值为23.(理)(2011咸阳模拟)将函数y=sin2x+4的图像向左平移4个单位,再向上平移2个单位,则所得图像的函数解析式是()A.y=2+sin2x+34B.y=2+sin2x-4C.y=2+sin2xD.y=2+cos2x[答案] A[解析]y=sin2x+4――――――――图象再向上平移4个单位用x+4代替xy=sin2x+4+4―――――――图象再向上平移2个单位用y-2代替y y-2=sin2x+4+4,即得y=sin2x+34+2,故选A.9.(2011陕西咸阳模拟)如图所示的程序框图,其输出结果是()A.341B.1364C.1365D.1366[答案] C[解析]程序运行过程依次为:a=1,a=41+1=5,a500满足a=45+1=21,a500仍满足a=421+1=85,a500满足a=485+1=341,a500满足a=4341+1=1365,a500不满足输出a的值1365后结束,故选C.[点评]要注意循环结束的条件和输出结果是什么.10.(文)(2011山东淄博一中期末)如图为一个几何体的三视图,左视图和主视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的全面积为()A.2723B.123C.24D.24+23[答案] D[解析]由三视图知,该几何体是底面边长为332=2,高为4的正三棱柱,故其全面积为3(24)+23422=24+23.(理)(2011山东日照调研)下图是某四棱锥的三视图,则该几何体的表面积等于()A.34+65B.6+65+43C.6+63+413D.17+65[答案] A[解析]由三视图知,该四棱锥底面是一个矩形,两边长分别为6和2,有一个侧面PAD与底面垂直,高为4,故其表面积S=62+1264+212242+32+12642+22=34+65.11.(2011陕西宝鸡质检)双曲线x2m-y2n=1(mn0)的离心率为2,有一个焦点与抛物线y2=4x的焦点重合,则mn的值为()A.83B.38C.316D.163[答案] C[解析]抛物线焦点F(1,0)为双曲线一个焦点,m+n=1,又双曲线离心率为2,1+nm=4,解得m=14n=34,mn=316.12.(文)(2011广东高州市长坡中学期末)方程|x-2|=log2x的解的个数为()A.0B.1C.2D.3[答案] C[解析]在同一坐标系中作出函数y=|x-2|与y=log2x的图象可知两图象有两个交点,故选C.(理)(2011山东实验中学期末)具有性质:f1x=-f(x)的函数,我们称为满足倒负变换的函数,下列函数:①y=x-1x,②y=x+1x,③y=x,?0 A.①② B.②③C.①③D.只有①[答案] C[解析]①对于函数f(x)=x-1x,∵f1x=1x-x=-x-1x=-f(x),①是倒负变换的函数,排除B;②对于函数f(x)=x+1x有f1x=1x+x=f(x)不满足倒负变换,排除A;对于③,当0第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.(2011黑龙江哈六中期末)一个盒子里装有标号为1,2,3,4,5的5张标签,不放回地抽取2张标签,则2张标签上的数字为相邻整数的概率为________(用分数表示).[答案]25[解析](文)任取两张标签,所有可能取法有1,2;1,3;1,4;1,5;2,3;2,4;2,5;3,4;3,5;4,5;共10种,其中两数字相邻的有4种,所求概率p=410=25.(理)从5张标签中,任取2张,有C25=10种取法,两张标签上的数字为相邻整数的取法有4种,概率p=410=25.14.(2011浙江宁波八校联考)点(a,b)为第一象限内的点,且在圆(x+1)2+(y+1)2=8上,ab的最大值为________.[答案] 1[解析]由条件知a0,b0,(a+1)2+(b+1)2=8,a2+b2+2a+2b=6,2ab+4ab6,∵ab0,0[点评]作出图形可见,点(a,b)为⊙C在第一象限的一段弧,由对称性可知,当点(a,b)为直线y=x与⊙C的交点(1,1)时,ab取最大值1.15.(2011重庆南开中学期末)已知数列{an}的前n项和Sn满足Sn=2n-1,则当n2时,1a1+1a2++1an=________.[答案]2-12n-1[解析]a1=S1=1,n2时,an=Sn-Sn-1=2n-2n-1=2n-1,an=2n-1(nN*),1an=12n-1,1a1+1a2++1an=1-12n1-12=2-12n-1.16.(文)(2011北京学普教育中心)设函数f(x)的定义域为D,若存在非零实数l,使得对于任意xM(MD),有x+lD,且f(x+l)f(x),则称f(x)为M上的l高调函数.如果定义域为[-1,+)的函数f(x)=x2为[-1,+)上的m高调函数,那么实数m的取值范围是________.[答案][2,+)[解析]f(x)=x2(x-1)的图象如图所示,要使得f(-1+m)f(-1)=1,应有m2;故x-1时,恒有f(x+m)f(x),只须m2即可.(理)(2011四川资阳模拟)下图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图①;将线段AB围成一个圆,使两端点A、B恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),在图形变化过程中,图①中线段AM的长度对应于图③中的弧ADM的长度,如图③.图③中直线AM与x轴交于点N(n,0),则m的象就是n,记作f(m)=n.给出下列命题:①f14=1;②f(x)是奇函数;③f(x)在定义域上单调递增,则所有真命题的序号是________.(填出所有真命题的序号)[答案]③[解析]由m的象是n的定义知,f140,故①假,随着m的增大,点N沿x轴向右平移,故n增大,③为真命题;由于m是线段AM的长度,故f(x)为非奇非偶函数,②假.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)(文)(2011淄博一中期末)已知a=(cosx-sinx,2sinx),b=(cosx+sinx,3cosx),若ab=1013,且x-4,6,求sin2x的值.[解析]∵ab=cos2x-sin2x+23sinxcosx=cos2x+3sin2x=2sin2x+6=1013,sin2x+6=513,∵x-4,6,2x+6-3,2,cos2x+6=1213,sin2x=sin2x+6-6=sin2x+6cos6-cos2x+6sin6=51332-121312=53-1226. (理)(2011四川广元诊断)在△ABC中,a、b、c分别为角A、B、C 的对边,向量m=(2a-c,b),n=(cosC,cosB),且m∥n.(1)求角B的大小;(2)若b=3,求a+c的最大值.[MVC:PAGE][解析](1)由题意知(2a-c)cosB=bcosC,(2a-c)a2+c2-b22ac=ba2+b2-c22ab,a2+c2-b2=ac,cosB=a2+c2-b22ac=12,B=3.(2)由(1)知a2+c2-b2=ac,b=3,a2+c2-ac=3,(a+c)2-3ac=3,(a+c)2-3a+c223,14(a+c)23,a+c23,即a+c的最大值为23.18.(本小题满分12分)(文)(2011重庆南开中学期末)设函数f(x)=-x2+2ax+m,g(x)=ax.