Workbench热分析实例之一.
基于ANSYSWORKBENCH的通电导线的热分析

基于ANSYSWORKBENCH的通电导线的热分析本篇文章是关于ANSYS WORKBENCH的耦合场分析的一个例子。
一根导线在通稳恒电流后会发热,这属于电-热耦合分析,例子本身很简单,只是说明WORKBENCH自带的耦合分析系统的使用。
【问题描述】一根裸露导线,电阻为R,通过电流为I,需要计算电线中心温度和表面温度。
已知导线的长度为0.1米,截面半径为0.005米,导线的热传导率是60.5瓦每米摄氏度,电阻率是1.7e-1欧姆米,电流大小是20安培,环境温度是20摄氏度,导线裸露表面与空气的对流换热系数是5瓦特每平方米摄氏度。
X(注:该题来自于《ANSYS 13.0 WORKBENCH数值模拟技术》,许京荆编著)【问题分析】ANSYS WORKBENCH中自带热电分析系统,可以直接进行热电耦合分析。
使用过程与一般分析相同。
【求解过程】1.打开ANSYS WORKBENCH14.52.创建热-电分析系统。
3.创建材料模型。
双击engineering data进入到工程数据中。
系统默认的钢材的热传导率和电阻率与已知条件相同,不需要修改。
退回到WB界面。
4.创建几何模型。
双击geometry进入到DM中,选择长度单位是毫米。
其尺寸如下图退出DM.5.划分网格。
6.设置边界条件。
设置一个端面电压为零。
设置另外一个端面的电流为20安。
对外圆柱面设置对流边界条件。
7.求解。
8.后处理。
温度云图。
整个导体温度均匀。
电压云图。
焦耳热云图。
基于ANSYS WORKBENCH的摩擦生热分析【范本模板】

本篇文章说明,如何在WORBENCH中通过改变单元的形式来做摩擦生热的耦合分析。
【问题描述】在一个定块上,有一个滑块。
在滑块顶顶面上施加一垂直于表面指向定块的10MPa 的分布力系。
现在滑块在定块表面上滑行3.75mm,要求摩擦而产生的热量,并计算滑块和定块内部的温度分布和应力分布。
定块的尺寸:宽5mm,高1.25mm,厚1mm滑块的尺寸:宽1.25mm,高1.5mm,厚1mm材料:弹性模量:7e10Pa;泊松比:0。
3;密度:2700kg/m(3);热膨胀系数:23。
86e-6/k;摩擦系数:0.2;热导率:150W/(M K);比热:900J/(kg K)(注)该问题来自于许京荆的《ANSYS13。
0 WORKBNCH数值模拟技术》,中国水利水电出版社,2012,P381。
【问题分析】关键技术分析:此问题属于摩擦生热,不能够使用载荷传递法,而只能使用直接耦合法。
这就是说,只能用一个耦合单元来计算摩擦生热问题。
解决该问题的基本思路如下:(1)使用瞬态结构动力学分析系统(2)在该系统中更改单元为PLANE223,它是一个耦合单元,可以完成多种耦合分析,这里使用其结构—热分析功能。
(3)定义两个载荷步,第一步将动块移动到指定位置,第二步保持最终位置,以获得平衡解。
(4)在求解设置中,关闭结构分析的惯性部分,而只做静力学结构分析,但是对于热分析仍旧做瞬态热分析.(5)由于使用了瞬态动力学分析,结果中默认是没有温度可以直接从界面中得到的.需要自定义结果,提取温度.(6)此问题要多处使用插入命令的方式,从而可以在WORKBENCH中使用APDL的功能。
(7)瞬态结构动力学分析系统的工程数据中,无法得到热分析的部分参数,所以需要先创建一个单独的工程数据系统,然后把它与瞬态结构动力学分析的工程数据单元格相关联。
(8)在DM中创建两个草图,然后根据草图得到面物体.再对这两个面物体进行平面应力的分析。
(9)本博文的主要目的是要阐述:如何在WORKBENCH中使用耦合单元进行多物理场的耦合分析。
workbench 热分析案例

