医学统计学假设检验原理与t检验
合集下载
医学统计学-第六章t检验

t
X1 X2
S
2 C
1 n1
1 n2
n1 n2 2
S
2 C
n1
1S
2 1
n 2
1S
2 2
n1 n2 2
两本均数比较的t检验亦称为成组t检验,又称为独立样本t检验
(independent samples t-test)。 适用于比较按完全随机设计而得到的两组资料,比较的目的是推断它们
各自所代表的总体均数和是否相等。
➢ 假设检验的基本思想
➢ 假设检验的基本思想是小概率反证法思想。
➢ 小概率事件(P≤0.05)是指在一次试验中基本上不大会发生的
事件。 ➢ 小概率事件原理:一个事件如果发生的概率很小,那么它在一次
试验中是实际不会发生的。在数学上,我们称这个原理为小概率 事件原理。 ➢ 反证法思想是先提出假设,再用适当的统计方法确定假设成立的 可能性大小,如可能性小,则认为假设不成立,若可能性大,则还 不能认为假设不成立。
α =0.05
SC2=699.725,t=-3.764
3.确定P值 ,作出推断结论
υ =20+20-2=38 , 查 t 界 值 表 , 得 t0.05/2,38=2.024, 现 |t|=3.764>t0.05/2,23=2.069,故P<0.05。按α=0.05水准,拒绝 H0,,接受H1,差异有统计学意义。
F
S12 (较大) S( 22 较小)
υ1为分子自由度,υ2为分母自由度
F统计量服从F分布,可以查F界值表,附表3-3。F值越大, 对应的P值越小。
1.建立假设,确定检验水准
2.计算统计量
F
S12 (较大)=26.82/26.12 =1.051 S( 22 较小)
医学统计学-t检验

;患者在用药后血浆胆固醇水平较用药前显著下降,暂且 可认为该药有降低血浆总胆固醇水平的作用。
P
0.05
t
1.860
2021年9月30日星期四
0.01 0.005 P<0.005 2.896 3.355 4.86
30
三、两个样本均数比较
两个小样本均数的比较——t检验
t
x1 x2 Sx1 x2
假设检验的目的就是判断差异的原因:
求出由抽样误差造成此差异的可能性(概率P)有多大! 若 P 较大(P>0.05),认为是由于抽样误差造成的。
原因(1),实际上 = 0 若 P 较小(P≤0.05),认为不是由于抽样误差造成的
原因(2),实际上 > 0
2021年9月30日星期四
5
第二节 假设检验的基本思想和基本步骤
2021年9月30日星期四
12
第二节 假设检验的基本思想和基本步骤
❖ 3、确定P值,作出推断结论
▪ P值是指由H0所规定的总体作随机抽样,获得等于及大于 (或等于及小于)现有样本获得的检验统计量值的概率。
▪ 将计算得出的概率P,与事先规定的概率—进行比较,
看 其是否为小概率事件而得出结论。 例如 求得t=1.833,v=24,α=0.05,查附表其相应 的t界值为2.064,根据t分布特征,可得出P>0.05.
正确,X ≠μ0是由于抽样引起。
如同法官判定一个人是否犯罪,首先是假定他“无罪” (H0),然后通过侦察寻找证据,如果证据充分则拒绝 “无罪”的假定(H0),判嫌疑人有罪;否则只能暂且 认为“无罪”的假定(H0)成立。
2021年9月30日星期四
6
第二节 假设检验的基本思想和基本步骤
假设检验的基本思想—利用反证法的思想
P
0.05
t
1.860
2021年9月30日星期四
0.01 0.005 P<0.005 2.896 3.355 4.86
30
三、两个样本均数比较
两个小样本均数的比较——t检验
t
x1 x2 Sx1 x2
假设检验的目的就是判断差异的原因:
求出由抽样误差造成此差异的可能性(概率P)有多大! 若 P 较大(P>0.05),认为是由于抽样误差造成的。
原因(1),实际上 = 0 若 P 较小(P≤0.05),认为不是由于抽样误差造成的
原因(2),实际上 > 0
2021年9月30日星期四
5
第二节 假设检验的基本思想和基本步骤
2021年9月30日星期四
12
第二节 假设检验的基本思想和基本步骤
❖ 3、确定P值,作出推断结论
▪ P值是指由H0所规定的总体作随机抽样,获得等于及大于 (或等于及小于)现有样本获得的检验统计量值的概率。
▪ 将计算得出的概率P,与事先规定的概率—进行比较,
看 其是否为小概率事件而得出结论。 例如 求得t=1.833,v=24,α=0.05,查附表其相应 的t界值为2.064,根据t分布特征,可得出P>0.05.