(1)若函数f(x),g(x)在[1,2]上都是减函数,求实数a的取值范围;(2)当a=1时,设函数h(x)=f(x)g(x),若h(x)在(0,+)内的最大值为-4,求实数m的值.[解析](1)∵f(x),g(x)在[1,2]上都是减函数,a1a0,0实数a的取值范围是(0,1].(2)当a=1时,h(x)=f(x)g(x)=-x2+2x+mx=-x+mx+2;当m0时,显然h(x)在(0,+)上单调递减,h(x)无最大值;当m0时,h(x)=-x+mx+2=-x+?-m?x+2-2-m+2.当且仅当x=-m时,等号成立.h(x)max=-2-m+2,-2-m+2=-4m=-9.(理)(2011黑龙江哈六中期末)已知函数f(x)=lnx+2x,g(x)=a(x2+x).(1)若a=12,求F(x)=f(x)-g(x)的单调区间;(2)当a1时,求证:f(x)g(x).[解析](1)a=12,F(x)=lnx+2x-12(x2+x)(x0)F(x)=1x-x+32=2-2x2+3x2x=-?2x+1??x-2?2x,∵x0,当0F(x)的增区间为(0,2),减区间为(2,+).(2)令h(x)=f(x)-g(x)(x0)则由h(x)=f(x)-g(x)=1x+2-2ax-a=-?2x+1??ax-1?x=0,解得x=1a,∵h(x)在0,1a上增,在1a,+上减,当x=1a时,h(x)有最大值h1a=ln1a+2a-a1a2+1a=ln1a+1a-1,∵a1,ln1a0,1a-10,h(x)h1a0,所以f(x)g(x).19.(本小题满分12分)(文)(2011厦门期末)已知数列{an}是公差不为零的等差数列,a1=1,且a1,a2,a4成等比数列.(1)求通项an;(2)令bn=an+2an,求数列{bn}的前n项和Sn.[解析](1)设数列{an}的公关差为d,则d0,∵a1,a2,a4成等比数列,a22=a1a4,(a1+d)2=a1(a1+3d),整理得:a1=d,又a1=1,d=1,an=a1+(n-1)d=1+(n-1)1=n.即数列{an}的通项公式为an=n.(2)由(1)可得bn=an+2an=n+2n,Sn=b1+b2+b3++bn=(1+21)+(2+22)+(3+23)++(n+2n)=(1+2+3++n)+(21+22+23++2n)=n?n+1?2+2?1-2n?1-2=n?n+1?2+2(2n-1)=2n+1+12n2+12n-2.故数列{bn}的前n项和为Sn=2n+1+12n2+12n-2.(理)(2011河北冀州期末)设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列{Sn}是公差为d的等差数列.(1)求数列{an}的通项公式(用n,d表示);(2)设c为实数,对满足m+n=3k且mn的任意正整数m,n,k,不等式Sm+SncSk都成立,求c的最大值.[解析](1)由题意知:d0,Sn=S1+(n-1)d=a1+(n-1)d2a2=a1+a33a2=S33(S2-S1)=S3,3[(a1+d)2-a1]2=(a1+2d)2,化简得:a1-2a1d+d2=0,a1=d,a1=d2Sn=d+(n-1)d=nd,Sn=n2d2,当n2时,an=Sn-Sn-1=n2d2-(n-1)2d2=(2n-1)d2,适合n=1的情形. 故an=(2n-1)d2.(2)Sm+SncSkm2d2+n2d2ck2d2m2+n2ck2,c又m+n=3k且mn,2(m2+n2)(m+n)2=9k2m2+n2k292,故c92,即c的最大值为92.20.(本小题满分12分)(2011山西太原调研)已知椭圆方程为x2a2+y2b2=1(ab0),它的一个顶点为M(0,1),离心率e=63.(1)求椭圆的方程;(2)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为32,求△AOB的面积的最大值.[解析](1)依题意得b=1e=ca=a2-b2a=63解得a=3,b=1,椭圆的方程为x23+y2=1.(2)①当ABx轴时,|AB|=3,②当AB与x轴不垂直时,设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2),由已知|m|1+k2=32得,m2=34(k2+1),把y=kx+m代入椭圆方程整理得,(3k2+1)x2+6kmx+3m2-3=0,x1+x2=-6km3k2+1,x1x2=3?m2-1?3k2+1.当k0时,|AB|2=(1+k2)(x2-x1)2=(1+k2)36k2m2?3k2+1?2-12?m2-1?3k2+1=12?1+k2??3k2+1-m2??3k2+1?2=3?k2+1??9k2+1??3k2+1?2=3+12k29k4+6k2+1=3+129k2+1k2+63+1223+6=4.当且仅当9k2=1k2,即k=33时等号成立,此时|AB|=2.当k=0时,|AB|=3.综上所述:|AB|max=2,此时△AOB面积取最大值S=12|AB|max32=32.21.(本小题满分12分)(文)一个多面体的三视图及直观图如图所示,M、N分别是A1B、B1C1的中点.(1)求证:MN∥平面ACC1A1;(2)求证:MN平面A1BC.[证明]由题意,这个几何体是直三棱柱,且ACBC,AC=BC=CC1.(1)由直三棱柱的性质知,四边形ABB1A1为矩形,对角线交点M又∵N为B1C1的中点,△AB1C1中,MN∥AC1.又∵AC1平面ACC1A1,MN平面ACC1A1.MN∥平面ACC1A1.(2)∵直三棱柱ABC-A1B1C1中,平面ACC1A1平面ABC,交线为AC,又ACBC,BC平面ACC1A1,又∵AC1平面ACC1A1,BCAC1.在正方形ACC1A1中,AC1A1C.又BCA1C=C,AC1平面A1BC,∵MN∥AC1,MN平面A1BC.[点评]将几何体的三视图与线面平行垂直的位置关系判断融合在一起是立体几何新的命题方向.解答这类问题首先要通过其三视图确定几何体的形状和主要几何量,然后利用几何体的性质进行推理或计算.请再练习下题:已知四棱锥P-ABCD的三视图如图,E是侧棱PC上的动点.(1)求四棱锥P-ABCD的体积;(2)若点F在线段BD上,且DF=3BF,则当PEEC等于多少时,有EF∥平面PAB?并证明你的结论;(3)试证明P、A、B、C、D五个点在同一球面上.[解析](1)由四棱锥的三视图可知,四棱锥P-ABCD的底面是边长侧棱PC底面ABCD,且PC=2.VP-ABCD=13S正方形ABCDPC=23.(2)当PEEC=13时,有EF∥平面PAB.连结CF延长交AB于G,连结PG,在正方形ABCD中,DF=3BF. 由△BFG∽△DFC得,GFFC=BFDF=13.在△PCG中,PEEC=13=GFFC,EF∥PG.又PG平面PAB,EF平面PAB,EF∥平面PAB.(3)证明:取PA的中点O.在四棱锥P-ABCD中,侧棱PC平面ABCD,底面ABCD为正方形,可知△PCA、△PBA、△PDA均是直角三角形,又O为PA中点,OA=OP=OB=OC=OD.点P、A、B、C、D在以点O为球心的球面上.(理)(2011湖南长沙一中期末)如图,在矩形ABCD中,AB=5,BC=3,沿对角线BD把△ABD折起,使A移到A1点,过点A1作A1O平面BCD,垂足O恰好落在CD上.