定
义 边 界 条 件
热源: 与墙体平行的壁面采用 temperature边界条件,定 义其温度为50℃,其余壁 面均为绝热边界条件。
5
结
果
及
分
析
温度场云图: 通过显示计算得出的温度 场可以看出该模型的最小 温度值出现在墙体外表面 顶部与底部,在该模型中 温度场关于yz平面对称。
6
结
果
及
分
析
热通量矢量图:
物
理
模
型
物理模型简化:
混凝墙壁上附热源,热 源为一侧等壁温,其余 壁面为绝热壁面。热源 附在墙面中间并与墙面 垂直。在ansys的 DesignModeler中进行建 模。
1
பைடு நூலகம்
划
分
网
格
网格剖分:
采用ansys的mesh块对导入 的几何体进行网格划分,网 格为四面体网格,网格最大 边长为5mm。
2
定
通过观察热通量矢量图可 以发现热量的传递方向及 密度分布情况。
7
结
果
及
分
析
一维导热区域分布:
在该模型中一维导热区域 (xz平面)如图所示。在 该稳态导热过程中y方向所 有截面热流密度均相同。
8
义
边
界 条 件
墙壁外表面: 采用convection边界条件, 设定外界空气温度10℃, 换热系数为0.36W/㎡·k。
3
定 义 边 界 条 件
墙壁内表面:
裸露于空气的表面采用 convection边界条件,拟 定外界空气温度20℃, 换热系数为0.36W/㎡·k, 与热源接触表面采用耦合 边界条件。
workbench热分析案例

•6
划分网 格
网格剖分: 采用ansys的mesh块对导入 的几何体进行网格划分,网 格为四面体网格,网格最大 边长为5mm。
•1
定 义 边 界条件
墙壁外表面: 采用convection边界条件, 设定外界空气温度10℃, 换热系数为0.36W/㎡·k。
•2
定义边界条件
墙壁内表面:
裸露于空气的表面采用 convection边界条件,拟 定外界空气温度20℃, 换热系数为0.36W/㎡·k, 与热源接触表面采用耦合 边界条件。
•3
定 义边界条件
热源: 与墙体平行的壁面采用 temperature边界条件,定 义其温度为50℃,其余壁 面均为绝热边界条件。
•4
结 果及分析
温度场云图:
通过显示计算得出的温度 场可以看出该模型的最小 温度值出现在墙体外表面 顶部与底部,在该模型中 温度场关于yz平面对称。
•
结 果及分析
ANSYS Workbench 17·0有限元分析:第12章-热分析

第12章 热分析 热力学分析(简称热分析)用于计算一个系统或部件的温度分布及其他各种热物理参数,如热量的获取与损失、热梯度、热流密度(热通量)等。
热分析在许多工程应用中扮演着非常重要的角色,如内燃机、涡轮机、换热器、电子元件等。
★ 了解传热的基础知识。
12.1 传热概述传热分析(Steady-State Thermal Analysis )遵循热力学第一定律,即能量守恒定律。
对于一个封闭的系统(没有质量的流入或流出),则:PE KE U W Q Δ+Δ+Δ=−式中Q 为热量,W 为所做的功,ΔU 为系统的内能,KE Δ为系统的动能,PE Δ为系统的势能。
对于大多数工程传热问题:0==PE KE ΔΔ若不考虑做功,即0=W ,则U Q Δ=;对于稳态热分析:0=Δ=U Q即流入系统的热量等于流出的热量;对于瞬态热分析:q dU dt =即流入或流出的热传递速率q 等于系统内能的变化。
12.1.1 传热方式热分析包括热传导、热对流、热辐射三种传热方式。
ANSYS Workbench 17.0有限元分析从入门到精通1.热传导热传导可以定义为完全接触的两个物体之间,或一个物体的不同部分之间由于温度梯度而引起的内能交换。
热传导遵循傅里叶定律:dxdT k q −=′′ 式中q ′′为热流密度(W/m 2),k 为导热系数。
2.热对流热对流是指固体的表面与它周围接触的流体之间,由于温差的存在引起的热量交换。
热对流可以分为两类:自然对流和强制对流。
热对流用牛顿冷却方程来描述:)(B T S T h q −=′′ 式中h 为对流换热系数(或称膜传热系数、给热系数、膜系数等),S T 为固体表面的温度,B T 为周围流体的温度。
3.热辐射热辐射是指物体发射电磁能,并被其他物体吸收转变为热的热量交换过程。
物体温度越高,单位时间内辐射的热量就越多。
热传导和热对流都需要有传热介质,而热辐射无须任何介质。
实质上,在真空中的热辐射效率最高。
workbench 热分析案例