正确,X ≠μ0是由于抽样引起。
如同法官判定一个人是否犯罪,首先是假定他“无罪” (H0),然后通过侦察寻找证据,如果证据充分则拒绝 “无罪”的假定(H0),判嫌疑人有罪;否则只能暂且 认为“无罪”的假定(H0)成立。
2021年9月30日星期四
6
第二节 假设检验的基本思想和基本步骤
假设检验的基本思想—利用反证法的思想
医学统计学-t检验和u检验

统计学常见问题
在医学统计学研究中,常见的问题包括样本大小确定、假设检验的选择、结 果解释等。了解这些问题能够提高研究的可靠性和科学性。
统计学误差的分类
统计学误差可分为随机误差和系统误差。随机误差是由随机因素引起的结果 波动,而系统误差是由于观测方法、仪器校准等常规因素引起的偏差。
假设检验的基本原理
案例分析:t检验的应用
使用t检验分析两种治疗方法在疾病治愈率方面的差异,以指导临床决策和改 善患者疗效。
案例分析:u检验的应用
使用u检验比较两种不同药物治疗疾病的有效性,以指导合理用药和提高疗效。
数据处理软件
统计学常用的数据处理软件包括SPSS、R、Python等。它们提供了丰富的统计 分析函数和可视化工具,以帮助研究人员进行数据分析。
医学统计学-t检验和u检 验
介绍医学统计学中的t检验和u检验。包括基础概念、历史、优缺点、应用领 域等内容,以及与t检验的比较,以案例分析和数据处理软件为重点。
统计学的基础
统计学是研究如何收集、整理、分析和解释数据的科学。它是医学研究中不可或缺的工具,用于推断和验证假 设。
t检验的概念及历史
t检验是一种用于比较两个样本均值是否有显著差异的统计方法。它由英国统计学家威廉·塞特尔于1908年提出, 被广泛应用于医学研究中。
t检验的优缺点
1 优点
适用于小样本和正态分布的数据,能够比较 样本之间的差异。
2 缺点
对数据的要求较高,可能受到异常值的影响, 不适用于非正态分布的数据。
t检验的前提条件
独立样本t检验
两个样本之间独立且符合正态分布。
配对样本t检验
两个样本之间相关,如同一组受试者的前后观察。
方差分析中的t检验
第七章假设检验与t检验(终板)

1、假设检验中α值是检验水准,是拒绝 或不拒绝H0的概率标准。α的大小是人为 选定的,一般取0.05。
2、P值是指从H0所规定的总体中作随机 抽样,获得等于及大于 (或等于及小于)现有 样本统计量的概率。通过 P值与α 值的比 较来确定拒绝或不拒绝H0。
四、假设检验的应用注意事项
(1)研究设计要科学严密 (2)考虑假设检验方法的前提条件 (3)正确理解P值的含义 (4)假设检验的结论不能绝对化 (5)统计学意义与实际意义相互结合
的疗效时,如能根据专业知识认为新药 疗效不会比旧药差,只关心新药是否比 旧药好(疗效至少相同,绝对排除出现 相反的可能性),可用单侧检验。
双侧检验:在比较甲乙两种药物的疗效时, 事先不能确定哪种药的疗效较好,只关心两药 的疗效有无差别,要用双侧检验。双侧检验若 有差别,单侧检验肯定有差别;反之,单侧检 验若有差别,双侧检验不一定有差别。 单侧检验更容易得到有统计学意义的结论。
140 150 138 120 140 145 135 115 135 130 120 133 147 125 114 165 —
差值d (4)
27 25 12 -10 -10 0 0 10 7 -5 20 3 37 10 -6 10
d 130
d2 (5)
725 625 144 100 100 0 0 100 49 25 400 9 1369 100 36 100
2、选定检验方法和计算检验统计量