(1)求证:BCA1D;(2)求直线A1B与平面BCD所成角的正弦值.[解析](1)因为A1O平面BCD,BC平面BCD,BCA1O,因为BCCD,A1OCD=O,BC平面A1CD.因为A1D平面A1CD,BCA1D.(2)连结BO,则A1BO是直线A1B与平面BCD所成的角.因为A1DBC,A1DA1B,A1BBC=B,A1D平面A1BC,∵A1C平面A1BC,A1DA1C.在Rt△DA1C中,A1D=3,CD=5,A1C=4.根据S△A1CD=12A1DA1C=12A1OCD,得到A1O=125,在Rt△A1OB中,sinA1BO=A1OA1B=1255=1225.所以直线A1B与平面BCD所成角的正弦值为1225.选做题(22至24题选做一题)22.(本小题满分12分)几何证明选讲(2011北京学普教育中心联考)如图,A、B是两圆的交点,AC是小圆的直径,D和E分别是CA和CB的延长线与大圆的交点,已知AC=4,BE=10,且BC=AD,求DE的长.[解析]设CB=AD=x,则由割线定理得:CACD=CBCE,即4(4+x)=x(x+10)化简得x2+6x-16=0,解得x=2或x=-8(舍去)即CD=6,CE=12.因为CA为直径,所以CBA=90,即ABE=90,则由圆的内接四边形对角互补,得D=90,则CD2+DE2=CE2,62+DE2=122,DE=63.23.(本小题满分12分)极坐标与参数方程(2011辽宁省实验中学期末)已知直线l经过点P12,1,倾斜角=6,圆C的极坐标方程为=2cos-4.(1)写出直线l的参数方程,并把圆C的方程化为直角坐标方程;(2)设l与圆C相交于两点A、B,求点P到A、B两点的距离之积. [解析](1)直线l的参数方程为x=12+tcos6y=1+tsin6即x=12+32ty=1+12t(t为参数)由=2cos-4得=cos+sin,所以2=cos+sin,∵2=x2+y2,cos=x,sin=y,x-122+y-122=12.(2)把x=12+32ty=1+12t代入x-122+y-122=12得t2+12t-14=0,|PA||PB|=|t1t2|=14.故点P到点A、B两点的距离之积为14.24.(本小题满分12分)不等式选讲(2011大连市联考)已知函数f(x)=|x-2|,g(x)=-|x+3|+m.(1)解关于x的不等式f(x)+a-10(aR);(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围. [解析](1)不等式f(x)+a-10,即|x-2|+a-10,当a=1时,解集为x2,即(-,2)(2,+);当a1时,解集为全体实数R;当a1时,∵|x-2|1-a,x-21-a或x-2故解集为(-,a+1)(3-a,+).(2)f(x)的图象恒在函数g(x)图象的上方,即为|x-2|-|x+3|+m对任意实数x恒成立,即|x-2|+|x+3|m恒成立.又对任意实数x恒有|x-2|+|x+3||(x-2)-(x+3)|=5,于是得m5,即m的取值范围是(-,5).为大家带来了2017年高考数学第一轮复习测试题含答案,高考数学复习对大家来说很重要,希望大家能够下功夫复习好数学这一科目,从而在高考中取得好的数学成绩。

高中数学同步导学(2017新课标)(统计与概率)二 用样本估计总体 含解析

1.用样本的频率分布估计总体分布(1)通常我们对总体作出的估计一般分成两种:一种是用样本的__________估计总体的__________;另一种是用样本的________估计总体的__________.(2)在频率分布直方图中,纵轴表示________,数据落在各小组内的频率用________________表示.各小长方形的面积总和等于________.(3)连接频率分布直方图中各小长方形上端的中点,就得到频率分布________.随着样本容量的增加,作图时所分的________增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称之为______________________,它能够更加精细地反映出____________________________________.(4)当样本数据较少时,用茎叶图表示数据的效果较好,它不但可以____________________,而且可以______________,给数据的记录和表示都带来方便.2.用样本的数字特征估计总体的数字特征(1)众数,中位数,平均数众数:在一组数据中,出现次数________的数据叫做这组数据的众数.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或者最中间两个数据的________)叫做这组数据的中位数.平均数:样本数据的算术平均数,即x =_______.在频率分布直方图中,中位数左边和右边的直方图的面积应该________.(2)样本方差,样本标准差 标准差s =])()()[(122221x x x x x x n n -+⋯+-+-,其中x n 是__________________,n 是________,x 是________.标准差是反映总体__________的特征数,________是样本标准差的平方.通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差. 【参考答案】1.(1)频率分布 分布 数字特征 数字特征 (2)错误! 各小长方形的面积 1 (3)折线图 组数 总体密度曲线 总体在各个范围内取值的百分比 (4)保留所有信息 随时记录 2.(1)最多 平均数 错误!(x 1+x 2+…+x n ) 相等(2)样本数据的第n 项 样本容量 平均数波动大小 样本方差 【基础自测】1 在频率分布直方图中,各个长方形的面积表示( ) A .落在相应各组的数据的频数 B .相应各组数据的频率 C .该样本所分成的组数D.该样本的样本容量2 有一个容量为66的样本,数据的分组及各组的频数如下:时,所作的频率分布直方图是()0 1 2 37 37 6 4 4 37 5 5 4 32 08 5 4 3 04某学校高一年级男生人数占该年级学生人数的40%。

山东高考数学一轮总复习教学案设计参考-用样本估计总体含答案解析

第2讲用样本估计总体[考纲解读] 1.了解频率分布直方图的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,并体会它们各自的特点.(重点)2.理解样本数据标准差的意义和作用,会计算数据标准差;能从样本数据中提取基本的数字特征,并作出合理的解释.3.会用样本的频率分布估计总体分布,用样本的基本数字特征估计总体的基本数字特征.(难点)4.会用随机抽样的基本方法和样本估计总体的思想解决实际问题.[考向预测]从近三年高考情况来看,本讲是高考中的一个热点.预测2021年将会考查用样本估计总体,主要体现在利用频率分布直方图或茎叶图估计总体,利用样本数字特征估计总体.题型以客观题呈现,试题难度不大,属中、低档题型.频率分布直方图与茎叶图也可能出现于解答题中,与概率等知识综合命题.1.作频率分布直方图的步骤2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的□01中点,就得到频率分布折线图.