数列极限练习题

合集下载

证明数列极限的题目及答案

证明数列极限的题目及答案

证明数列极限的题目及答案题目:证明数列$a_n =\frac{n}{n + 1}$的极限为 1证明:首先,我们需要明确数列极限的定义。

对于数列$\{a_n\}$,如果对于任意给定的正数$\epsilon$,总存在正整数$N$,使得当$n > N$ 时,都有$|a_n L| <\epsilon$ 成立,那么就称数列$\{a_n\}$的极限为$L$。

接下来,我们来证明数列$a_n =\frac{n}{n + 1}$的极限为 1。

对于任意给定的正数$\epsilon$,要使$|a_n 1| <\epsilon$,即\\begin{align}\left|\frac{n}{n + 1} 1\right|&<\epsilon\\\left|\frac{n}{n + 1} \frac{n + 1}{n + 1}\right|&<\epsilon\\\left|\frac{-1}{n + 1}\right|&<\epsilon\\\frac{1}{n + 1}&<\epsilon\\n + 1 &>\frac{1}{\epsilon}\\n &>\frac{1}{\epsilon} 1\end{align}\所以,取$N =\left\frac{1}{\epsilon} 1\right$(这里$\cdot$ 表示取整),当$n > N$ 时,就有$|a_n 1| <\epsilon$。

因此,根据数列极限的定义,数列$a_n =\frac{n}{n + 1}$的极限为 1。

题目:证明数列$b_n =\frac{1}{n}$收敛于 0证明:给定任意正数$\epsilon$,要使$|b_n 0| <\epsilon$,即\\begin{align}\left|\frac{1}{n} 0\right|&<\epsilon\\\frac{1}{n}&<\epsilon\\n &>\frac{1}{\epsilon}\end{align}\所以,取$N =\left\frac{1}{\epsilon}\right$,当$n >N$ 时,就有$|b_n 0| <\epsilon$。

数列的极限函数的极限与洛必达法则的练习题及解析

数列的极限函数的极限与洛必达法则的练习题及解析

数列的极限函数的极限与洛必达法则的练习题及解析一、单项选择题(每小题4分,共24分)3. 若()0lim x x f x →=∞,()0lim x x g x →=∞,则下列正确的是 ( ) A . ()()0lim x x f x g x →+=∞⎡⎤⎣⎦ B . ()()0lim x x f x g x →-=∞⎡⎤⎣⎦ C . ()()01lim 0x x f x g x →=+ D . ()()0lim 0x x kf x k →=∞≠ 解:()()000lim lim x x x x k kf x k f x k →→≠==⋅∞∞ ∴选D6.当n →∞时,1k n 与1k n 为等价无穷小,则k=( ) A .12B .1C .2D .-2 解:2211sin lim lim 1,211n n k kn n k n n →∞→∞=== 选C 二 、填空题(每小题4分,共24分)8.2112lim 11x x x →⎛⎫-= ⎪--⎝⎭ 解:原式()()()112lim 11x x x x →∞-∞+--+ 10.n =解:原式n ≡有理化 11.1201arcsin lim sin x x x e x x -→⎛⎫+= ⎪⎝⎭解:11220011sin 1,lim 0lim sin 0x x x x e e x x -→→≤=∴=又00arcsin lim lim 1x x x x xx →→== 故 原式=112.若()220ln 1lim 0sin n x x x x →+= 且0sin lim 01cos n x x x→=-,则正整数n = 解:()222200ln 1lim lim sin n n x x x x x x x x→→+⋅= 20420,lim 02n x n x n x→<>2,4,n n ∴>< 故3n =三、计算题(每小题8分,共64分)14.求0x → 解:原式有理化16.求0ln cos 2lim ln cos3x x x→ 解:原式[][]0ln 1cos 21lim ln 1cos31x x x →--+-变形注:原式02sin 2cos3lim cos 23sin 3x x x x x→∞⎛⎫ ⎪∞⎝⎭-⨯- 17.求02lim sin x x x e e x x x-→--- 解: 原式0020lim 1cos x x x e e x-→+-- 19.求lim 111lim 11n n n n n e e n →∞--+→∞⎛⎫-== ⎪+⎝⎭解: (1) 拆项,111...1223(1)n n +++⋅⋅+ 1111111...122311n n n ⎛⎫⎛⎫⎛⎫=-+-+-=- ⎪ ⎪ ⎪⎝⎭++⎝⎭⎝⎭(2) 原式=lim 111lim 11n n n n n e e n →∞--+→∞⎛⎫-== ⎪+⎝⎭20.求21lim ln 1x x x x →∞⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦解: 原式()201ln 11lim t t t x t t →=+⎡⎤-⎢⎥⎣⎦四、证明题(共18分)21.当x →∞时且()()lim 0,lim x x u x v x →∞→∞==∞, 证明()()()()lim lim 1x u x v x v x x u x e →∞→∞+=⎡⎤⎣⎦ 证:()()lim 1v x x u x →∞+⎡⎤⎣⎦ ()()lim x u x v x e →∞⋅=证毕22.当0x →时,证明以下四个差函数的等价无穷小。