根据研究设计方案、资料类型、样本含量 大小及分析目的选用适当的检验方法,并根据 样本资料计算相应的检验统计量;不同的检验 方法要用不同的公式计算现有样本的检验统计 量(t ,u,F值)。检验统计量是在H0成立的前 提下计算出来。
3、确定P值,作出统计推断 P值是指由所规定的总体作随机抽样, 获得
2、P值是指从H0所规定的总体中作随机 抽样,获得等于及大于 (或等于及小于)现有 样本统计量的概率。通过 P值与α 值的比 较来确定拒绝或不拒绝H0。
四、假设检验的应用注意事项
(1)研究设计要科学严密 (2)考虑假设检验方法的前提条件 (3)正确理解P值的含义 (4)假设检验的结论不能绝对化 (5)统计学意义与实际意义相互结合
的疗效时,如能根据专业知识认为新药 疗效不会比旧药差,只关心新药是否比 旧药好(疗效至少相同,绝对排除出现 相反的可能性),可用单侧检验。
双侧检验:在比较甲乙两种药物的疗效时, 事先不能确定哪种药的疗效较好,只关心两药 的疗效有无差别,要用双侧检验。双侧检验若 有差别,单侧检验肯定有差别;反之,单侧检 验若有差别,双侧检验不一定有差别。 单侧检验更容易得到有统计学意义的结论。
140 150 138 120 140 145 135 115 135 130 120 133 147 125 114 165 —
差值d (4)
27 25 12 -10 -10 0 0 10 7 -5 20 3 37 10 -6 10
d 130
d2 (5)
725 625 144 100 100 0 0 100 49 25 400 9 1369 100 36 100
2、选定检验方法和计算检验统计量
根据研究设计方案、资料类型、样本含量 大小及分析目的选用适当的检验方法,并根据 样本资料计算相应的检验统计量;不同的检验 方法要用不同的公式计算现有样本的检验统计 量(t ,u,F值)。检验统计量是在H0成立的前 提下计算出来。
3、确定P值,作出统计推断 P值是指由所规定的总体作随机抽样, 获得
医学统计学第七、八章 假设检验的基本概念和t检验

S x 1 − x 2 为两样本均数差值的标准误
Sx −x
1
2
⎛1 1⎞ ⎟ = S ⎜ + ⎜n n ⎟ 2 ⎠ ⎝ 1
2 c
在两总体方差相等的条件下,可将两方差合并, 求合并方差(pooled variance) S c2
2 ⎡ ( Σ x1 ) ⎤ 2 ⎢ Σ x1 − ⎥ + n1 ⎦ ⎣ = n1 − 1 + 2 ⎡ ( Σx2 ) ⎤ 2 ⎢Σ x2 − ⎥ n2 ⎦ ⎣ n2 − 1
t 检验的应用条件:
① 单样本t检验中,σ 未知且n 较小,样本取自 正态总体; ② 两小样本均数比较时,两样本均来自正态分 布总体,两样本的总体方差相等;若两总体 方差不齐可用t’检验; ③ 两大样本均数比较时,可用Z检验。
1、样本均数与总体均数比较的 t 检验
• 使用范围:用于样本均数与已知总体均数(一 般为理论值、标准值或经过大量观察所得的稳 定值等)的比较。 • 分析目的:推断样本所代表的未知总体均数 μ 与已知总体均数 μ0有无差别。 • 若 n 较大,则 tα .ν ≈ tα .∞ , 可按算得的 t 值用 v = ∞ 查 t 界值表( t 即为 Z )得P值。
回到例子:
2.计算统计量
已知μ0= 3min,n=50, X=4min
4−3 t= = 4 .7140 1 .5 / 50
υ = 50 − 1 = 49
3、确定 P 值,作出统计推断 根据算出的检验统计量如 t、z 值,查 相应的界值表,即可得到概率 P。 P值是在H0成立前提下,抽得比现有样 本统计量更极端的统计量值的概率。 P值越小只能说明:作出拒绝H0 ,接受 H1的统计学证据越充分。