(2)总体密度曲线:随着□02样本容量的增加,作图时所分的组数增加,□03组距减小,相应的频率折线图就会越来越接近于一条光滑曲线,即总体密度曲线.3.茎叶图(1)茎叶图的概念:统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数.(2)茎叶图的优点:一是所有的信息都可以从这个茎叶图中得到;二是茎叶图便于记录和表示,能够展示数据的分布情况.4.样本的数字特征 (1)众数、中位数、平均数 数字特征样本数据频率分布直方图优点与缺点众数出现次数□01最多的数据取最高的小长方形底边□02中点的横坐标 通常用于描述变量的值出现次数最多的数,但显然它对其他数据信息的忽视使得无法客观地反映总体特征中位数将数据按大小依次排列,处在最□03中间位置的一个数据(或最中间两个数据的平均数)把频率分布直方图划分左右两个面积□04相等的分界线与x 轴交点的横坐标是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点平均数样本数据的算术平均数每个小矩形的面积乘以小矩形底边中点的横坐标之□05和 平均数和每一个数据有关,可以反映样本数据全体的信息,但平均数受数据中极端值的影响较大,使平均数在估计总体时可靠性降低方差:s 2=1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],标准差: s =1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2]. (3)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越波动;标准差、方差越小,数据的离散程度越小,越稳定.1.概念辨析(1)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.()(2)从频率分布直方图中得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.()(3)在频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间内的频率越高.()(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.()答案(1)×(2)√(3)√(4)×2.小题热身(1)(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数答案 B解析因为可以用极差、方差或标准差来描述数据的离散程度,所以要评估亩产量稳定程度,应该用样本数据的极差、方差或标准差.故选B.(2)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是()A.91.5和91.5 B.91.5和92C.91和91.5 D.92和92答案 A解析由茎叶图可知,这组数据的中位数是12×(91+92)=91.5,平均数是18×(87+89+90+91+92+93+94+96)=91.5.(3)港珠澳大桥于2018年10月2日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100 km/h ,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90 km/h 的频率分别为( )A.300 0.25 B .300 0.35 C.60 0.25 D .60 0.35答案 B解析 由频率分布直方图,得在此路段上汽车行驶速度在区间[85,90)的频率为0.06×5=0.3,∴在此路段上汽车行驶速度在区间[85,90)的车辆数为0.3×1000=300,行驶速度超过90 km/h 的频率为(0.05+0.02)×5=0.35.故选B.(4)(2019·江苏高考)已知一组数据6,7,8,8,9,10,则该组数据的方差是________. 答案 53解析 这组数据的平均数为8,故方差为s 2=16×[(6-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2+(10-8)2]=53.题型一 样本数字特征的计算及应用1.(2019·全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A.中位数 B .平均数 C .方差D .极差答案 A解析 中位数是将9个数据从小到大或从大到小排列后,处于中间位置的数据,因而去掉1个最高分和1个最低分,不变的是中位数,平均数、方差、极差均受影响.故选A.2.(2019·长沙二模)高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为x 1,x 2,x 3,…,x 100,它们的平均数为x -,方差为s 2;其中扫码支付使用的人数分别为3x 1+2,3x 2+2,3x 3+2,…,3x 100+2,它们的平均数为x -′,方差为s ′2,则x -′,s ′2分别为( )A.3x -+2,3s 2+2 B .3x -,3s 2 C.3x -+2,9s 2 D .3x -+2,9s 2+2答案 C解析 根据题意,数据x 1,x 2,…x 100的平均数为x -,方差为s 2;则x -=1100(x 1+x 2+x 3+…+x 100),s 2=1100[(x 1-x -)2+(x 2-x -)2+…+(x 100-x -)2],若3x 1+2,3x 2+2,3x 3+2,…,3x 100+2的平均数为x -′,则x -′=1100[(3x 1+2)+(3x 2+2)+…+(3x 100+2)]=3x -+2,方差s ′2=1100[(3x 1+2-3x --2)2+(3x 2+2-3x --2)2+…+(3x 100+2-3x --2)2]=9s 2.3.一组数据1,10,5,2,x,2,且2<x <5,若该数据的众数是中位数的23倍,则该数据的方差为________.答案 9解析 根据题意知,该组数据的众数是2, 则中位数是2÷23=3,把这组数据从小到大排列为1,2,2,x,5,10, 则2+x2=3,解得x =4,所以这组数据的平均数为x -=16×(1+2+2+4+5+10)=4, 方差为s 2=16×[(1-4)2+(2-4)2×2+(4-4)2+(5-4)2+(10-4)2]=9.众数、中位数、平均数、方差的意义及常用结论(1)平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(2)方差的简化计算公式:s 2=1n [(x 21+x 22+…+x 2n)-n x -2]或写成s 2=1n (x 21+x 22+…+x 2n )-x -2,即方差等于原数据平方的平均数减去平均数的平方.(3)平均数、方差的公式推广①若数据x 1,x 2,…,x n 的平均数为x -,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x -+a .见举例说明2.②数据x 1,x 2,…,x n 的方差为s 2.a.数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2;b.数据ax 1,ax 2,…,ax n 的方差为a 2s 2.见举例说明2.1.