ANSYS WORKBENCH 11.0热分析

合集下载

ANSYS WORKBENCH 11.0模态分析

ANSYS WORKBENCH 11.0模态分析

ANSYS WORKBENCH 11.0培训教程(DS)第五章模态分析概述•在本章节主要介绍如何在Design Simulation中进行模态分析. 在Design Simulation中, 进行一个模态分析类似于一个线性分析.–假定用户已经对第四章的线性静态结构分析有了一定的学习了解.•本节内容如下:–模态分析流程–预应力模态分析流程•本节所介绍的这些性能通常能适用于ANSYS DesignSpace Entra licenses及更高的lisenses.–在本节讨论的一些选项可能需要更多的高级lisenses, 需要时会相应的标示出来.–谐响应和非线性静态结构分析在本节将不进行讨论.模态分析基础•对于一个模态分析, 固有圆周频率ωi 和振型φi 都能从矩阵方程式里得到:在某些假设条件下的结果与分析相关:–[K] 和[M] 是常量:•假设为线弹性材料特性•使用小挠度理论, 不包含非线性特性•[C] 不存在, 因此不包含阻尼•{F} 不存在, 因此假设结构没有激励•根据物理方程, 结构可能不受约束(rigid-body modes present) ,或者部分/完全的被约束住•记住这些在Design Simulation 中进行模态分析的假设是非常重要的.[][](){}02=−ii M K φωA. 模态分析过程•模态分析过程和一个线性静态结构分析过程非常相似, 因此这里不再详细的介绍每一操作步骤. 下面这些步骤里面,黄色斜体字体部分是模态分析所特有的.–建模–设定材料属性–定义接触对(假如存在)–划分网格(可选择)–施加载荷(假如存在的话)–需要使用Frequency Finder 结果–设置Frequency Finder 选项–求解–查看结果…几何模型和质量点•类似于线性静态分析, 任何一种能被Design Simulation支持的几何模型都有可以使用:–实体、面体和线体•对于线体,只有振型和位移结果是可见的。

workbench 热分析案例

workbench  热分析案例
4

义 边 界 条 件
热源: 与墙体平行的壁面采用 temperature边界条件,定 义其温度为50℃,其余壁 面均为绝热边界条件。
5





温度场云图: 通过显示计算得出的温度 场可以看出该模型的最小 温度值出现在墙体外表面 顶部与底部,在该模型中 温度场关于yz平面对称。
6





热通量矢量图:




物理模型简化:
混凝墙壁上附热源,热 源为一侧等壁温,其余 壁面为绝热壁面。热源 附在墙面中间并与墙面 垂直。在ansys的 DesignModeler中进行建 模。
1
பைடு நூலகம்




网格剖分:
采用ansys的mesh块对导入 的几何体进行网格划分,网 格为四面体网格,网格最大 边长为5mm。
2

通过观察热通量矢量图可 以发现热量的传递方向及 密度分布情况。
7





一维导热区域分布:
在该模型中一维导热区域 (xz平面)如图所示。在 该稳态导热过程中y方向所 有截面热流密度均相同。
8


界 条 件
墙壁外表面: 采用convection边界条件, 设定外界空气温度10℃, 换热系数为0.36W/㎡·k。
3
定 义 边 界 条 件
墙壁内表面:
裸露于空气的表面采用 convection边界条件,拟 定外界空气温度20℃, 换热系数为0.36W/㎡·k, 与热源接触表面采用耦合 边界条件。

workbench热分析案例

workbench热分析案例
热通量矢量图: 通过观察热通量矢量图可 以发现热量的传递方向及 密度分布情况。
•6
划分网 格
网格剖分: 采用ansys的mesh块对导入 的几何体进行网格划分,网 格为四面体网格,网格最大 边长为5mm。
•1
定 义 边 界条件
墙壁外表面: 采用convection边界条件, 设定外界空气温度10℃, 换热系数为0.36W/㎡·k。
•2
定义边界条件
墙壁内表面:
裸露于空气的表面采用 convection边界条件,拟 定外界空气温度20℃, 换热系数为0.36W/㎡·k, 与热源接触表面采用耦合 边界条件。
•3
定 义边界条件
热源: 与墙体平行的壁面采用 temperature边界条件,定 义其温度为50℃,其余壁 面均为绝热边界条件。
•4
结 果及分析
温度场云图:
通过显示计算得出的温度 场可以看出该模型的最小 温度值出现在墙体外表面 顶部与底部,在该模型中 温度场关于yz平面对称。