X −μ X −μ 用公式:t = 或z = σX SX
t检验原理

t检验原理
t检验是一种用于统计假设检验的方法,它可以用来比较两组数据的均值是否有统计显著性差异。
在进行t检验时,我们首先需要提出一个关于两组数据均值的假设,通常情况下我们将其称为原假设(H0)。
原假设通常认为两组数据的均值没有显著性差异。
接下来,我们收集两组数据,并计算出它们的平均值和标准偏差。
然后,使用t分布表或统计软件计算出t值。
t值是一种标准化的比较量,它可以告诉我们两组数据的均值差异相对于它们的标准误差有多大。
通过比较t值和临界值,我们可以判断两组数据的均值差异是否显著。
如果t值大于临界值,我们可以拒绝原假设,认为两组数据的均值存在显著性差异。
反之,如果t值小于临界值,我们接受原假设,认为两组数据的均值没有显著性差异。
需要注意的是,t检验是基于一些假设的,例如,数据满足正态分布和两组数据是独立的。
如果这些假设不成立,t检验的结果可能不可靠。
综上所述,t检验是一种用于比较两组数据均值差异是否显著的统计方法。
它可以帮助我们判断两组数据是否有统计学上的显著性差异,并对研究结果进行推断。
医学统计学第八章-t检验

随机数:494 567
随机数:206 126
……
试验
对照
试验
对照
对照
试验
对子号
试验组
对照组
1
门诊6
门诊1
2
门诊4
门诊2
3
门诊3
门诊5
……
……
试验组与对照组的两个观察对象均按照一定的条件配成对子, 同一对子中的“混杂”因素在二者间几乎相同;而在不同对子 间这些“混杂”因素则有可能差别很大
01
02
03
单样本资料的t检验
单样本资料的t检验
P/ 2
P / 2
t39
0
-2.023
2.023
-1.294
1.294
1/2α
1/2 α
由于t=-1.294>t0.05/2,35=-2.023,因此虽然无法准确得出P值,但仍然可以推断P>0.05(经过计算机软件得出结果P=0.203 )
在a=0.05的水准上,不拒绝H0,尚不认为农村新生儿的出生体重与该地平均水平不同。
2
样本对应的总体均数等于3.36,仅仅是由于抽样误差所致这种差别;
3
非抽样误差,二者的确有别?
4
两种情况只有一个是正确的,且二者必居其一,需要我们作出推断。
单样本资料的t检验
H0:=3.36,农村新儿体重与该地平均水平相同
H1:≠3.36,二者不同 (有可能高也有可能低,总之不相等即可)
检验水准a=0.05(双侧)
02
假设检验与区间估计的关系
2.018
前面阐述了方差齐性的情况下,如何进行两个样本均数比较的t检验
如果方差不齐,很多学者建议在这样的情况下采用自由度校正的方法计算t分布的概率,或者直接采用非参数检验
随机数:206 126
……
试验
对照
试验
对照
对照
试验
对子号
试验组
对照组
1
门诊6
门诊1
2
门诊4
门诊2
3
门诊3
门诊5
……
……
试验组与对照组的两个观察对象均按照一定的条件配成对子, 同一对子中的“混杂”因素在二者间几乎相同;而在不同对子 间这些“混杂”因素则有可能差别很大
01
02
03
单样本资料的t检验
单样本资料的t检验
P/ 2
P / 2
t39
0
-2.023
2.023
-1.294
1.294
1/2α
1/2 α
由于t=-1.294>t0.05/2,35=-2.023,因此虽然无法准确得出P值,但仍然可以推断P>0.05(经过计算机软件得出结果P=0.203 )
在a=0.05的水准上,不拒绝H0,尚不认为农村新生儿的出生体重与该地平均水平不同。
2
样本对应的总体均数等于3.36,仅仅是由于抽样误差所致这种差别;
3
非抽样误差,二者的确有别?