数列极限看图练习题

数列极限看图练习题

数列极限看图练习题第1-7节数列极限的例题和习题下面的例题和习题都是数列极限理论中的著名习题,初学者能够完全读懂其中例题的*是不容易的,能够*完成后面那些习题就更不容易.因此,你可以先粗读一下(因为不管你读懂多少,都暂时不会影响到你学习微积分),有兴趣的读者等有空时或假期中再去细读它.读一读它,你会在做题方法上受到严格的训练.称一个数列xn(n=1,2,)为无穷小量,即limxn=0,用“ε-n”说法,就是它满足条n→∞件:n→∞称一个数列xn(n=1,2,)为无穷大量,即limxn=∞,用“m-n”说法,就是它满足条件:特别,limxn=+∞,就是它满足条件:n而limxn=-∞,就是它满足条件:n→∞无穷大量与无穷小量是两个对偶的概念,即当xn≠0(n=1,2,)时,若xn是无穷大量,则11是无穷小量;若xn是无穷小量,则是无穷大量.xnxn在第0章(看我做题)中,那些有关数列极限的习题,如果说可以凭借直觉和四则运算规则能够做出来的话,那么下面这些结论,就必须用“ε-n”说法才能够*.你看一看其中的*,可以学习到如何用“ε-n”说法做数列极限*题的方法.例1设有数列xn(n=1,2,).*:若有极限limxn,则算术平均值的数列n→∞yn=也有极限且limx1+x2++xn(n=1,2,)nx1+x2++xn=limxn.n→∞n→∞nn→∞*设limxn=a.考虑yn-a=x1+x2++xn(x-a)+(x2-a)++(xn-a)-a=1nn任意给定正数ε.因为limxn=a,所以有正整数n1使|xn-a|≤n→∞ε2(n≥n1).于是,第1章函数的极限和连续函数25yn-a=x1+x2++xn(x-a)+(x2-a)++(xn-a)-a=1nn(x1-a)+(x2-a)++(xn1-1-a)+(xn1-a)++(xn-a)=n(x1-a)+(x2-a)++(xn1-1-a)(n-n1+1)ε≤+⋅nn2(x1-a)+(x2-a)++(xn1-1-a)ε≤+n2再取正整数n≥n1足够大,使当n≥n时,右边第一项也小于ε2.这样,当n ≥n时,就会有|yn-a|≤ε2+ε2=ε,即*了有极限limx1+x2++xn=a=limxnn→∞n→∞nx1+x2++xnlim请注意:有极限,不一定有极限limxn!考虑数列...n→∞n→∞n1-(-1)nxn:1,0,1,0,1,0,,,2【应用】作为例1的应用,例如1111++++1=lim1.⑴lim=lim=0;⑵limn→∞nn→∞n→∞nn例2若xn>0(n=1,2,)且有极限limxn,则几何平均值的数列n→∞zn=x1x2xn(n=1,2,)也有极限且=limxn.nn→∞*根据极限单调*,必有limxn≥0.首先设limxn=0,ε为任意给定的正数.先取正n→∞n→∞整数n1使xn≤η=ε2(n>n1),则≤=ηn-n1n→η=ε(n→∞)(你知道为什么吗?见第0章题33)因此,必有正整数n≥n1,使当n≥n≤ε,即n=0=limxnn→∞【注】假若你知道“几何平均值不超过算术平均值”的话,根据例1的结论,则有x1+x2++xn→0(n→∞)n25所以=0=limxn.nn→∞其次,设limxn=a>0,ε为任意给定的正数(不妨认为εn→∞xn=1,所以有n→∞a正整数n使1-ε≤从而有≤1+ε(n>n)an-nn-nzn(1-ε)n≤=≤(1+ε)na让n→∞,则得zn。

