土力理论学-地基沉降计算

合集下载

土力学第四章土的变形性质及地基沉降计算【优秀完整版】可编辑全文

土力学第四章土的变形性质及地基沉降计算【优秀完整版】可编辑全文

s
VV1e0
Vs 1
压缩前
VV2 e
Vs 1
压缩后
H0 Hi H0si 1e0 1ei 1ei
si
e0 ei 1 e0
H0
ei
e0
si H0
1e0
e0
ds10w1
压力p与相应的稳定孔隙比的关系曲线称为压缩曲线。
a图:压力与加荷历时 关系。
b图:各级压力下,试 样孔隙比随时间的变化 过程。
(1) 压缩系数
P1——一般指地基某深度处土中竖向自重应力; P2——地基某深度处自重应力与附加应力之和; e1——相应于p1作用下压缩稳定后土的孔隙比; e2——相应于p2作用下压缩稳定后土的孔隙比;
ataα nΔee1e2 Δp p2p1
用单位压力增量 所引起的孔隙比的改 变,即压缩曲线的割 线坡度表征土的压缩 性的高低。
原始压缩曲线是由直线或折线组成,通过Cc或Ce两个压缩性指标即可计算,使用方便。
分层总和法计算地基的最终沉降量
1 Mpa-1
属低压缩性土。
1、土的压缩性:地基土在压力作用下体积减小的特性。
由e~p或e~lgp曲线求得
土体在无侧向变形条件下,竖直应力与竖向应变之比。
该式称为一维固结微分方程,
OCR>1 超固结状态
在整个固结过程中,土的渗透系数、压缩系数视为常数。
土层的平均固结度是时间因数Tv的单值函数,它与所加的附加应力的大小无关,但与土层中附加应力的分布形态有关。
分层总和法计算地基的最终沉降量
我国《建筑地基基础设计规范》规定
变形模量与压缩模量之间的关系
压缩模量Es:土在完全侧限条件下,竖向正应力与相应 的变形稳定情况下的竖向应变的比值。

土力学土的压缩性与地基沉降计算

土力学土的压缩性与地基沉降计算
§3.1.2 土的应力与应变关系
1、土体中的应力
⑷主应力——凡剪应力τ =0的平面上的法向应力σ ,称为主 应力,此平面称为主应面。σ cz为大主应力,σ cx=σ cy为小主应力 。 ⑸摩尔圆
在τ -σ 的直角坐标系 中,在横坐标上点出最大 主应力σ 1与最小主应力σ 3 ,再以σ 1-σ 3为直径作圆 ,此圆称为摩尔应力圆。 微元体中任意斜截面上的 法向应力σ 与剪应力τ , 可用此摩尔圆来表示。见 “4.2 土的极限平衡条件 ”土。力学
§§333.3.3土.2的侧压限侧缩条限性件与压下地缩基土性沉的指降压计标缩算性
2、压缩指数Cc
随着高层建筑的兴建和重型设备的发展,常规侧限压缩仪的压 力范围太小,可采用高压固结仪,最高压力可达3200Kpa。
高压固结仪的试验原理与试验方法同常规固结仪,试样面积由 50mm2改为30mm2,加压杠杆比由1:10提高为1:12。
土力学
§33.1土的土压的缩变性形与特地基性沉降计算
§3.1.2 土的应力与应变关系
1、土体中的应力
⑶水平土层中的自重应力——设地面为无限广阔的水平面,土 层均匀,土的天然重度为γ 。在深度为Z处取一微元体dxdydz,则 作用在此微元体上的竖向自重应力σ cz(如图3.2所示)为:
σ cz=γ z(kPa) (3.1)
0.1≤а 1-2<0.5Mpa-1 时, 属中压缩性土;
а 1-2≥0.5Mpa—1时, 属高压缩性土。
各类地基土压缩性的高低,取决于土的类别、原始密度和天然
结构是否扰动等因素。
例如:密实的粗砂、卵石的压缩性比粘性土为低。粘性土的压 缩性高低可能相差很大:当土的含水量高、孔隙比大时,如淤泥为 高压缩性土;若含水量低的硬塑或坚硬的土,则为低压缩性土。此 外,粘性土的天然结构受扰动后,它的压缩性将增高,特别对于高 灵敏度的粘土,天然结构遭到破坏时,影响压缩性更甚,同时其强 度土也力剧学烈下降。见图3.9