结 果及分析

workbench 热分析案例

workbench  热分析案例

精品课件
2
界条件
定义边
墙壁外表面:
采用convection边界条件, 设定外界空气温度10℃, 换热系数为0.36W/㎡· k。
精品课件
3
条件
定义边界
墙壁内表面:
裸露于空气的表面采用 convection边界条件,拟 定外界空气温度20℃,换 热系数为0.36W/㎡· k, 与热源接触表面采用耦合 边界条件。
物理模型
ห้องสมุดไป่ตู้
物理模型简化:
混凝墙壁上附热源,热 源为一侧等壁温,其余 壁面为绝热壁面。热源 附在墙面中间并与墙面 垂直。在ansys的 DesignModeler中进行 建模。
精品课件
1




网格剖分:
采用ansys的mesh块对导入 的几何体进行网格划分,网 格为四面体网格,网格最大 边长为5mm。
及分析
结果
热通量矢量图:
通过观察热通量矢量图可 以发现热量的传递方向及 密度分布情况。
精品课件
7
及分析
结果
一维导热区域分布:
在该模型中一维导热区域 (xz平面)如图所示。在 该稳态导热过程中y方向所 有截面热流密度均相同。
精品课件
8
精品课件
4
界条件
定 义边
热源:
与墙体平行的壁面采用 temperature边界条件,定 义其温度为50℃,其余壁 面均为绝热边界条件。
精品课件
5
及分析
结果
温度场云图:
通过显示计算得出的温度 场可以看出该模型的最小 温度值出现在墙体外表面 顶部与底部,在该模型中 温度场关于yz平面对称。
精品课件
6

Workbench热分析实例之一

Workbench热分析实例之一
• 铝的热焓数据不直接给出,但是我们可以从已有数据中计算出热焓。 • 定义热焓属性:
–选择Ts = 700 °C 以及Tl = 695 °C ( 在流体和固体之间定义5 °C 的相变 区间)
属性 熔点 密度 Cs, 固体比热 Cl,流体比热 L, 潜热 (或 L x 密度)
• 热焓计算结果数据
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.
Workbench-Simulation Heat Transfer ANSYS, Inc. Proprietary
Inventory #00557 WS9-16

• 热焓数据必须要用命令行添加。 • 高亮 “wheel” ,然后插入命令:
• 注意命令行下的注释: 飞轮的材料属性号可以简单的记为参数 “matid”
Inventory #00557 WS9-4
飞轮铸造分析-控制
• 激活时间积分。使用向后欧拉时间积分。 • 激活线性搜索收敛增强工具。 • 热导率表现了沙与铝的接触。 • 将进行两个分析
–Case 1: 观察1分钟内的凝固。 –Case 2: 运行第二个工况,持续30秒。
• 激活自动时间步
–初始和最小时间步长为0.001 sec –Case 1: 最大时间步长2.0 sec –Case 2: 最大时间步长5.0 sec
• 建立对流边界条件。
–环境温度为30 °C,沙模侧面换热系数为7.5 W/m2-°C ,沙模顶面为5.75 W/m2-°C。
–底部不指定边界条件 (完全绝热).
• 在后处理中建立温度探测器。
July 14, 2008 © 2008 ANSYS, Inc. All rights reserved.