高考数学数列与极限专项训练

高考数学数列与极限专项训练

高考数学数列与极限专项训练(02)一、选择题(本题每小题5分,共60分)1.在等比数列{}n a 中,122a a +=,3450a a +=,则公比q 的值为 ( )A .25B .5C .-5D .±52.已知等差数列{}n a 中,6385a a a =+=,则9a 的值是( )A .5B . 15C .20D .253.给定正数,,,,p q a b c ,其中p q ≠,若,,p a q 成等比数列,,,,p b c q 成等差数列,则一元二次方程220bx ax c -+= ( ) A .无实数根B .有两个相等的实数根C .有两个同号的相异的实数根D .有两个异号的相异的实数根4.等差数列{}n a 的前n 项和记为n S ,若2610a a a ++为一个确定的常数,则下列各数中也是常数的是( ) A .6SB .11SC .12SD .13S5.设数列{}n a 为等差数列,且2447685622004,a a a a a a a ++=则等于 ( )A .501B .±501 CD6.已知等差数列{}n a 的前n 项和为n S ,若1m >,且211210,38m m m m a a a S -+-+-==,则m 等于( )A .38B .20C .10D .97.设等比数列{}n a 的前n 项和为n S ,若63:1:2S S =,则93:S S =( )A .1:2B .2:3C .3:4D .1:38.某人为了观看2008年奥运会,从2001年起,每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并约定每年到期存款均自动转为新的一年定期,到2008年将所有的存款和利息全部取回,则可取回的钱的总数(元)为 ( ) A .7(1)a p + B .8(1)a p +C .7[(1)(1)]a p p p+-+D .()()811ap p p +-+⎡⎤⎣⎦9.已知()1f x bx =+为x 的一次函数,b 为不等于1的常量,且()g n =1(0)[(1)],(1)n f g n n =-≥⎧⎨⎩, 设()()()1n a g n g n n N +=--∈,则数列{}n a 为( )A .等差数列B .等比数列C .递增数列D .递减数列10.已知log 2log 20a b >>,则lim n nn nn a b a b →∞+-的值为( )A .1B .-1C .0D .不存在第1个第2个12345768a a a a a a a a11.北京市为成功举办2008年奥运会,决定从2003年到2007年5年间更新市内现有全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新车辆数约为现有总车辆数的(参考数据1.14=1.46 1.15=1.61) ( )A .10%B .16.4%C .16.8%D .20%12.已知323()(3)2,(3)2,lim 3x x f x f f x →-'==--则的值为( )A .-4B .8C .0D .不存在二、填空题(本题每小题4分,共16分)13.已知等比数列{}n a 和等差数列{}n b ,其中10b =,公差0d ≠.将这两个数列的对应项相加,得一新数列1,1,2,…,则这个新数列的前10项之和为 . 14.设数列{}n a 满足1236,4,3a a a ===,且数列1{}()n n a a n N *+-∈是等差数列,求数列{}n a 的通项公式 . 15.设()442xx f x =+,利用课本中推导等差数列前n 项和方法,求121111f f ++⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭…1011f +⎛⎫⎪⎝⎭的值为 .16.(文)黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中有白色地面砖 块. (理)已知132n na ⎛⎫⎪⎝⎭=⋅,把数列{}n a 的各项排成三角形状; 记(,)A m n 表示第m 行,第n 列的项,则(10,8)A = .三、解答题(本大题共6小题,共74分。