常用的地基沉降计算方法

常用的地基沉降计算方法

常用的地基沉降计算方法地基沉降计算是工程施工中非常重要的一项计算工作,它可以用于预测地基沉降的大小和速率,帮助工程师进行地基设计和施工安排。

下面将介绍几种常用的地基沉降计算方法。

1.标贯法:标贯法是用于预测地基沉降的一种常用方法。

它通过在地基中插入一根钢质钻杆并运用连续冲击力将其驱入地基,然后根据所需驱入力和驱入深度来计算地基沉降。

这种方法简单快捷,适用于较小规模的工程。

2.应变曲线法:应变曲线法也是一种常用的地基沉降计算方法。

它通过在地基中安装应变计和标尺,测量地基在不同深度下的应变变化,然后根据应变-应变曲线来计算地基沉降。

这种方法适用于较大规模的工程,但需要一定的测量设备和专业知识。

3.弹性地基沉降计算方法:弹性地基沉降计算方法是一种常用的地基沉降计算方法。

它基于地基的弹性性质,通过分析地基的应力-应变关系来计算地基沉降。

这种方法适用于弹性土层和较小的地基变形。

4.孔隙水压力法:孔隙水压力法是一种基于地下水压力变化来计算地基沉降的方法。

它通过在地基中安装压力计和水位计,测量地下水位和孔隙水压力变化,然后根据孔隙水压力-应力关系来计算地基沉降。

这种方法适用于饱和土层和较高地下水位的情况。

5.数值模拟法:数值模拟法是一种较为精确的地基沉降计算方法。

它通过将地基和加载条件建模,并应用数值计算方法求解其力学行为,然后根据计算结果来预测地基沉降。

这种方法适用于复杂的工程和土层情况,但需要一定的计算资源和专业知识。

综上所述,地基沉降计算方法多种多样,选择适合的方法需要考虑工程规模、土层情况、测量条件和计算资源等因素。

工程师在进行地基沉降计算时应根据实际情况选择合适的方法,并结合实测数据和经验判断,以得到准确可靠的地基沉降预测结果。

第5章 地基沉降计算

第5章 地基沉降计算

填土 地下水位下降 (虚线:变化后的自重应力;实线:变化前的自重应力)
例5
天然地面上大面积填筑了厚度为3.5m的填土,重度为 18N/m3。天然土层有二层,第一层为粗砂,第二层为粘土, 地下水位在天然地面下1.5m处。试根据所给的粘土层的压缩 试验资料计算:(1)在填土压力作用下粘土层的沉降量是多少? (2)上述沉降稳定后,地下水位突然下降到粘土层顶面,由此 产生的粘土层的附加沉降是多少?
返回
比萨斜塔
塔身倾斜度达6°
浙江永嘉县两栋居民楼由于相距甚近,造成 相互倾斜各达38~39cm,后侧楼顶已相接触
房屋倾斜
房屋倒塌
路基滑坡
某教工住宅楼因室外地面下沉导致楼梯入口拉裂
返回
§5.2 地基最终沉降量计算
一、按分层总和法计算
二、按规范方法计算
三、三种特殊情况下的地基沉降计算
四、考虑应力历史影响的地基沉降计算
沉降量,且计算结果往往偏大。 常用来计算饱和粘性土地基的瞬时沉降,此时,式中
E0改取弹性模量E,并取饱和土的泊松比μ=0.5。
返回
五、刚性基础的倾斜计算
圆形基础
1 2 Pe tan 6 3 E0 b 37) (5
矩形基础
1 2 Pe tan 8K 3 E0 b 38) (5
i-1+σci)/2和附加应
力平均值∆pi=(σzi-1+σzi)/2,且取p2i= p1i+∆pi。
计算步骤
(5)从e-p曲线上查得与p1i、p2i
相对应的e1i、e2i。
(6)计算各分层土在侧限条件下 的压缩量
e1i e2i ai pi pi si i hi hi hi hi 1 e1i 1 e1i Esi

地基沉降计算

地基沉降计算

4 地基沉降计算 1) 分层总和法
了解计算步骤
e1i − e2i S =∑ hi i =1 1 + e1i
n
ai (P i − Pi ) S = ∑ 2 1 hi 1+ e1i i =1
n
S =