ANSYS Workbench 热分析教程

ANSYS Workbench 热分析教程

传热学上机实验指导书ANSYS Workbench 热分析基础教程编制:杨润泽汽车工程系热能教研室2012年7月1.大平板一维稳态导热问题1.1. 问题描述长500mm,宽300mm,厚度30mm的大钢板,钢板上下表面的温度分别为200℃和60℃,钢的导热率为30W/(m·K),试分析钢板温度分布和热流密度。

图1-1 大平板一维稳态导热模型1.2. 问题分析该问题为稳态导热问题,分析思路如下:1.选择稳态热分析系统。

2.确定材料参数:稳态导热问题,仅输入平板导热率。

3.【DesignModeler】建立钢板的几何模型。

4.进入【Mechanical】分析程序。

5.网格划分:采用系统默认网格。

6.施加边界条件:钢板上下表面施加温度载荷,四周对称面无热量交换,为绝热边界,系统默认无需输入。

7.设置需要的结果:温度分布和热流密度。

8.求解及结果显示。

1.3. 数值模拟过程1、选择稳态热分析系统1)工程图解中调入稳态热分析系统Steady-State Thermal(ANSYS)2)工程命名Conduction Thermal Analysis3)保存工程名为Conduction Heat Transfer2、确定材料参数1)编辑工程数据模型,添加材料的导热率,右击鼠标选择【Engineering Data】【Edit】2)选择钢材料属性【Properties of Outline Row 3: Structure Steel】【Isotropic ThermalConductivity】3)出现【Table of Properties Row 2: Thermal Conductivity】材料属性表,双击鼠标,点击每个区域输入材料属性参数:温度20℃,导热率30W/(m·℃)。

4)参数输完后,工程数据表显示导热率-温度图表。

3、DM建立模型1)选择【Geometry】【New Geometry】,出现【DesignModeler】程序窗口,选择尺寸单位【Millimeter】。

ANSYS WORKBENCH 11.0热分析

ANSYS WORKBENCH 11.0热分析
• 当一侧为接触面而另一侧为目标面时,称为反对称接触。另一方
面,如果两侧都被指定成接触面或目标面,则称为对称接触。 但是,在热分析中,指定哪一侧是接触面,哪一侧是目标面并不 重要。 • 缺省时,DS对实体装配体使用对称接触。 对ANSYS Professional 及更高级licenses ,用户可在需要时改 为反对称接触。
Availability
x x
x
In the figure on the left, the solid green double-arrows indicate heat flow within the contact region. Heat flow only occurs if a target surface is normal to a contact surface.
Availability
x x
x
Model shown is from a sample Inventor assembly.
… 装配体 – 接触区
• 在DS中,每个接触区都用到接触面和目标面的概念。
– 接触区的一侧由接触面组成,另一侧由目标面组成。 – 在接触的法向上允许有接触面和目标面间的热流。
Initially Touching
Inside Pinball Region Outside Pinball Region
Yes
Yes
No
Yes
Yes
No
Yes
No
No
Yes
No
No
– 接触的 pinball 区域由程序自动定义并被设置一个相对较小的 值,以调和模型中可能出现的小间隙。pinball 区域将在下一
The light, dotted green arrows indicate that no heat transfer will occur between parts.

AnsysWorkbench在电机温度场分析的实际运用

AnsysWorkbench在电机温度场分析的实际运用

Ansys Workbench在电机温度场分析的实际运用发布时间:2022-09-08T05:17:38.048Z 来源:《科学与技术》2022年第9期第5月作者:王刚郑玉鑫[导读] 温升高是电机最为主要的故障原因,而电机的种类很多,不同种类有着多种多样冷却方式王刚、郑玉鑫东方电气(德阳)电动机技术有限公司中国.德阳618000摘要:温升高是电机最为主要的故障原因,而电机的种类很多,不同种类有着多种多样冷却方式,因此,电机的温度分析较为复杂,传统方法是以热负荷作为基准根据试验结果类比电机的设计温升,对于一些特殊结构的电机,热负荷类比法就不能满足设计需要。

采用Ansys Workbench仿真软件通过FEA有限元分析(Finite Element Analysis),可以对特殊结构电机定转子热源分布、以及传导、对流、辐射等要素进行网格化分析。

本文以具体案例的设计分析过程,论述Ansys Workbench稳态温度场在电机设计中的实际运用。

关键词:温升电机温度场有限元 Ansys1 引言我们以一台低压变频异步电动机YVF400-6-315KW、380V、50HZ为研究对象,对其定转子温度场进行仿真分析,对比求解结果与最后型式试验的偏差,从而验证Ansys Workbench仿真软件在特殊电机设计的实际运用。