数列极限练习题计算数列的极限与相关性质

数列极限练习题计算数列的极限与相关性质

数列极限练习题计算数列的极限与相关性质数列极限练习题:计算数列的极限与相关性质数列是数学中非常重要的概念,广泛应用于各个领域。

学习数列的极限与相关性质可以帮助我们更好地理解数列的发展趋势和规律。

在本文中,我们将通过一些练习题来计算数列的极限,并探讨与之相关的性质。

题目一:计算数列极限考虑以下数列:\[a_n = \frac{n+1}{n}\]我们需要计算该数列的极限。

解答:为了计算数列\[a_n = \frac{n+1}{n}\]的极限,我们可以采用极限的定义。

根据定义,当\[n\]趋近于无穷大时,数列的极限为极限项所在的值。

在本题中,当\[n\]趋近于无穷大时,数列的极限为\[\lim_{n\to\infty} \frac{n+1}{n}\]我们可以将该极限进行求解:\[\lim_{n\to\infty} \frac{n+1}{n} = \lim_{n\to\infty} \left(1 +\frac{1}{n}\right)\]根据极限的性质,我们知道当\[n\]趋近于无穷大时,\[\frac{1}{n}\]趋近于零。

因此,上式可以化简为:\[\lim_{n\to\infty} \left(1 + \frac{1}{n}\right) = 1 + \lim_{n\to\infty}\frac{1}{n} = 1 + 0 = 1\]所以,数列\[a_n = \frac{n+1}{n}\]的极限为1。

题目二:数列极限的性质证明以下性质:若数列\[\{a_n\}\]和数列\[\{b_n\}\]的极限分别为\[A\]和\[B\],则数列\[\{a_n + b_n\}\]的极限为\[A + B\]。

证明:为了证明该性质,我们可以利用极限序列的定义和运算法则。

根据定义,当\[n\]趋近于无穷大时,数列\[\{a_n\}\]和\[\{b_n\}\]分别趋近于\[A\]和\[B\],即:\[\lim_{n\to\infty} a_n = A\]\[\lim_{n\to\infty} b_n = B\]我们需要证明数列\[\{a_n + b_n\}\]的极限为\[A + B\],即:\[\lim_{n\to\infty} (a_n + b_n) = A + B\]根据极限的性质,我们知道当\[n\]趋近于无穷大时,\[\{a_n + b_n\}\]趋近于\[A + B\],若且仅若\[\{a_n + b_n\} - (A + B)\]趋近于零。