(2019·六安模拟)某样本中共有5个个体,其中4个值分别为0,1,2,3,第5个值丢失,但该样本的平均值为1,则样本方差为( )A.2B.65 C. 2 D.305答案 A解析 设第5个值为x ,则由题意,得15×(0+1+2+3+x )=1,解得x =-1,所以样本方差s 2=15×[(0-1)2+(1-1)2+(2-1)2+(3-1)2+(-1-1)2]=2.2.(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案 0.98解析 x -=10×0.97+20×0.98+10×0.9910+20+10=0.98.则经停该站高铁列车所有车次的平均正点率的估计值为0.98.题型二 扇形图、折线图1.(2020·株洲市高三摸底)某市2019年12个月的PM2.5的平均浓度指数如图所示.由图判断,四个季度中PM2.5的平均浓度指数方差最小的是( )A.第一季度 B .第二季度 C.第三季度 D .第四季度答案 B解析 根据图中数据,知第一季度的数据是72.15,43.96,93.13;第二季度的数据是66.5,55.25,58.67;第三季度的数据是59.16,38.67,51.6;第四季度的数据是82.09,104.6,168.05;观察得出第二季度的数据波动性最小,所以第二季度的PM2.5的平均浓度指数方差最小.故选B.2.(2018·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案 A解析设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A不正确;新农村建设前其他收入为0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,增加了一倍,所以C正确;新农村建设后,养殖收入与第三产业收入的总和占经济收入的30%+28%=58%>50%,所以超过了经济收入的一半,所以D正确.故选A.(1)通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系.(2)折线图可以显示随时间(根据常用比例放置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势.(2019·东北三省四市教研联合体模拟)“科技引领,布局未来”,科技研发是企业发展的驱动力量.2007年至2018年,某企业连续12年累计研发投入达4100亿元.我们将研发投入与经营收入的比值记为研发投入占营收比.这12年间的研发投入(单位:十亿元)用如图中的条形图表示,研发投入占营收比用如图中的折线图表示.根据折线图和条形图,下列结论错误的是()A.2012年至2013年研发投入占营收比增量相比2017年至2018年增量大B.2013年至2014年研发投入数量相比2015年至2016年增量小C.该企业连续12年研发投入逐年增加D.该企业连续12年研发投入占营收比逐年增加答案 D解析由题图可知,该企业在2008年至2009年、2013年至2014年和2016年至2017年研发投入占营收比是下降的,所以D错误.故选D.题型三茎叶图及其应用1.(2019·郑州三模)某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12.若要使该总体的标准差最小,则4x+2y的值是()0223 41x y 9920 1C.16 D.18答案 A解析因为总体的中位数为12,所以10+x+10+y2=12,即x+y=4,所以总体的平均数为110×(2+2+3+4+10+x+10+y+19+19+20+21)=11.4.要使总体的标准差最小,只要(10+x-11.4)2+(10+y-11.4)2最小.因为(10+x-11.4)2+(10+y-11.4)2≥2×10+x-11.4+10+y-11.422=0.72,当且仅当x=y=2时等号成立,所以4x+2y=12.故选A.2.某良种培育基地正在培育一小麦新品种A,将其与原有的一个优良品种B 进行对照试验,两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430 ,434,443,445,445,451,454.品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407 ,410,412,415,416,422,430.(1)作出数据的茎叶图;(2)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.解(1)画出茎叶图如图所示:(2)通过观察茎叶图可以看出:①品种A的亩产平均数(或均值)比品种B高;②品种A的亩产标准差(或方差)比品种B大,故品种A的亩产稳定性较差.1.茎叶图的画法步骤第一步:将每个数据分为茎(高位)和叶(低位)两部分;第二步:将最小茎与最大茎之间的数按大小次序排成一列,写在左(右)侧;有两组数据时,写在中间;第三步:将各个数据的叶依次写在其茎的右(左)侧.茎叶图的绘制需注意:①“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;②重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据.2.茎叶图的应用茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.1.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为( )A.2 B .4 C .6 D .8答案 A解析 根据茎叶图中的数据知,甲、乙二人的平均成绩相同,即15×(87+89+90+91+93)=15×(88+89+90+91+90+x ),解得x =2,所以平均数为x -=90;根据茎叶图中的数据知甲的成绩波动性小,较为稳定(方差较小),所以甲成绩的方差为s 2=15×[(88-90)2+(89-90)2+(90-90)2+(91-90)2+(92-90)2]=2.故选A.2.如图茎叶图记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分).已知甲组数据的众数为124,乙组数据的平均数为甲组数据的中位数,则x ,y 的值分别为( )答案 A解析 由已知,甲组数据的众数是124,则x =4,即甲组数据的中位数为124.所以16×(116+116+125+120+y +128+134)=124,解得y =5.故选A.题型四频率分布直方图角度1求频率或频数1.党的十九大报告指出:“脱贫攻坚战取得决定性进展,六千多万贫困人口稳定脱贫,贫困发生率从百分之十点二下降到百分之四以下.”2019年各地根据实际进行创新,精准、高效地完成了脱贫任务.某地区对当地3000户家庭的2019年所得年收入情况调查统计,年收入的频率分布直方图如图所示,数据(单位:千元)的分组依次为[20,40),[40,60),[60,80),[80,100],则年收入不超过6万的家庭大约为()A.900户B.600户C.300户D.150户答案 A解析由频率分布直方图得:年收入不超过6万的家庭所占频率为:(0.005+0.010)×20=0.3,∴年收入不超过6万的家庭大约为0.3×3000=900.角度2求数字特征2.