i =1
n
∆ Pi hi E si
确定地基沉降计算深度
2) 规范法 记住计算公式
Po (ziαi − zi −1αi−1 ) si′ = Esi
6) 在计算中重点掌握朗金土压力计算理论 包括: 正确计算土压力、 包括: 正确计算土压力、 侧向压力;(大小、 ;(大小 侧向压力;(大小、 h3 要记得公式: 要记得公式:
h1 h2
q
φ1 , γ 1 , c1
φ 2 , γ 2 , c2
要明确公式中各符号 的物理意义
⑴ 搜集、分析建筑场 搜集、 地资料绘图 绘图。 地资料绘图。 分层: ⑵ 分层:原则上按分层总和法并 按场地实际地基剖面考虑。 按场地实际地基剖面考虑。 ⑶ 求各分层的压缩量; 求各分层的压缩量 分层的压缩量; ⑷ 确定地基沉降计算深度
′ ∆s n ≤ 0.025∑ ∆si′
φ 3 , γ 3 , c3
σ a = γzK a − 2c K a
计算要点: 计算要点: 临界深度 熟练绘土压力强度分布图
6 地基承载力
1) 何谓地基承载力?何谓临塑荷载?临界荷载? 何谓地基承载力?何谓临塑荷载?临界荷载? 2) 地基破坏模式有几种类型?主要特点? 地基破坏模式有几种类型?主要特点? 3) 何谓地基的极限 承载力? 承载力?普朗德尔 理论公式的假定条 赖斯纳、 件?赖斯纳、太沙 基作了那些改进? 基作了那些改进?

地基沉降计算方法

地基沉降计算方法

地基沉降计算方法地基沉降是指地面或建筑物由于地基受力而发生的下沉现象,是土木工程中一个重要的问题。

地基沉降的计算方法对工程设计和施工具有重要意义。

下面将介绍几种常用的地基沉降计算方法。

一、经验法。

经验法是指根据历史工程经验和实测数据进行估算的方法。

在没有详细的地质勘探和试验数据的情况下,可以通过查阅类似工程的实测数据,结合工程地质条件和地基工程特点,进行估算。

经验法计算简单快捷,但精度较低,适用于初步设计阶段。

二、解析法。

解析法是指根据土力学理论和数学方法,通过对地基土体的力学性质进行分析和计算,得出地基沉降的方法。

解析法需要建立地基土体的本构模型,考虑地基土体的应力-应变关系,通过数学计算得出地基沉降的结果。

解析法计算精度较高,适用于对地基沉降要求较高的工程。

三、有限元法。

有限元法是指利用有限元分析软件,将地基土体离散成有限个单元,通过数值计算得出地基沉降的方法。

有限元法考虑了地基土体的非线性和非均质性,可以较为准确地模拟地基沉降的过程。

有限元法适用于复杂地基条件和大型工程的地基沉降计算。

四、监测法。

监测法是指通过实测方法,利用沉降仪、水准仪等设备对地基沉降进行实时监测和记录,得出地基沉降的方法。

监测法可以直接观测到地基沉降的实际情况,是一种直观、准确的计算方法。

监测法适用于对地基沉降要求较高的工程,也可以用于验证其他计算方法的结果。

以上是几种常用的地基沉降计算方法,不同的方法适用于不同的工程情况。

在工程设计和施工中,需要根据实际情况选择合适的计算方法,以保证工程的安全和稳定。

同时,对于复杂的地基条件和大型工程,也可以采用多种方法进行综合计算,以提高计算结果的准确性和可靠性。

地基沉降计算

地基沉降计算

其中:pmax=ΣNi/A+6ΣMi/BL2
抗冲切验算:Fl≤Rl=0.6Alft
Al ft 570000 h0 850 fy
Rl ≥ Fl 1.1 376200 220722 As 310 1782.481
强度计算:As=M/0.9fyh0
柱断面尺寸:
bc hc
960 630 G
梯形面积:S=(2l'+2h )0.5h= 其中 (2l'+2h')0.5=l'+h'= A M pmax
Rl ≥ Fl 1.1 396000 951843 As 310 1669.751
强度计算:As=M/0.9fyh0
柱断面尺寸:
bc hc
3030 825 G
梯形面积:S=(2l'+2h')0.5h= 其中 (2l'+2h')0.5=l'+h'= A M pmax
637500 2550 pmin pi
强度计算:As=M/0.9fyh0
柱断面尺寸:
bc hc
800 520 G
梯形面积:S=(2l'+2h')0.5h= 其中 (2l'+2h')0.5=l'+h'= A 11.55 M pmax
687500 2750 pmin pi
L 3.3
B 3.5
ai 1.25
a' 0.8
415.8
535.543 302.037 289.444 297.267
粉砂、细砂(不包括很湿与饱和时的 稍状) 中砂、粗砂、砾砂、碎石土 强风化的岩石,可参照风化成的相应土类取值。 Sr为土的饱和度,Sr≤0.5,稍湿;0.5<Sr≤0.8,很湿;Sr>0.8,饱和。