高数数列极限经典例题

高数数列极限经典例题

高数数列极限经典例题高数数列是数学中重要的概念,它定义了一个数列中每一项的表达式,以及每一项和前面项之间的关系。

极限是描述数列无限接近某个值的重要概念,也是高数中最重要的内容之一,比较经典的例题是必须要掌握的。

首先,让我们来看一个经典的极限例题:求函数y=x3-3x2+3的极限,当x趋近于1的时候。

这道题的步骤是,先求x接近1时,函数值的上限和下限,然后利用极限的定义求解极限。

根据函数定义,当x取值接近1时,函数值的上限是x3-3x2+3+Δx,下限是x3-3x2+3-Δx,Δx表示x变化量,这里可以看出上下限的差值为2Δx。

接下来,我们可以利用极限的定义,得出结论:当x变化量趋于0时,上下限的差值也是趋于0,也就是说,当x趋于1时,函数值的极限就是x3-3x2+3。

通过这个例题,我们不仅学会了求函数极限的方法,还学会了求解其他类似例题的步骤。

再来看一道比较典型的极限例题:求函数y=2x2-2x+1的极限,当x趋近于0的时候。

这道题的步骤也是先求函数值的上限和下限,然后利用极限的定义求解极限。

根据函数定义,当x取值接近0时,函数值的上限是2x2-2x+1+Δx,下限是2x2-2x+1-Δx,Δx表示x变化量,这里可以看出上下限的差值为2Δx。

再利用极限的定义,得出结论:当x变化量趋于0时,上下限的差值也是趋于0,也就是说,当x趋于0时,函数值的极限就是2x2-2x+1。

可以看出,这两道极限例题,在步骤上有些类似,只是数值上的差别。

解决时只要注意函数的表达式,分析x趋于某个值时,函数值的上下限,从而利用极限定义求解极限。

当然,极限例题远不止上面两道,在解决这类例题的时候要更加熟悉解决的技巧,多练习解出一些类似的经典例题,以便应对考试中可能出现的问题。

以上就是关于高数数列极限经典例题的几个介绍,以帮助大家更好地理解极限和掌握求解极限的技巧。

当然,要想真正掌握极限知识,不能只依靠死记硬背,而要形成自己独立思考和解决问题的能力。

数学分析2数列极限总练习题

数学分析2数列极限总练习题

第二章 数列极限总练习题1、求下列数列的极限: (1)limn →∞n 3+3n n;(2)limn →∞n 5e n;(3)lim n →∞( n +2−2 n +1+ n ).解:(1)当n>3时,n 3<3n ,∴3= 3n n< n 3+3n n< 2·3n n=3 2n→3(n →∞). 由迫敛性定理可知:lim n →∞ n 3+3n n=3.(2)设a n =n 5e n ,则limn →∞a na n +1=lim n →∞e nn+1 5=e>1,∴limn →∞n 5e n=0.(3)lim n →∞n +2−2 n +1+ n =lim n →∞n +2− n +1 − n +1− n =lim n →∞ n +2+n +1−n +1+ n=0.2、证明:(1)lim n →∞n 2q n =0(|q|<1);(2)limn →∞lgn n a=0(a ≥1);(3)lim n →∞ n !n=0.证明:(1)当q=0 时,n 2q n =0,lim n →∞n 2q n =0;当0<|q|<1时,令|q|=1p ,则p>1. 设p=1+h ,h>0. 由(1+h)n >13!n(n-1)(n-2)h 3,(n>2) 得0<|n 2q n|<n 2(1+h)n <6h 3·n 2n(n −1)(n −2)=6h 3·1n(1−1n )(1−12)→0(n →∞).由迫敛性定理可知:lim n →∞n 2q n =0 (|q|<1).(2)任给ε>0,则10ε>1, n n→1(n →∞),故存在N ,当n>N 时,有1< n n<10ε,取对数后得:0<lgn n<ε,∴limn →∞lgnn=0. 从而当a ≥1时,0<lgn n a ≤lgn n→0(n →∞).由迫敛性定理可知:limn →∞lgn n a=0(a ≥1).(3)任给ε>0,令M=1ε,则limn →∞M nn!=0.又对ε0=1,存在自然数N ,使得当n>N 时,M nn!<1,即1n!<εn , ∴当n>N 时,有0< n !n <ε,∴limn →∞ n !n=0.3、设lim n →∞a n =a ,证明:(1)limn →∞a 1+a 2+⋯+a nn=a(又问由此等式能否反过来推出lim n →∞a n =a );(2)若a n >0,(n=1,2,…),则lim n →∞a 1a 2…a n n =a.