某市在对两千多名出租车司机的年龄进行的调查中,从两千多名出租车司机中随机抽选100名司机,已知这100名司机的年龄都在20岁至50岁之间,且根据调查结果得出的年龄情况频率分布直方图如图所示(部分图表污损).利用这个残缺的频率分布直方图,可估计该市出租车司机年龄的中位数大约是()A.31.4岁B.32.4岁C.33.4岁D.36.4岁答案 A解析由频率分布直方图可知[20,25)的频率为0.1,[25,30)的频率为0.3,[30,35)的频率为0.35,因为0.1+0.3<0.5<0.1+0.3+0.35,所以中位数x0∈[30,35),由0.1+0.3+(x0-30)×0.07=0.5,得x0≈31.4.故选A.3.(2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35,b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.1.频率分布直方图的性质(1)小长方形的面积=组距×频率组距=频率.见举例说明1.(2)各小长方形的面积之和等于1.2.频率分布直方图中的众数、中位数与平均数(1)最高的小长方形底边中点的横坐标即是众数;(2)平分频率分布直方图的面积且垂直于横轴的直线与横轴交点的横坐标是中位数;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.见举例说明3.1.(2019·湘潭三模)统计某校n名学生的某次数学同步练习成绩(满分150分),根据成绩分数分成如下6组:[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],并绘制频率分布直方图如图所示,若已知不低于140分的人数为110,则n的值是()A.800 B.900C.1200 D.1000答案 D解析由频率分布直方图的性质,得10×(0.031+0.020+0.016×2+m+0.006)=1,解得m=0.011,∵不低于140分的频率为0.011×10=0.11,∴n=1100.11=1000.2.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数62638228(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解(1)频率分布直方图如图.(2)质量指标值的样本平均数为x-=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.组基础关1.一个频数分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[20,60)上的频率为0.8,则估计样本在[40,60)内的数据个数为()A.14 B.15C.16 D.17答案 B解析由频数分布表可知,样本中数据在[20,40)上的频率为4+530=0.3,又因为样本数据在[20,60)上的频率为0.8,所以样本在[40,60)内的频率为0.8-0.3=0.5,数据个数为30×0.5=15.2.甲、乙、丙、丁四人参加国际奥林匹克数学竞赛选拔赛,四人的平均成绩和方差如表:甲乙丙丁平均成绩x-86898985 方差s2 2.1 3.5 2.1 5.6A.甲B.乙C.丙D.丁答案 C解析丙平均成绩高,方差s2小(稳定),故最佳人选是丙.3.(2019·全国卷Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6C.0.7 D.0.8答案 C解析解法一:设调查的100位学生中阅读过《西游记》的学生人数为x,则x+80-60=90,解得x=70,所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为70100=0.7.故选C.解法二:用Venn图表示调查的100位学生中阅读过《西游记》和《红楼梦》的人数之间的关系如图:易知调查的100位学生中阅读过《西游记》的学生人数为70,所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为70100=0.7.故选C.4.(2019·钦州模拟)某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在()A.第三组B.第四组C.第五组D.第六组答案 B解析由图可得,前四组的频率为(0.0375+0.0625+0.075+0.1)×2=0.55,则其频数为40×0.55=22,且第四组的频数为40×0.1×2=8,故中位数落在第四组,所以B正确.5.如图所示,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x -A 和x -B ,样本标准差分别为s A 和s B ,则( )A.x -A >x -B ,s A >s BB.x -A <x -B ,s A >s BC.x -A >x -B ,s A <s BD.x -A <x -B ,s A <s B答案 B解析 由图可知A 组的6个数为2.5,10,5,7.5,2.5,10,B 组的6个数为15,10,12.5,10,12.5,10,所以x -A =2.5+10+5+7.5+2.5+106=6.25,x -B =15+10+12.5+10+12.5+106≈11.67.显然x -A <x -B .又由图形可知,B 组的数据分布比A 均匀,变化幅度不大,故B 组数据比较稳定,方差较小,从而标准差较小,所以s A >s B ,故选B.6.(2019·合肥一模)某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图和90后从事互联网行业岗位分布条形图,则下列结论中不一定正确的是( )注:90后指1990年及以后出生,80后指1980~1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.90后从事运营岗位的人数比80前从事互联网行业的人数多D.互联网行业中90后从事技术岗位的人数比80后从事技术岗位的人数多解析 对于A ,由饼状图可知互联网行业从业人员中90后占了56%,故A 正确.对于B ,由条形图可知互联网行业中从事技术岗位的人数占总人数的比例为39.6%,故B 正确.对于C ,由两图数据可计算出整个互联网行业从事运营岗位的90后占56%×17%=9.52%,大于互联网行业中的80前总人数,故C 正确.对于D ,因为80后从事技术岗位的人数所占比例不清楚,所以互联网行业中从事技术岗位的90后人数不一定比80后的人数多,故D 错误.故选D.7.(2020·重庆名校联盟调研)在样本频率分布直方图中共有9个小矩形,若其中1个小矩形的面积等于其他8个小矩形面积和的25,且样本容量为210,则该组的频数为( )A.28 B .40 C .56 D .60答案 D解析 设该小矩形的面积为x,9个小矩形的总面积为1,则其他8个小矩形的面积和为52x ,所以x +52x =1,所以x =27,所以该组的频数为27×210=60.8.(2020·贵阳模拟)某地的中小学办学条件在政府的教育督导下,迅速得到改善.