4
两种情况只有一个是正确的,且二者必居其一,需要我们作出推断。
单样本资料的t检验
H0:=3.36,农村新儿体重与该地平均水平相同
H1:≠3.36,二者不同 (有可能高也有可能低,总之不相等即可)
检验水准a=0.05(双侧)
02
假设检验与区间估计的关系
2.018
前面阐述了方差齐性的情况下,如何进行两个样本均数比较的t检验
如果方差不齐,很多学者建议在这样的情况下采用自由度校正的方法计算t分布的概率,或者直接采用非参数检验
医学统计学(李琳琳)6-2t检验

【解析】
资料类型:定量资料
设计类型:两独立样本
统计方法:根据正态性检验和方差齐性检验结果来
定(软件运行结果显示两样本均来自正态分布的总
体且总体方差齐,因此采用t检验)。
例6-2 正态性检验结果
对于患者 H0:数据服从正态分布 H1:不服从正态分布 0.10 采用Shapiro-Wilk W检验, 其统计量为0.967, P= 0.698 不拒绝 ,可以认为患者组 数据服从正态分布。 对于对照 H0:数据服从正态分布 H1:不服从正态分布 0.10 采用Shapiro-Wilk W检验, 其统计量为0.985, P= 0.978 不拒绝 ,可以认为对照组 数据服从正态分布。
例6-2 t检验结果
(1) H 1
H0
1 2
1 2
0.05
(2)计算检验统计量
X1 X 2 t 11.314 1 2 1 Sc ( ) n1 n2
(3)查 t界值表,得P<0.05, 按α=0.05水准拒绝H0,接
受H1,可以认为新生儿缺氧缺血性脑病患者急性期血浆
思考
两独立样本t检验和校正t检验的适用条件分别是什 么? 该采用校正t检验时,却误用t检验,会对结果产生 什么样的影响?
配对设计是研究者为了控制可能存在的非 处理因素,增加两组的可比性而采用的一种 实验设计方法,当总样本量一定时,采用配 对设计往往会获得较高的检验效能。
配对设计实施的主要形式: ①异体配对。将受试对象按一定条件配成对子(同种属、同体 重、同年龄、同性别等),再随机分配每对中的两个受试对 象到不同的处理组; ②自身配对。同一受试对象分别接受两种不同处理,其目的是 推断两种处理的效果有无差别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
检验假设为
H0:μ1=μ2,
H1:μ1≠μ2
已知当H0成立时,检验统计量
t X1 X2
S
2 c
(
1 n1
1 n2
)
自由度=n1+n2-2
S
2 c
(n1
1)S12
(n2
1)S
2 2
n1 n2 2
(X1 X1)2 (X2 X2)2 n1 n2 2
三、两独立样本均数的假设检验
• 应用条件: 正态 两总体方差相等
均数与72之间的差异是抽样误差造成 从总体2中抽样
µ2≠72
样本3 X3 74.2
均数与72之间的差异是本质差异造成
总体1
µ1=72
总体2
µ2≠72
样本 X74.2
????
即:需要推断74.2与72之间 的差异是由抽样误差造成, 还是由本质差异造成的?
µ0=72
µ≠72
现在用两个符号来分别代表前面的两个总体,
µ0:1998年大量调查结果:脉搏数的总体均数(72) µ:2018年的脉搏数的总体均数
假设1:观察到的差异是由抽样误差造成的 即, µ= µ0
称为:原假设
符号表示:H0
假设2:观察到的差异是由本质差异造成的 即, µ≠ µ0
称为:备择假设
符号表示:H1
所有的假设检验都是对零假设(H0)进行检验 收集“否定H0的证据”,否定H0所犯错误的 概率用P表示,概率越小证据越强,否定H0的
t' X1 X 2
S
2 1
S
2 2
n1 n2
(
s
2 x1
s
2 x2
)
2
s4 x1
s4 x2
n1 1 n2 1
案例1
目的:美泰宁对睡眠作用的影响 分组:40只体重相近的雄性小鼠,随机分为溶剂
对照组和3个剂量组 效应指标:入睡记为1,未入睡记为0 结果:如下
t检验结果
1组与2组,t=1.41,P=0.1769 1组与3组,t=3.18,P=0.0052 。。。。。 3组与4组,t=0.00,P=1.0000
实际情况
H0成立,无差异 H1 成立,有差异
检验结果
拒绝H0 ,有差异
第Ⅰ类错误 (α) 假阳性
结论正确 (1-β)
不拒绝H0,无差异
结论正确(1-α) 第Ⅱ类错误(β)
假阴性
假设检验中的两类错误
当样本量一定时,第Ⅰ类错误的概率α变小,第Ⅱ类 错误的概率β就变大,要同时减少两类错误,必须增
大样本量n
大样本时
Z X 0
S/ n
小样本时
t X 0
S/ n
n1
二、配对设计资料的假设检验
配对实施的形式主要有: (1)异源配对:将受试对象按特征相似的每两个对
象配成一对,同对的两个对象分别接受不同处理
(2)同源配对:同一对象的两个部位分别接受不同 处理;或同一样品分成两份,分别接受不同处理
分析要点: 对每对的两个观察值之差进行分析,推断
案例1中分析(描述、假设检验)中的错误?