证:(1)∵lim n →∞a n =a ,∴对任意的ε>0,必存在N 1,使当n>N 1时,|a n -a|<ε,令m=max{|a 1-a|,|a 2-a|,…,|a n -a|},于是n>N 1时,a 1+a 2+⋯+a nn −a =a 1−a +a 2−a +⋯+a n −an≤1n (|a 1-a|+|a 2-a|+…+|a N 1+1-a|+|a N 1+2-a|+…+|a n -a|)<N 1m n+(n −N 1)nε<N 1m n+ε.又limn →∞N 1m n=0. ∴对已给的ε>0,存在N 2,当n>N 2时,N 1mn<ε.取N=max{N 1,N 2},则当n>N 时, a 1+a 2+⋯+a nn−a <2ε,∴limn →∞a 1+a 2+⋯+a nn=a. 此等式反过来不能推出lim n →∞a n =a .例如a n =(-1)n 不收敛,但limn →∞a 1+a 2+⋯+a nn=0.(2)对任意自然数n ,a n >0,∴当a ≠0,lim n →∞1a n=1a .又11a 1+1a 2+⋯+1a nn=n1a 1+1a 2+⋯+1a n≤ a 1a 2…a n ≤a 1+a 2+⋯+a nn→a (n →∞).由迫敛性定理可知:lim n →∞a 1a 2…a n n =a.当a=0时,对任给的ε>0,存在N 1,使当n>N 1时,0<a n <ε,于是当n>N 1时,0< a 1a 2…a n n = a 1a 2…a N 1n · a N 1+1a N 1+2…a n n< a 1a 2…a N 1n·εn −N 1n< a 1a 2…a N 1·ε−N 1n·ε,∵lim n →∞a 1a 2…a N 1·ε−N 1n=1,从而存在N 2,使当n>N 2时,a 1a 2…a N 1·ε−N 1n<2,故当n>N=max{N 1,N 2}时,必有0< a 1a 2…a n n <2ε,∴lim n →∞a 1a 2…a n n=a.4、应用上题的结论证明下列各题: (1)limn →∞1+12+⋯+1nn=0;(2)lim n →∞a n =1(a>0);(3)lim n →∞n n=1;(4)limn →∞n !n=0;(5)limn →∞ n !n=e ;(6)lim n →∞1+ 2+⋯+ n nn =1;(7)若limn →∞b n +1b n=a (b n >0),则lim n →∞b n n =a ;(8)若lim n →∞a n −a n−1 =d ,则limn →∞a nn=d .证:(1)∵lim n →∞1n =0;∴limn →∞1+12+⋯+1nn =0;(2)设a 1=a, a n =1 (n=2,3…),则lim n →∞a n =1;∴lim n →∞a n=lim n →∞a 1a 2…a n n =1.(3)设a 1=1, a n =nn −1 (n=2,3…),则lim n →∞a n =1;∴lim n →∞n n=lim n →∞a 1a 2…a n n =1.(4)limn →∞n !n=lim n →∞11·12···1n n=limn →∞1n=0.(5)设a n =n nn ! (n=1,2…),则a 1=1;limn →∞ n !n=lim n →∞a n n=lim n →∞a 2a 1·a 3a 2···a nan −1n=limn →∞a na n −1=lim n →∞1+1n−1n−1=e.(6)lim n →∞1+ 2+⋯+ n nn =lim n →∞n n=1. (7)令b 0=1,则lim n →∞b n n =lim n →∞b 1b 0·b 2b 1·b3b 2···b nb n −1n=limn →∞b n +1b n=a (b n >0).(8) lim n →∞a nn=lim n →∞(a 2−a 1)+(a 3−a 2)+⋯+(a n −a n −1)n+a1n =lim n →∞a n −a n−1 =d .5、证明:若{a n }为递增数列,{b n }为递减数列,且lim n →∞(a n −b n )=0,则lim n →∞a n 与lim n →∞b n 都存在且相等.证:∵lim n →∞(a n −b n )=0,∴{a n -b n }有界,不妨设A ≤a n -b n ≤B ,A,B 为常数. ∵{a n }递增,{b n }递减,∴a n ≤B+b n ≤B+b 1,b n ≥a n -B ≥a 1-B. ∴{a n }{b n }单调有界 ∴{a n }{b n }都有极限. 而lim n →∞(a n −b n )= lim n →∞a n −lim n →∞b n =0,∴lim n →∞a n =lim n →∞b n .6、设数列{a n }满足:存在正数M ,对一切n 有: A n =|a 2-a 1|+|a 3-a 2|+…+|a n -a n-1|≤M 证明:{a n }与{A n }都收敛。