教育督导一年后,分别随机抽查了初中(用A 表示)与小学(用B 表示)各10所学校,得到相关指标的综合评价得分(百分制)的茎叶图如图所示,则从茎叶图可得出正确的信息为(80分及以上为优秀)( )①初中得分与小学得分的优秀率相同 ②初中得分与小学得分的中位数相同 ③初中得分的方差比小学得分的方差大 ④初中得分与小学得分的平均值相同A.①② B .①③ C .②④D .③④解析从茎叶图可知抽查的初中得分的优秀率为310×100%=30%,小学得分的优秀率为310×100%=30%,故①正确;初中得分的中位数为75.5,小学得分的中位数为72.5,故②不正确;从茎叶图可知初中得分比小学得分分散,所以初中得分的方差比小学得分的方差大,故③正确;初中得分的平均值为75.7,小学得分的平均值为75,故④不正确.所以正确的信息为①③,故选B.9.已知一组数据x1,x2,…,x n的方差为2,若数据ax1+b,ax2+b,…,ax n +b(a>0)的方差为8,则a的值为________.答案 2解析根据方差的性质,知a2×2=8,解得a=2.10.某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.若从每周使用时间在[15,20),[20,25),[25,30]三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在[20,25)内的学生中应选取的人数为________.答案 3解析由频率分布直方图,知5×(0.01+0.02+a+0.04+0.04+0.06)=1,解得a=0.03,即使用时间在[15,20),[20,25),[25,30]三组内的学生人数之比为4∶3∶1,则从每周使用时间在[15,20),[20,25),[25,30]三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在[20,25)内的学生中应选取的人数为38×8=3.组能力关1.某校高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在[90,100]内的人数分别为( )A.20,2 B .24,4 C .25,2 D .25,4答案 C解析 由频率分布直方图可知,组距为10,所以[50,60)的频率为0.008×10=0.08,由茎叶图可知[50,60)的人数为2,设参加本次考试的总人数为N ,则N =20.08=25,根据频率分布直方图可知[90,100]内的人数与[50,60)的人数一样,都是2.故选C.2.(2019·葫芦岛一模)一个样本容量为10的样本数据,它们组成一个公差为2的等差数列{a n },若a 1,a 3,a 7成等比数列,则此样本的平均数和中位数分别是( )A.12,13 B .13,13 C .13,12 D .12,14答案 B解析 依题意a 23=a 1a 7,∴(a 1+4)2=a 1(a 1+6×2),解得a 1=4,所以此样本的平均数为S 1010=13,中位数为a 5+a 62=13.3.(2019·马鞍山模拟)某养猪场定购了一批仔猪,从中随机抽查了100头仔猪的体重(单位:斤),经数据处理得到如图1的频率分布直方图,其中体重最轻的14头仔猪的体重的茎叶图如图2,为了将这批仔猪分栏喂养,需计算频率分布直方图中的一些数据,其中a +b 的值为( )A.0.144B .0.152C .0.76D .0.076答案 B解析 由题意得2(c +d )×5=2×12100=0.24,∴a +b =1-0.245=0.152. 4.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示,已知两组技工在单位时间内加工的合格零件的平均数都为10.(1)求出m ,n 的值;(2)求出甲、乙两组技工在单位时间内加工的合格零件的方差s 2甲和s 2乙,并由此分析两组技工的加工水平.解 (1)根据题意可知:x -甲=15×(7+8+10+12+10+m )=10,x -乙=15×(9+n +10+11+12)=10,所以m =3,n =8.(2)s 2甲=15×[(7-10)2+(8-10)2+(10-10)2+(12-10)2+(13-10)2]=5.2, s 2乙=15×[(8-10)2+(9-10)2+(10-10)2+(11-10)2+(12-10)2]=2,因为x -甲=x -乙,s 2甲>s 2乙,所以甲、乙两组的整体水平相当,乙组更稳定一些.组 素养关(2019·全国卷Ⅱ)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组 企业数 [-0.20,0) 2 [0,0.20) 24 [0.20,0.40) 53 [0.40,0.60) 14 [0.60,0.80)7(1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.把样本容量为20的数据分组,分组区间与频数如下:[10,20),2;[20,30),3;[30,40),4;[40,50),5;[50,60),4;[60,70],2,则在区间[10,50)上的数据的频率是( )A .0.05B .0.25C .0.5D .0.7[导学号35950817] 解析:选D.由题知,在区间[10,50)上的数据的频数是2+3+4+5=14,故其频率为1420=0.7.2.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x 的值等于( )A .0.12B .0.012C .0.18D .0.018[导学号35950818] 解析:选D.依题意,0.054×10+10x +0.01×10+0.006×10×3=1,解得x =0.018,故选D.3.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差[导学号35950819] 解析:选C.甲的平均数是4+5+6+7+85=6,中位数是6,极差是4,方差是 -2 2+ -1 2+12+225=2;乙的平均数5+5+5+6+95=6,中位数是5,极差是4,方差是3× -1 2+325=125>2,故选C.4.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .18[导学号35950820] 解析:选C.志愿者的总人数为200.16+0.24 ×1=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.5.如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45]的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为( )A .0.04B .0.06C .0.2D .0.3[导学号35950821] 解析:选C.由频率分布直方图的知识得,年龄在[20,25)的频率为0.01×5=0.05,[25,30)的频率为0.07×5=0.35,设年龄在[30,35), [35,40),[40,45]的频率为x ,y ,z ,又x ,y ,z 成等差数列,所以可得⎩⎪⎨⎪⎧x +y +z =1-0.05-0.35,x +z =2y ,解得y =0.2,所以年龄在 [35,40)的网民出现的频率为0.2.6.一个样本a,3,5,7的平均数是b ,且a 、b 是方程x 2-5x +4=0的两根,则这个样本的方差是( )A .3B .4C .5D .6[导学号35950822] 解析:选C.