案例2
错误在哪?
总体
抽样
样本
统计推断
总体参数
样本统计量
参数估计
假设检验
主要内容
假设检验基本思想、步骤 t检验
假设检验的基本思想
生活中实例: 购买一张足球彩票,是否中奖? 大学生张三是否从不骂人?
例子
大量调查结果:1998年某地成年男子的脉搏均 数为72次/分钟。
某医生2018年在该地随机抽查了75名男子,求 得其脉搏均数74.2次/分钟,标准差为6.5次 /分钟。请问,能否认为该地成年男子的脉 搏数不同于1998年?
不是一个小概率事件,那么就还没有充足的理由否定
H0 。于是做出不拒绝H0的决策。
假设检验的两类错误
假设检验的两类错误 • 第Ⅰ类错误(type I error):拒绝原本正
确的H0,导致推断结论的错误。
• 第Ⅱ类错误(type Ⅱ error) : 不拒绝
原本错误的H0,导致推断结论的错误。
推断结论和两类错误
理由就越充分。
本例
零假设
H0:μ=μ0=72
备择假设 H1: μ≠μ0=72
ux0 7.42722.93 0/ n 6.5/ 75
u=2.93,说明了什么???
统计量的尾部面积, 即p值
P值示意图
样本计算出来的u值
假设检验基本思想
理解两点:反证法思想、小概率原理
二、假设检验的基本步骤
• 建立检验假设并确定检验水准
假设检验的注意事项
• 假设检验结论正确的前提 • 检验方法的选用及其适用条件 • 双侧检验与单侧检验的选择 • 假设检验的结论不能绝对化 • 正确理解P值的统计意义
两均数比较的假设检验方法
一、单样本资料的假设检验
目的:推断样本来自的总体均数与已知的总体均数有无差别
检验假设
μ0)
差值的总体均数是否为0
检验假设为
H0 :μd= 0, H1 :μd≠0
当成立时,检验统计量
t d 0 Sd / n
n1
三、两独立样本均数的假设检验
设计: 将受试对象随机分配成两组,每一组随机接受
一种处理或从不同总体中抽样对比观察其1效 应 目的: 检验两样本代表的总体均数是否有差别
三、两独立样本均数的假设检验
两样本的方差齐性检验
HH10::,
12 22
2
2
1
2
F
S( 12 较大) S(22 较小)
ν1=n1-1,ν2=n2-1
(二)两总体方差不等时
数据变换 近似t检验(t’检验) 非参数检验
Satterthwaite近似t检验(t’检验)
检验假设为
H0:μ1=μ2, 统计量t’作检验。
H1:μ1≠μ2
研究结果可供选择的结论(目前的假设)有哪些?
1、该地成年男子的脉搏数与1998年没有差异 2、该地成年男子的脉搏数与1998年有差异
两种假设在统计上的含义
• 抽样研究存在抽样误差!!
总体 均数=72
样本1 X1 72.8 样本2 X2 74.2
从总体1中抽样
样本1 X1 72.8
µ1=72
样本2 X2 74.2
• 选择恰当的统计检验方法,计算统计量 • 确定P值,作出推断
推断结论
假设检验的推断结论的出发点是:是否否定H0
判断准则(小概率原理)
1. 若P≤α,则意味着在H0成立的条件下获得目前的情
况是一个小概率事件,根据“小概率原理”,有充
分的理由怀疑H0的真实性,从而否定(拒绝)H0, 于是只能接受H1 。 2. 若P>α,则意味着在H0成立的条件下获得目前的情况