6.3与型式试验温升值对比采用叠频法,对变频异步电动机YVF400-6-315KW进行温升试验,在额定电流588A工况下,运行4个小时后,定子温度基本稳定,PT100测温元件显示的结果是127度,减去环境温度32度,实际温升95K,与仿真的结果基本接近。

7、结论这次的仿真温度场分析,只考虑了机座表面的辐射散热,暂未考虑机座表面空气的对流影响,因此仿真的温度结果有所偏高,但是,作为电机温度计算的手段之一,能够在传统设计方法基础上,增添一种参考和补充。

参考文献:《Ansys Workbench完全自学一本通》许进峰著,电子工业出版社。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 在接触/目标 界面中,不考虑热量的扩散。
• 在壳或实体单元内的接触面或目标面上,由于傅立叶定律 ( Fourier’s Law),需考虑热量扩散 。
• 在接触区内,热流仅在接触的法向方向上进行。
• 这就意味着,不管接触区定义如何,只要接触法向上有接触单 元,热量就会流动。
ANSYS License DesignSpace Entra De signS pa ce P rofe ssi ona l S tru ctu ra l M e cha nica l/M ulti physics
Availability
x x
x
… 装配体 – 热传导
• 理想的零件间的接触传热系数假定在接触界面上没有 温度降。
• 但人们有可能想知道界面上的有限热传导。
– 接触的两个表面 (处于不同温度)在穿过界面上有温度降。 这种下降是由于两表面间的不良接触产生的。这种不良接 触,以及由此产生的有限热传导, 受到如下一些因素的影 响:
• 本部分讲述的一些功能通常适用于 ANSYS DesignSpace Entra 及更高级的licenses , 但 ANSYS Structural license除外。
稳态传热基础
• 对于一个DS中的稳态热分析, 温度 {T} 是由如下的矩 阵求解:
[K(T )]{T}= {Q(T )}
这就导致了如下的一些假设:
B. 装配体 – 实体接触
• 当导入实体零件组成的装配体时,实体间的接触区将 会被自动创建。
• 面-面接触允许实体零件间的边界上不匹配的网格。
– 接触实现了装配体中零件间的传热。
ANSYS License DesignSpace Entra De signS pa ce P rofe ssi ona l S tru ctu ra l M e cha nica l/M ulti physics
– 如果目标节点落在pinball 区域内,并且
接触是绑定的或者无分离的,则将发生传热 (绿色实线) – 否则,节点间将不会发生传热(绿色虚
线)
ANSYS License DesignSpace Entra De signS pa ce P rofe ssi ona l S tru ctu ra l M e cha nica l/M ulti physics
ANSYS WORKBENCH 11.0 培训教程(DS)
第六章
热分析
本章概览
• 在本章中, 将讲述如何在DS中进行稳态和瞬态热分析:
– 几何模型 – 接触以及支持的装配体类型 – 热载荷 – 求解选项 – 结果和后处理 – Workshop 6.1 – 热瞬态启动 – 瞬态设置 – 瞬态载荷 – 瞬态结果 – Workshop 6.2
– 在稳态热分析中不考虑任何瞬态效应; – [K] 可以是常量或是温度的函数;
• 每种材料属性中都可输入温度相关的热传导率; – {Q} 也可是常量或是温度的函数;
• 在对流边界条件中可以输入温度相关的对流传热膜系数
稳态传热基础
• 上述方程的基础是傅立叶定律(Fourier’s Law):
– 这意味在DS中求解的热分析是基于传导方程。Intially Touching
Inside Pinball Region Outside Pinball Region
Yes
Yes
No
Yes
Yes
No
Yes
No
No
Yes
No
No
– 接触的 pinball 区域由程序自动定义并被设置一个相对较小的 值,以调和模型中可能出现的小间隙。pinball 区域将在下一
• 固体内部的热流(Fourier’s Law) 是 [K]的基础; • 热通量, 热流率、以及对流 在{Q}中被认为是边界条件; • 目前不考虑任何辐射; • 目前不考虑任何时间相关的效应。
– 传热分析与 CFD(Computational Fluid Dynamics)分析不 同。
• 对流被处理成简单的边界条件,虽然对流传热膜系数有可能与温 度相关
Availability
x x
Pinball Radius
In this figure on the right, the gap between the two parts is bigger than the pinball region, so no heat transfer will occur between the parts
Availability
x x
x
Model shown is from a sample Inventor assembly.