第四章土的变形特性和地基沉降计算

第四章土的变形特性和地基沉降计算

第四章土的变形特性和地基沉降计算土的变形特性和地基沉降计算是土木工程中非常重要的内容。

土的变形特性研究土体在外力作用下的变形规律和特性,而地基沉降计算则是根据土的变形特性来预测地基的沉降情况。

下面将详细介绍土的变形特性和地基沉降计算的相关内容。

1.土的变形特性土体受到外力作用时会发生变形,主要有弹性变形、塑性变形和剪切变形。

(1)弹性变形:土体在外力作用下,会发生弹性变形。

当外力去除后,土体会恢复到原来的状态。

弹性模量是衡量土体抗弯刚度的指标,可以通过简单的试验来确定。

(2)塑性变形:土体在超过一定应力范围时,会发生塑性变形。

土体的塑性是由于土颗粒之间存在黏聚力和内摩擦力。

土壤的塑性特性可以通过塑性指数来描述,塑性指数越大,土体的可塑性越强。

(3)剪切变形:土体在受到剪应力作用时,会出现剪切变形。

剪切变形会导致土体体积变化,产生剪切应变。

土壤剪切特性可以通过剪切强度来描述,剪切强度是土体抵抗剪切破坏的能力。

地基沉降是指地基在建筑物或其他荷载作用下产生的垂直变形。

地基沉降计算是为了预测和控制建筑物在使用过程中由于地基沉降而产生的沉降量。

地基沉降计算可以分为弹性沉降和塑性沉降两部分。

(1)弹性沉降:建筑物的地基沉降可以通过应力-应变关系来进行计算。

根据土体弹性模量、建筑物底面积和载荷大小,可以确定建筑物的弹性沉降量。

(2)塑性沉降:塑性沉降是由于土体的塑性变形而产生的沉降。

塑性沉降的计算需要考虑土壤的塑性指数、建筑物底面积和载荷大小。

塑性沉降计算可以使用维罗耐氏公式或其他合适的公式进行。

地基沉降计算的结果可以作为设计和施工的依据,可以预测建筑物在使用过程中的变形情况,从而保证建筑物的安全和稳定。

总结:土的变形特性和地基沉降计算是土木工程中重要的内容,了解土的变形特性可以帮助预测地基的变形情况,地基沉降计算是为了预测和控制建筑物的沉降量。

研究土的变形特性和进行地基沉降计算能够保证建筑物的安全和稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工填土与砂夹卵石硬壳层,厚度5m,
其下为火山灰形成的超高压缩性淤泥
,天然孔隙比高达7~12,含水率150
2m
~600%,层厚达数十米。该艺术宫沉
4m
降量高达4m,并造成邻近的公路下沉
2m。
Palacio de las Bellas Artes,Mexico
City 墨西哥城艺术宫的下沉
建筑物的不均匀沉降,墨西哥城
p
标准压缩系数a1-2
0.1
0.5
低压缩性 中压缩性
高压缩性
a12 /MPa1
• 体积压缩系数
coefficient of volume compressibility
mv
av 1 + e0
• 压缩模量
modulus of compressibility
Es
1 e0 av


Es
1 e0 av
密实砾、石 100~200
4. 应力历史对粘性土压缩性的影响
e
e
土样从地 层中取出
Cs 1
1 Cc
现场压缩 曲线
p
pc
lg p
p c 前期固结压力
C c 压缩指数
preconsolidation pressure
compression index
C s 膨胀指数
swelling index
e
过去地表
z )]
y
1 E
[
y
(
x
z )]
z
1 E
[
z
(
x
y )]
3. 压缩试验及压缩曲线
• 压缩仪 oedometer 构造
加压活塞
荷载
刚性护环
土样
透水石 环刀
透水石
底座
h0
hs
p0
e0
1
s 1 e0 h 1
hs
e
hs
1
h0 e0
h1 h0 s 1 e1 1 e1
s 或 e1 e0 h0 (1e0)
当前地表
过去地表
h
p0 h
p0 pc
p0
lg p
pc p0 正常固结土 normally consolidated clay
p0
pc p0 欠固结土 under consolidated clay
pc p0 超固结土over consolidated clay
超固结比 over consolidation ration O C R p c p0
第四章 土的压缩性及地基 沉降计算
一、土的压缩性 compressibility
在压力作用下土的体积减小。
• 压缩性的原因
• 土颗粒的压缩 ≈0
• 孔隙水的压缩 ≈0
• 孔隙的减小
压缩性
一、土的压缩性 compressibility
1.为什么要研究土的压缩性 地基沉降(竖向位移)
墨西哥城下的土层为:表层为人
p
为什么要采用基底净压力计算地基沉降?
(卸载后)再加载
(
x
y )]
y
x y 0
xy1 zK0z 静止侧压力系数
K0 1
z
z
E
(122 ) 1
z
Es
土的压缩模量
E
(1
22 1
)Es
压缩模量Es
完全侧限时,土的应力与应变之比。
z
z
E
22
(1 )
1
z
Es
E
(1
22 1
)Es
压缩模量 E s
E 变形模量
p s 1 s 2
p
x
1 E
[ x
(
y
s
e0 e1 1 e0
h0
压缩量计算公式
p1 e1
1 e1
1
p
3. 压缩指标
e
• 压缩系数 coefficient of compressibility
av
e0 e 1 p1 p0
e1 e 0 p1 p0
e0
e de
p dp
e1
p0 100kPa p1 200kPa
p0
p1
为什么要采用基底净压力?