由x 2-5x +4=0的两根分别为1,4,所以有⎩⎪⎨⎪⎧a =1,b =4或⎩⎪⎨⎪⎧a =4,b =1. 又a,3,5, 7的平均数是b . 即a +3+5+74=b ,a +154=b ,a +15=4b , 所以⎩⎪⎨⎪⎧a =1,b =4符合题意,则方差s 2=5.二、填空题7.如图是根据某赛季甲、乙两名篮球运动员参加11场比赛的得分情况画出的茎叶图,若甲运动员的中位数为a ,乙运动员的众数为b ,则a -b =________.[导学号35950823] 解析:由茎叶图可知甲运动员的中位数为a =19,乙运动员的众数为b =11,所以a -b =8.答案:88.某商场在庆元宵促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.[导学号35950824] 解析:依题意,注意到9时至10时与11时至12时相应的频率之比为0.10∶0.40=1∶4,因此11时至12时的销售额为2.5×4=10(万元).答案:109.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则x +y 的值为________.[导学号35950825] 解析:依题意,甲班学生的平均分 85=78+79+85+80+92+96+80+x 7,故x =5.乙班学生成绩的中位数是83, 故其成绩为76,81,81,83,91,91,96, ∴y =3,∴x +y =8. 答案:810.已知x 是1,2,3,x,5,6,7这七个数据的中位数且1,2,x 2,-y 这四个数据的平均数为1,则y -1x的最小值为________.[导学号35950826] 解析:1+2+x 2-y =4,所以y =x 2-1.由中位数定义知,3≤x ≤5,所以y -1x =x 2-1-1x .当x ∈[3,5]时,函数y =x 2-1与y =-1x 均为增函数,所以y =x 2-1-1x 为增函数,所以⎝⎛⎭⎫y -1x min =8-13=233. 答案:233三、解答题11.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件的统计数据的茎叶图如图所示,已知两组技工在单位时间内加工的合格零件的平均数都为10.(1)求出m ,n 的值;(2)求出甲、乙两组技工在单位时间内加工的合格零件的方差s 2甲和s 2乙,并由此分析两组技工的加工水平.[导学号35950827] 解:(1)根据题意可知:x -甲=15(7+8+10+12+10+m )=10,x -乙=15(9+n +10+11+12)=10,所以m =3,n =8. (2)s 2甲=15[(7-10)2+(8-10)2+(10-10)2+(12-10)2+(13-10)2]=5.2, s 2乙=15[(8-10)2+(9-10)2+(10-10)2+(11-10)2+(12-10)2]=2,因为x -甲=x -乙,s 2甲>s 2乙,所以甲、乙两组的整体水平相当,乙组技工的加工水平更稳定一些.12.“双节”期间,高速公路车辆较多,某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(1)求这40辆小型汽车车速的众数和中位数的估计值;(2)若从车速在[60,70)内的车辆中任抽取2辆,求车速在[65,70)内的车辆恰有一辆的概率.[导学号35950828] 解:(1)众数的估计值为最高的矩形的中点,即众数的估计值等于77.5.中位数的估计值x 满足0.01×5+0.02×5+0.04×5+0.06×(x -75)=0.5,解得x =77.5,即中位数的估计值为77.5. (2)从题图中可知,车速在[60,65)内的车辆数为m 1=0.01×5×40=2, 车速在[65,70)内的车辆数为m 2=0.02×5×40=4.设车速在[60,65)内的车辆为a ,b ,车速在[65,70)内的车辆为c ,d ,e ,f ,则所有基本事件有:(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ), (b ,c ),(b ,d ),(b ,e ),(b ,f ), (c ,d ),(c ,e ),(c ,f ), (d ,e ),(d ,f ), (e ,f ), 共15个,其中车速在[65,70)内的车辆恰有一辆的事件有:(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),共8个.所以车速在[65,70)内的车辆恰有一辆的概率为P =815.13.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图,如图所示.(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取2名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.[导学号35950829] 解:(1)由茎叶图可知:甲班同学身高集中在162~179 cm ,而乙班同学身高集中在170~179 cm ,因此乙班的平均身高高于甲班.(2)x -甲=158+162+163+168+168+170+171+179+179+18210=170(cm),甲班的样本方差s 2甲=110×[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2(cm 2).(3)记“身高为176 cm 的同学被抽中”为事件A .从乙班10名同学中抽出2名身高不低于173 cm 的同学有:(173,176),(173,178),(173,179),(173,181),(176,178),(176,179),(176,181),(178,179),(178,181),(179,181),共10个基本事件,而事件A 含有4个基本事件,故P (A )=410=25. 14.根据某电子商务平台的调查统计显示,参与调查的1 000位上网购物者的年龄情况如图所示.(1)已知[30,40)、[40,50)、[50,60)三个年龄段的上网购物者人数成等差数列,求m ,n 的值;(2)该电子商务平台将年龄在[30,50)之间的人群定义为高消费人群,其他年龄段的人群定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1 000位上网购物者中抽取5人,并在这5人中随机抽取3个进行回访,求此3人获得代金券总和为200元的概率.[导学号35950830] 解:(1)由题意可知⎩⎪⎨⎪⎧2n =m +0.015, 0.01+0.015×2+n +m ×10=1, 解得m =0.035,n =0.025.(2)利用分层抽样从样本中抽取5人,其中属于高消费人群的有3人,属于潜在消费人群的有2人.令高消费的人为A ,B ,C ,潜在消费的人为a ,b ,从中取出3人,有:ABC ,ABa ,ABb ,ACa ,ACb ,BCa ,BCb ,Aab ,Bab ,Cab ,共10种情况,其中ABa ,ABb ,ACa ,ACb ,BCa ,BCb 为获得代金券总和为200元的情况, 因此,3人获得代金券总和为200元的概率为35.。

相关文档
最新文档