精品课件
2
界条件
定义边
墙壁外表面:
采用convection边界条件, 设定外界空气温度10℃, 换热系数为0.36W/㎡· k。
精品课件
3
条件
定义边界
墙壁内表面:
裸露于空气的表面采用 convection边界条件,拟 定外界空气温度20℃,换 热系数为0.36W/㎡· k, 与热源接触表面采用耦合 边界条件。
物理模型
ห้องสมุดไป่ตู้
物理模型简化:
混凝墙壁上附热源,热 源为一侧等壁温,其余 壁面为绝热壁面。热源 附在墙面中间并与墙面 垂直。在ansys的 DesignModeler中进行 建模。
精品课件
1
网
格
划
分
网格剖分:
采用ansys的mesh块对导入 的几何体进行网格划分,网 格为四面体网格,网格最大 边长为5mm。
及分析
结果
热通量矢量图:
通过观察热通量矢量图可 以发现热量的传递方向及 密度分布情况。
精品课件
7
及分析
结果
一维导热区域分布:
在该模型中一维导热区域 (xz平面)如图所示。在 该稳态导热过程中y方向所 有截面热流密度均相同。
精品课件
8
精品课件
4
界条件
定 义边
热源:
与墙体平行的壁面采用 temperature边界条件,定 义其温度为50℃,其余壁 面均为绝热边界条件。
精品课件
5
及分析
结果
温度场云图:
通过显示计算得出的温度 场可以看出该模型的最小 温度值出现在墙体外表面 顶部与底部,在该模型中 温度场关于yz平面对称。
精品课件
6
ANSYS Workbench 热分析教程

传热学上机实验指导书ANSYS Workbench 热分析基础教程编制:杨润泽汽车工程系热能教研室2012年7月1.大平板一维稳态导热问题1.1. 问题描述长500mm,宽300mm,厚度30mm的大钢板,钢板上下表面的温度分别为200℃和60℃,钢的导热率为30W/(m·K),试分析钢板温度分布和热流密度。
图1-1 大平板一维稳态导热模型1.2. 问题分析该问题为稳态导热问题,分析思路如下:1.选择稳态热分析系统。
2.确定材料参数:稳态导热问题,仅输入平板导热率。
3.【DesignModeler】建立钢板的几何模型。
4.进入【Mechanical】分析程序。
5.网格划分:采用系统默认网格。
6.施加边界条件:钢板上下表面施加温度载荷,四周对称面无热量交换,为绝热边界,系统默认无需输入。
7.设置需要的结果:温度分布和热流密度。
8.求解及结果显示。
1.3. 数值模拟过程1、选择稳态热分析系统1)工程图解中调入稳态热分析系统Steady-State Thermal(ANSYS)2)工程命名Conduction Thermal Analysis3)保存工程名为Conduction Heat Transfer2、确定材料参数1)编辑工程数据模型,添加材料的导热率,右击鼠标选择【Engineering Data】【Edit】2)选择钢材料属性【Properties of Outline Row 3: Structure Steel】【Isotropic ThermalConductivity】3)出现【Table of Properties Row 2: Thermal Conductivity】材料属性表,双击鼠标,点击每个区域输入材料属性参数:温度20℃,导热率30W/(m·℃)。
4)参数输完后,工程数据表显示导热率-温度图表。
3、DM建立模型1)选择【Geometry】【New Geometry】,出现【DesignModeler】程序窗口,选择尺寸单位【Millimeter】。
workbench有趣案列