(3)计算原存应力(自重应力)

qzi H hi


(4)计算中心点以下的附加应力

(5)确定压缩底层
H
自重应力 q z
b
p0 pH
0
1
21
2
3 4
3 4
55
66
7
7
8
8 9
9
附加应力 z
均匀满布荷载作用下的均质土层是否需要分层?
q x
e
自重应力 q z
z 附加应力 z
2 土的弹性变形性质
广义Hooke定律
x
1 E
[ x
(
y
z )]
y
1 E
[
y
(
x
z )]
z
1 E
[
z
( x
y )]
弹性半无限地基
xy
xy G
xz
xz G
yz
yz G
弹性变无限地基承受均匀满布荷载
z
x
1 E
[
x
(
y
z )]
y
1 E
[
y
( x
z )]
x
z
1 E
[ z
S
e0 e1 1 e0
h0
z
e0 e1 1 e0
av p 1 e0
p 1 e0
z
av
Es
1 mv
av
e0 e 1 p1 p0
e
e0
e1
p0
p1
p
压缩系数、体积压缩系数、压缩模量、变形模量是否为常数?
材料名称 变形模量(MPa)
C20砼 26000
较硬粘土 8~15
密实砂 50~80
h0
p1 pc p2
Cc
lg p
欠固结
e
e0
e1
e1
Cc
lg
p0 pc
e2
Cc
e2
Cc
lg
p0
p p0
ee1e2
pc
e
Cc
lg
p0
p pc
lg p
p0
p0 p
s
e 1 e0
h0
二、试验方法确定土的变形模量
确定变形模量
现场试验 室内试验
荷载试验 旁压试验 三轴试验
反压重物
反力梁
千斤顶 百分表
5. 前期固结压力的确定及现场压缩曲线的推求
e
正常固结
e0
室内压缩曲线
Casagrande
/2 /2
1936
现场压缩曲线
Cc
0 .4 e
e0
0 .4 2 e0
超固结
Cs
/2 /2
现场压缩曲线
Cc
p0
pc
室内压缩曲线 l g p
6. e-lgp法计算土层压缩量
基准梁
荷载板
pa
pk
压力p
圆形压板
E 12 pD
4S
方形压板

降 s
E 12 pB
2S
三、地基沉降计算——分层总和法
1. 基本原理
• 基本假设
(1)基础中心处的沉降代表基础的沉降。
(2)中心土柱完全侧限,其压缩量为沉降。
无侧向膨胀,直接利用压缩试验的结果。
Δs1
• 沉降计算
Δs2
hc
n
Δs3
s ds d s si
Δs4
0
0
i1
• 计算深度hc 至变形很小、可忽略不计的深度。
ds Δs8
hc
z
土柱的侧限 p
p
2. 计算步骤
(1)分层 hi 0.4b
为什么要分层?
• 应力随深度变化。

• 压缩性随深度变化(包括同一土层)。 砂
(2)计算基底净压力(附加压力)
p0 pH

正常固结
e
e0
e lg(p0p)lgp0
Cc
e
e
Cc
lg
p0
p p0
e s 1 e0 h0
Cc
lg p
p0
p0 p
( pc)
超固结
e
p1 pc
e1
Cs
lg
p1 p0
e0
e2 e1
Cs
(p1 p0 p)
p2 pc
e2 Cslgpp0c Cclgpp2c
p0
(p2 p0p)
s
e 1 e0
相关文档
最新文档