… 装配体 – 接触区
• 在DS中,每个接触区都用到接触面和目标面的概念。
– 接触区的一侧由接触面组成,另一侧由目标面组成。 – 在接触的法向上允许有接触面和目标面间的热流。
• 如果需要分析共轭传热/流动问题,则需要用 ANSYS CFD 。
• 在DS中进行热分析时,记住这些假设是很重要的。
Physics Filters
• 在进行热分析详细讨论前,有必要指出,如果只是一 个热分析可以用 Physics Filter 来简化GUI.
– 在 “View menu > Physics Filter,”下去掉 “Structural” 选项. 现 在在GUI中只剩下与热分析有关的选项.
• 表面的平面度 • 表面磨光 • 氧化物 • 残存流体 • 接触压力 • 表面温度 • 导热脂的使用
∆T
T x
… 装配体 – 热传导
• 在ANSYS Professional 及更高级的licenses 中, 用户 可以定义接触传热系数 (TCC)
– 每个接触区都要在 “Details view”中输入单位面积的接触传热 系数 ,如下所示:
虽然定义了线的截面和方向,但这些信息仅对结构分析有意义, 实际的热杆单元(link单元) 将会有一个基于输入属性的 “有效” 的截面。 • 对于线,不会输出任何热通量或热通量矢量,仅能得到温度结果 • 热分析不支持“Point Mass”
ANSYS License DesignSpace Entra De signS pa ce P rofe ssi ona l S tru ctura l M e cha nica l /M ul ti physi cs
… 装配体 – 热传导
• 缺省时,在装配体的零件间会定义一个高的接触导热 系数(TCC)
– 两个零件间的热流量由接触热通量 q定义:
( ) q = TCC ⋅ Ttarget − Tcontact
这里,Tcontact 是位于接触法向上某接触“节点”的温度,Ttarget 是相应的目标“节点”的温度。 – 缺省时,TCC根据设定的模型中的最大KXX值和装配体总体
– 这只对“Environment” 和 “Solution”级别的选项有用. – 如果要进行热应力分析就不能关闭physics filters 中的任何选
项因为结构和热的选项都需要。
ANSYS License DesignSpace Entra De signS pa ce P rofe ssiona l S tructura l M e cha ni ca l /M ultiphysi cs
中用不到。
ANSYS License DesignSpace Entra De si gnS pa ce P rofe ssi ona l S tru ctu ra l M e cha nica l/M ulti physics
Availability x x x
x
如果存在任何温度相关的材料属性,都将导致非线性求解。这是因为,温 度是要求解的量,而材料又取决于温度,因此求解不再是线性。
• 沿着线方向的温度变化仍然要考虑, 但不是沿着截面的。
ANSYS License DesignSpa ce Entra DesignSpa ce P rofe ssi ona l S tructura l Mecha nica l/Multiphysics
A vailabilit y / / x
x
Availability x x x
x
A. 几何模型
• 在热分析中,可以使用DS支持的大多数体素的类型。
– 所有支持热分析的产品都支持实体和面。
• 对于面,必须在“Geometry”分支的“Details view”中输入其厚度 • 对于线, 只有 ANSYS Professional 及更高级licenses 支持。 • 线的截面和方向在 DM 中定义,并自动导入到 DS中。
外边界的对角线ASMDIAG,被设为一个相对较“高”的值。
TCC = KXX ⋅10,000 / ASMDIAG
这最终提供了零件间完全的传热。
ANSYS License DesignSpace Entra De si gnS pa ce P rofe ssiona l S tructura l M e cha ni ca l /M ultiphysics
The light, dotted green arrows indicate that no heat transfer will occur between parts.
… 装配体 – 接触区
• 在DS中,存在不同的接触行为:
– 通常,接触类型仅对结构应用有意义 – 如果零件初始有接触,零件间就会发生传热,如果零件初始
Availability
x x
x
In the figure on the left, the solid green double-arrows indicate heat flow within the contact region. Heat flow only occurs if a target surface is normal to a contact surface.
相关文档
最新文档