数列极限试题

数列极限试题

数列极限试题一、设数列 {an} 的通项公式为 an = (n2 - 1)/(n2 + 1),则该数列的极限为?A. 0B. 1C. -1D. 无穷大(答案:B)二、数列 {bn} 满足 bn = 1 - 2/(n + 3),当 n 趋于无穷大时,数列 {bn} 的极限是?A. 0B. 1C. -1D. 2(答案:B)三、已知数列 {cn} 的递推关系为 cn+1 = cn/2 + 1/cn,且 c1 = 2,则该数列的极限为?A. 0B. 1C. √2D. 2(答案:C)四、设数列 {dn} 的通项公式为 dn = (n + 1)/(n2 + 1),则当 n 趋于无穷大时,数列 {dn} 的极限为?A. 0B. 1C. 1/2D. 无穷小(答案:A)五、数列 {en} 满足 en = (2n - 1)/(3n + 2),则该数列的极限为?A. 0B. 2/3C. 3/2D. 1(答案:B)六、已知数列 {fn} 的通项公式为 fn = (n3 + 1)/(n3 + n2),则当 n 趋于无穷大时,数列 {fn} 的极限是?A. 0B. 1C. -1D. 无穷大(答案:B)七、设数列 {gn} 的递推关系为 gn+1 = (gn + 2)/(gn + 1),且 g1 = 1,则该数列的极限为?A. 1B. 2C. √2D. 无穷大(答案:C)八、数列 {hn} 满足 hn = (n2 + n)/(n2 + n + 1),则当 n 趋于无穷大时,数列 {hn} 的极限为?A. 0B. 1C. -1D. 无穷小(答案:B)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3322
11
1321.lim _____212.lim _____3(5)33.lim _____(5)3
4
4.lim ______1234....(21)2
5.lim _____1
(2)6.lim ______124...(2)7.lim(n n n n n n n n n n n n n n n n
n n n n n n →∞→∞++→∞→∞
→∞+-→∞→∞+=++=+-+=-+=-+-++--=--=-+-+-数列极限练习题
21213)______211118.lim ....(1)______3927319.lim 0,____,_____110.(1)lim(12),_____
(2)4,__11.lim(2)5,lim n n n n n n n n n n n n n n an b a b n x x a a b -→∞→∞
→∞
→∞
→∞
--=+⎡⎤-+++-=⎢⎥⎣⎦⎛⎫+--=== ⎪+⎝⎭
-+=则若存在则实数范围已知无穷等比数列的各项和是则首项的取值范围是已知{}1
(3)1,lim()1
13(1)
12.,1342(1)lim (2)lim n n n n n n n n n n n
n n a b a b n n n a S a n n a S →∞
-→∞
→∞
-=-⋅⎧≤≤⎪+⎪=⎨⎪⋅≥⎪⎩求的值
若为数列的前项和求
{}{}12123101511113.,9,27,,lim 31
14.,1,,,
32lim 15.,321111lim 4lim 1....(1),323927316.{},{}0n n n
n n n n
n n n n n n n n n n n a a a a a a n S S S a a n S S S a R a a a a b →∞
→∞
++--→∞→∞+===-=∈-⎡⎤=-+-++-⎢⎥+⎣⎦数列为等比数列前项和为求数列为等比数列前项和为求已知且
求范围
数列都是公差不为的等差数列12211212
22
1121
,lim 2,
...lim 17.{},1,(...)18.{}(0),,,lim ,lim ...19.{},,lim n
n n n
n n
n n n n n n n n n n n n n n n n n
a b a a a nb a a a k a a k a q q a a S S n S S a a a a q n S a S →∞→∞++→∞→∞++→∞=+++==++>=++=求数列为无穷等比数列求实数的范围
数列是公比为的无穷等比数列前项和为求无穷等比数列公比为前项和为2423521
111,1...20.lim
...121.{},lim()12
n n n n
n n q q a a a a a a a a a q q q a -→∞→∞-++++++++-=
+求范围求等比数列公比为求取值范围
1122241222
13212
22.{},1,3
(1)lim (2)lim(...)
23.{},4,16,lg lg ...lg lim 24.{},53,lim(...)
25.()2(2n n n n n n n n n n n n n n n n n n n n a n S S a S a S a S a S a a a a a a n a n S a S a a a f x x x →∞
→∞
++→∞-→∞
=-+++==+++=-+++=-+≥数列前项和为且求
设正数等比数列求数列前项和为求已知函数111122
1
1)(1)()
(2){}1()2,{}{},
2lim()n n n n n n n n n n n n n n f x a n S n S f S a a a
a n T a a T n ---++→∞
==+=-求反函数若正数数列前项和对所有大于的自然数都有且求通项公式(3)设C 又设数列C 前项和为求的值。

相关文档
最新文档