workbench有趣案列
ANSYS Workbench 是一个强大的工程仿真软件平台,可以用于处理各种复杂的系统和组件。
下面是一些有趣的ANSYS Workbench 案例:
1.风力发电机设计:在Workbench中,可以使用CFD (Computational Fluid Dynamics)工具对风力发电机进行流场分析,优化设计,使其在风力利用效率方面达到最优。
2.汽车碰撞测试:利用Workbench的结构分析模块,可以对汽车进行碰撞测试分析,评估其结构强度和安全性。
3.机器人手臂优化:通过Workbench的优化设计模块,可以针对机器人手臂的各项性能指标进行优化,提高其运动性能和效率。
4.电子设备散热设计:使用Workbench的热分析工具,可以帮助设计者对电子设备的散热性能进行模拟和优化,确保设备在高负荷情况下仍能保持良好的散热效果。
5.航空发动机性能预测:通过Workbench的流体动力学分析工具,可以模拟航空发动机的工作过程,预测其性能表现,为发动机的设计和优化提供依据。
这些案例只是展示了Workbench的部分功能和应用场景,Workbench平台还具有更多高级功能和复杂的工程应用可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Inventory #00557 WS9-4
飞轮铸造分析-控制
• 激活时间积分。使用向后欧拉时间积分。 • 激活线性搜索收敛增强工具。 • 热导率表现了沙与铝的接触。 • 将进行两个分析
–Case 1: 观察1分钟内的凝固。 –Case 2: 运行第二个工况,持续30秒。
• 激活自动时间步
–初始和最小时间步长为0.001 sec –Case 1: 最大时间步长2.0 sec –Case 2: 最大时间步长5.0 sec
•铝 注意,密度和比热将被删除,因为可以替代的计算热焓。
温度相关的热导率
Temperature (°C) 100 200 300 400 530 800
KXX (W/m-°C) 206 215 228 249 268 290
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
Workbench-Simulation Heat Transfer 11.0
Workshop 9 – 飞轮铸造(相变分析)
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
Workbench-Simulation Heat Transfer ANSYS, Inc. Proprietary
Inventory #002557 WS9-1
案例 – 飞轮铸造分析
• 为了讲述在课程中论述的相变技术,将进行 一个飞轮铸造分析:
• 问题描述:
– 对一个铝制飞轮铸造进行相变分析。飞 轮是将溶解的铝注入沙模中制造的。
• 分析目标:
– 研究飞轮凝固过程。
Workshop Supplement
几何文件Wheel.agdb - 轴对称几何
飞轮几何
• 沙漠几何:
Workshop Supplement
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
Workbench-Simulation Heat Transfer ANSYS, Inc. Proprietary
Inventory #00557 WS9-7
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
Workbench-Simulation Heat Transfer ANSYS, Inc. Proprietary
Inventory #00557 WS9-2
飞轮铸造分析
Workshop Supplement
Workshop Supplement
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
Workbench-Simulation Heat Transfer ANSYS, Inc. Proprietary
Inventory #00557 WS9-5
• 建立对流边界条件。
–环境温度为30 °C,沙模侧面换热系数为7.5 W/m2-°C ,沙模顶面为5.75 W/m2-°C。
–底部不指定边界条件 (完全绝热).
• 在后处理中建立温度探测器。
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
Workbench-Simulation Heat Transfer ANSYS, Inc. Proprietary
Workbench-Simulation Heat Transfer ANSYS, Inc. Proprietary
Inventory #00557 WS9-9
材料属性 – 飞轮铸造分析
• 沙模的材料属性 (常数): 热导率: 密度: 比热:
0.346 W/m-°C 1520 kg/m3 816 J/kg-°C
Workbench-Simulation Heat Transfer ANSYS, Inc. Proprietary
Inventory #00557 WS9-3
步骤
Workshop Supplement
• 定义两种材Βιβλιοθήκη : 铝和沙。 • 建立瞬态热分析–指定时间步长控制。 –求解控制。
• 指定初始条件。 –沙模25 °C –铝800 °C
案例 – 飞轮铸造分析
飞轮几何:
Workshop Supplement
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
Workbench-Simulation Heat Transfer ANSYS, Inc. Proprietary
Inventory #00557 WS9-6
描述 • 部件在圆柱形沙模(高20厘米,半径25厘米)的中心。 • 铝在800 °C时注入沙模。 • 沙模初始温度为 25 °C 。 • 模型顶面和侧面与环境通过自由对流交换热量。 • 假设沙模和铝均为轴对称。 • 假设沙的热材料属性为常数,铝随时间变化。比热和密度将用来计算铝的热焓。
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
Workbench-Simulation Heat Transfer ANSYS, Inc. Proprietary
Inventory #00557 WS9-8
几何类型
• 确认在2D behavior中选择了 “Axisymmetric” 。 高亮Geometry ,查看其细节栏。
Workshop Supplement
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
使用已存在的几何文件
Workshop Supplement
• 双击“wheel.agdb”,返回到Project 页,高亮wheel,打开Simulation,注意需要改变分析类型为2D
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
Workbench-Simulation Heat Transfer ANSYS, Inc. Proprietary